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GEAR GEOMETRY AND APPLIED THEORY
Second Edition

Revised and expanded, Gear Geometry and Applied Theory, 2nd edition, cov-
ers the theory, design, geometry, and manufacture of all types of gears and gear
drives. Gear Geometry and Applied Theory is an invaluable reference for de-
signers, theoreticians, students, and manufacturers. This new edition includes
advances in gear theory, gear manufacturing, and computer simulation. Among
the new topics are (1) new geometry for modified spur and helical gears, face-gear
drives, and cycloidal pumps; (2) new design approaches for one-stage planetary
gear trains and spiral bevel gear drives; (3) an enhanced approach for stress
analysis of gear drives with FEM; (4) new methods of grinding face-gear drives,
generating double-crowned pinions, and generating new types of helical gears;
(5) broad application of simulation of meshing and TCA; and (6) new theories on
the simulation of meshing for multi-body systems, detection of cases wherein the
contact lines on generating surfaces may have their own envelope, and detection
and avoidance of singularities of generated surfaces.

Faydor L. Litvin is Director of the Gear Research Center and Distinguished
Professor Emeritus in the Department of Mechanical and Industrial Engineering,
University of Illinois at Chicago. He holds patents for twenty-five inventions, and
he was recognized as Inventor of the Year by the University of Illinois at Chicago
in 2001.

Alfonso Fuentes is Associate Professor of Mechanical Engineering at the
Polytechnic University of Cartagena.
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Foreword

The main topics of the book are the theory of gearing, computerized design, generation,
simulation of meshing, and stress analysis of gear drives. The first edition of the book
is already considered the leading reference in the field by the engineering community,
but this edition complements the first with new chapters and thoughtful revision of the
previous version, which will make it very useful for the design and manufacture of gear
drives.

New ideas of gear design presented in the book include:

(1) Development of gear drives with improved bearing contact, reduced sensitivity
to misalignment, and reduced transmission errors and vibration. These goals are
achieved by (i) simultaneous application of local synthesis of gear drives and com-
puterized simulation of meshing and contact and (ii) application of a predesigned
parabolic function of transmission errors that is able to absorb linear functions of
transmission errors caused by misalignments.

(2) Development of enhanced finite element analysis of stresses with the following
features: (i) the contacting model of teeth is developed automatically, on the basis
of analytical representation of equations of tooth surfaces; (ii) the formation of
bearing contact is investigated for several pairs of teeth in order to detect and
avoid areas of severe contact stresses.

(3) Improved conditions of load distribution in planetary gear trains by modification
of the applied geometry and regulation of installment of planet gears on the carrier.

New approaches are presented for gear manufacture that enable (i) grinding of face-
gear drives by application of a grinding worm of a special shape and (ii) design and
manufacture of new types of helical gears with double-crowned pinions for obtaining
localization of bearing contact and reduction of transmission errors.

The developed theory of gearing presented in the book will make the authors the
experts in this area. The book includes the solution to the following important complex
problems:

(i) development of new approaches for determination of an envelope to the family of
surfaces including the formation of the envelope by two branches;

(ii) avoidance of singularities of tooth surfaces and undercutting in the process of
generation; and

xii
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Foreword xiii

(iii) simplification of the contacting problem by a new approach for the determination
of principal curvatures and directions of an envelope.

The developed ideas have been applied to the design of gear drives, including a new
version of Wildhaber–Novikov helical gear drives, spiral bevel gears, and worm-gear
drives. Computerized simulation of meshing and contact and testing of prototypes of
gear drives have confirmed the effectiveness of the ideas presented in the book. Three
patents for new manufacturing approaches have been obtained by Professor Faydor L.
Litvin and representatives of gear companies.

The main ideas in the book have been developed by the authors and their associates at
the Gear Research Center of the University of Illinois at Chicago. They have also been the
subject of a great number of international publications of permanent interest. Thanks to
the wonderful leadership of Professor Faydor L. Litvin, who is universally well known
in the field of gears, this Center has involved representatives of various universities in
the United States, Italy, Spain, and Japan in gear research. The publication of this book
will certainly enhance the education and training of engineers in the area of gear theory
and design of gear transmissions.

Prof. Eng. Graziano Curti
Politecnico di Torino, Italy
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Preface

The contents of the second edition of the book have been thoroughly revised and sub-
stantially augmented in comparison with the first edition of 1994.

New topics in the second edition include the following new developments:

(1) A new geometry of modified spur gears, helical gears with parallel and crossed
axes, a new version of Novikov–Wildhaber helical gears, a new geometry of face-
gear drives, geometry of cycloidal pumps, a new approach for design of one-stage
planetary gear trains with improved conditions of load distribution, and a new
approach for design of spiral bevel gear drives with a reduced level of noise and
vibration and improved bearing contact.

(2) Development of an enhanced approach for stress analysis of gear drives by applica-
tion of the finite element method. The advantage of the developed approach is the
analytical design of the contacting model based on the analytical representation of
the gear tooth surfaces.

(3) Development of a new method of grinding of face-gear drives, new methods of
generation of double-crowned pinions for localization of the bearing contact and
reduction of transmission errors, and application of modified roll for reduction of
transmission errors.

(4) Broad application of simulation of meshing and tooth contact analysis (TCA) for
determination of the influence of errors of alignment on transmission errors and
shift of the bearing contact. This approach has been applied for almost all types of
gear drives discussed in the book.

(5) The authors have contributed to the development of the modern theory of gearing.
In particular, they have developed in this new edition of the book (i) formation of an
envelope by two branches, (ii) an extension of simulation of meshing for multi-body
systems, (iii) detection of cases wherein the contact lines on the generating surface
may have their own envelope, and (iv) detection and avoidance of singularities of
generated surfaces (for avoidance of undercutting during the process of generation).

The authors are grateful to the companies and institutions that have supported their
research and to the members of the Gear Research Center of the University of Illinois
at Chicago who tested their ideas as co-authors of joint papers (see Acknowledgments).

xiv
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(13) Ignacio González-Pérez, Gear Research Center for UIC

And the following scholars formerly associated with the Gear Research Center of UIC:

(14) Dr. C.B. Patrick Tsay

(15) Dr. Wei-Jiung Tsung

(16) Dr. Sergei A. Lagutin

(17) Dr. Wei-Shing Chaing

(18) Dr. Ningxin Chen

(19) Dr. Andy Feng

(20) Dr. Yi Zhang

(21) Dr. Chinping Kuan

(22) Dr. Yyh-Chiang Wang

(23) Dr. Jian Lu

(24) Dr. Hong-Tao Lee

(25) Dr. Chun-Liang Hsiao

(26) Dr. Vadim Kin

(27) Dr. Inwan Seol

(28) Dr. David Kim

(29) Dr. Shawn Zhao

(30) Dr. Anngwo Wang

(31) Giuseppe Argentieri

(32) Alberto Demenego

(33) Dr. Kazumasa Kawasaki

(34) Dr. Qi Fan

(35) Claudio Zanzi

(36) Matteo Pontiggia

(37) Alessandro Nava

(38) Luca Carnevali

(39) Alessandro Piscopo

(40) Paolo Ruzziconi



P1: JYT

CB672-01 CB672/Litvin CB672/Litvin-v2.cls December 19, 2003 17:5

1 Coordinate Transformation

1.1 HOMOGENEOUS COORDINATES

A position vector in a three-dimensional space (Fig. 1.1.1) may be represented (i) in
vector form as

rm = OmM = xmim + ymjm + zmkm (1.1.1)

where (im, jm, km) are the unit vectors of coordinate axes, and (ii) by the column matrix

rm =
 xm

ym

zm

 . (1.1.2)

The subscript “m” indicates that the position vector is represented in coordinate system
Sm(xm, ym, zm). To save space while designating a vector, we will also represent the
position vector by the row matrix,

rm = [xm ym zm]T . (1.1.3)

The superscript “T” means that rT
m is a transpose matrix with respect to rm.

A point – the end of the position vector – is determined in Cartesian coordinates with
three numbers: x, y, z. Generally, coordinate transformation in matrix operations
needs mixed matrix operations where both multiplication and addition of matrices
must be used. However, only multiplication of matrices is needed if position vectors are
represented with homogeneous coordinates. Application of such coordinates for
coordinate transformation in theory of mechanisms has been proposed by Denavit &
Hartenberg [1955] and by Litvin [1955]. Homogeneous coordinates of a point in a three-
dimensional space are determined by four numbers (x∗, y∗, z∗, t∗) which are not equal
to zero simultaneously and of which only three are independent. Assuming that t∗ �= 0,
ordinary coordinates and homogeneous coordinates may be related as follows:

x = x∗

t∗ y = y∗

t∗ z = z∗

t∗ . (1.1.4)

1
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2 Coordinate Transformation

Figure 1.1.1: Position vector in Cartesian coordi-
nate system.

With t∗ = 1, a point may be specified by homogeneous coordinates such as (x, y, z, 1),
and a position vector may be represented by

rm =


xm

ym

zm

1

 or

rm = [xm ym zm 1]T .

1.2 COORDINATE TRANSFORMATION IN MATRIX REPRESENTATION

Consider two coordinate systems Sm(xm, ym, zm) and Sn(xn, yn, zn) (Fig. 1.2.1). Point
M is represented in coordinate system Sm by the position vector

rm = [xm ym zm 1]T . (1.2.1)

The same point M can be determined in coordinate system Sn by the position vector

rn = [xn yn zn 1]T (1.2.2)

with the matrix equation

rn = Mnmrm. (1.2.3)
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1.2 Coordinate Transformation in Matrix Representation 3

Figure 1.2.1: Derivation of coordinate transforma-
tion.

Matrix Mnm is represented by

Mnm =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1



=


(in · im) (in · jm) (in · km) (OnOm · in)

(jn · im) (jn · jm) (jn · km) (OnOm · jn)

(kn · im) (kn · jm) (kn · km) (OnOm · kn)

0 0 0 1



=


cos( ̂xn, xm) cos( ̂xn, ym) cos( ̂xn, zm) x(Om)

n

cos( ̂yn, xm) cos( ̂yn, ym) cos( ̂yn, zm) y(Om)
n

cos( ̂zn, xm) cos( ̂zn, ym) cos( ̂zn, zm) z(Om)
n

0 0 0 1

 . (1.2.4)

Here, (in, jn, kn) are the unit vectors of the axes of the “new” coordinate system;
(im, jm, km) are the unit vectors of the axes of the “old” coordinate system; On and
Om are the origins of the “new” and “old” coordinate systems; subscript “nm” in the
designation Mnm indicates that the coordinate transformation is performed from Sm to
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Sn. The determination of elements alk (k = 1, 2, 3; l = 1, 2, 3) of matrix Mnm is based
on the following rules:

(i) Elements of the 3 × 3 submatrix

Lnm =
a11 a12 a13

a21 a22 a23

a31 a32 a33

 (1.2.5)

represent the direction cosines of the “old” unit vectors (im, jm, km) in the “new”
coordinate systems Sn. For instance, a21 = cos( ̂yn, xm), a32 = cos( ̂zn, ym), and so
on. The subscripts of elements akl in matrix (1.2.5) indicate the number l of the
“old” coordinate axis and the number k of the “new” coordinate axis. Axes x, y, z
are given numbers 1, 2, and 3, respectively.

(ii) Elements a14, a24, and a34 represent the “new” coordinates x(Om)
n , y(Om)

n , z(Om)
n of

the “old” origin Om.

Recall that nine elements of matrix Lnm are related by six equations that express the
following:

(1) Elements of each row (or column) are direction cosines of a unit vector. Thus,

a2
11 + a2

12 + a2
13 = 1, a2

11 + a2
21 + a2

31 = 1, · · · . (1.2.6)

(2) Due to orthogonality of unit vectors of coordinate axes, we have

[a11 a12 a13] [a21 a22 a23]T = 0

[a11 a21 a31] [a12 a22 a32]T = 0. (1.2.7)

An element of matrix Lnm can be represented by a respective determinant of the second
order [Strang, 1988]. For instance,

a11 =
∣∣∣∣a22 a23

a32 a33

∣∣∣∣ , a23 = (−1)
∣∣∣∣a11 a12

a31 a32

∣∣∣∣ . (1.2.8)

To determine the new coordinates (xn, yn, zn, 1) of point M, we have to use the rule
of multiplication of a square matrix (4 × 4) and a column matrix (4 × 1). (The number
of rows in the column matrix is equal to the number of columns in matrix Mnm.)
Equation (1.2.3) yields

xn = a11xm + a12ym + a13zm + a14

yn = a21xm + a22ym + a23zm + a24

zn = a31xm + a32ym + a33zm + a34.

(1.2.9)

The purpose of the inverse coordinate transformation is to determine the coordinates
(xm, ym, zm), taking as given coordinates (xn, yn, zn). The inverse coordinate transfor-
mation is represented by

rm = Mmnrn. (1.2.10)

The inverse matrix Mmn indeed exists if the determinant of matrix Mnm differs from
zero.
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There is a simple rule that allows the elements of the inverse matrix to be determined
in terms of elements of the direct matrix. Consider that matrix Mnm is given by

Mnm =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1

 . (1.2.11)

It is necessary to determine the elements of matrix Mmn represented by

Mmn =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

0 0 0 1

 . (1.2.12)

Here,

Mmn = M−1
nm, MmnMnm = I

where I is the identity matrix.
The submatrix Lmn of the order (3 × 3) is determined as follows:

Lmn =
b11 b12 b13

b21 b22 b23

b31 b32 b33

 =
a11 a21 a31

a12 a22 a32

a13 a23 a33

 = LT
nm. (1.2.13)

The remaining elements (b14, b24, and b34) are determined with the following equations:

b14 = −(a11a14 + a21a24 + a31a34) ⇒ −


: a11 : a12 a13 : a14 :
: a21 : a22 a23 : a24 :
: a31 : a32 a33 : a34 :

: 0 : 0 0 : 1 :



b24 = −(a12a14 + a22a24 + a32a34) ⇒ −


a11 : a12 : a13 : a14 :
a21 : a22 : a23 : a24 :
a31 : a32 : a33 : a34 :

0 : 0 : 0 : 1 :



b34 = −(a13a14 + a23a24 + a33a34) ⇒ −


a11 a12 : a13 : : a14 :
a21 a22 : a23 : : a24 :
a31 a32 : a33 : : a34 :
0 0 : 0 : : 1 :

 . (1.2.14)

The columns to be multiplied are marked.
To perform successive coordinate transformation, we need only to follow the product

rule of matrix algebra. For instance, the matrix equation

rp = Mp(p−1)M(p−1)(p−2) · · · M32M21r1 (1.2.15)

represents successive coordinate transformation from S1 to S2, from S2 to S3, . . . , from
Sp−1 to Sp.
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To perform transformation of components of free vectors, we need only to apply
3 × 3 submatrices L, which may be obtained by eliminating the last row and the last
column of the corresponding matrix M. This results from the fact that the free-vector
components (projections on coordinate axes) do not depend on the location of the origin
of the coordinate system.

The transformation of vector components of a free vector A from system Sm to Sn is
represented by the matrix equation

An = LnmAm (1.2.16)

where

An =

 Axn

Ayn

Azn

 , Lnm =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , Am =

 Axm

Aym

Azm

 . (1.2.17)

A normal to the gear tooth surface is a sliding vector because it may be translated along
its line of action. However, we may transform the surface normal as a free vector if the
surface point where the surface normal is considered will be transferred simultaneously.

1.3 ROTATION ABOUT AN AXIS

Two Main Problems
We consider a general case in which the rotation is performed about an axis that does
not coincide with any axis of the employed coordinate system. We designate the unit
vector of the axis of rotation by c (Fig. 1.3.1) and assume that the rotation about c may
be performed either counterclockwise or clockwise.

Henceforth we consider two coordinate systems: (i) the fixed one, Sa ; and (ii) the
movable one, Sb. There are two typical problems related to rotation about c. The first
one can be formulated as follows.

Consider that a position vector is rigidly connected to the movable body. The initial
position of the position vector is designated by OA = ρ (Fig. 1.3.1). After rotation
through an angle φ about c, vector ρ will take a new position designated by OA

∗ = ρ∗.
Both vectors, ρ and ρ∗ (Fig. 1.3.1), are considered to be in the same coordinate system,
say Sa . Our goal is to develop an equation that relates components of vectors ρa and ρ∗

a .
(The subscript “a” indicates that the two vectors are represented in the same coordinate
system Sa .) Matrix equation

ρ∗
a = Laρa (1.3.1)

describes the relation between the components of vectors ρ and ρ∗ that are represented
in the same coordinate system Sa.

The other problem concerns representation of the same position vector in different
coordinate systems. Our goal is to derive matrix Lba in matrix equation

ρb = Lbaρa . (1.3.2)
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Figure 1.3.1: Rigid body rotation.

The designations ρa and ρb indicate that the same position vector ρ is represented
in coordinate systems Sa and Sb, respectively. Although the same position vector is
considered, the components of ρ in coordinate systems Sa and Sb are different and we
designate them by

ρa = a1ia + a2ja + a3ka (1.3.3)

and

ρb = b1ib + b2jb + b3kb. (1.3.4)

Matrix Lba is an operator that transforms the components [a1 a2 a3]T into
[b1 b2 b3]T. It will be shown below that operators La and Lba are related.

Problem 1. Relations between components of vectors ρa and ρ∗
a .

Recall thatρa andρ∗
a are two position vectors that are represented in the same coordinate

system Sa . Vector ρ represents the initial position of the position vector, before rotation,
and ρ∗ represents the position vector after rotation about c. The following derivations
are based on the assumption that rotation about c is performed counterclockwise. The
procedure of derivations (see also Suh & Radcliffe, 1978, Shabana, 1989, and others)
is as follows.

Step 1: We represent ρ∗
a by the equation (Fig. 1.3.1)

ρ∗
a = OM + MN + NA∗ (1.3.5)
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where

OM = (ca · ρa )ca = (ca · ρ∗
a )ca (1.3.6)

and ca is the unit vector of the axis of rotation that is represented in Sa .
Step 2: Vector ρa is represented by the equation

ρa = OM + MA = (ca · ρa )ca + MA (1.3.7)

that yields

MA = ρa − (ca · ρa )ca . (1.3.8)

We emphasize that a vector being rotated about c generates a cone with an apex
angle α. Thus, both vectors, ρ and ρ∗, are the generatrices of the same cone, as shown in
Fig. 1.3.1.

Step 3: Vector MN has the same direction as MA and this yields

|MN| = |MA∗| cos φ = |MA| cos φ = ρ sin α cos φ (1.3.9)

where α is the apex angle of the generated cone, |MA| = ρ sin α, and ρ is the magnitude
of ρ.

Equations (1.3.8) and (1.3.9) yield

MN = |MN| MA

|MA| = [ρa − (ca · ρa )ca ] cos φ. (1.3.10)

Step 4: Vector NA∗ has the same direction as (ca × ρa ) and may be represented by

NA∗ = ca × ρa

|ca × ρa | |NA∗| = sin φ(ca × ρa ). (1.3.11)

Here,

|NA∗| = |MA∗| sin φ = ρ sin α sin φ, |ca × ρa | = ρ sin α.

Step 5: Equations (1.3.5), (1.3.6), (1.3.10), and (1.3.11) yield

ρ∗
a = ρa cos φ + (1 − cos φ)(ca · ρa )ca + sin φ(ca × ρa ). (1.3.12)

Step 6: It is easy to prove that

(ca · ρa )ca = ca × (ca × ρa ) + ρa (1.3.13)

because

ca × (ca × ρa ) = (ca · ρa )ca − ρa (ca · ca ).

Step 7: Equations (1.3.12) and (1.3.13) yield

ρ∗
a = ρa + (1 − cos φ)[ca × (ca × ρa )] + sin φ(ca × ρa ). (1.3.14)

Equation (1.3.14) is known as the Rodrigues formula. According to the investigation
by Cheng & Gupta [1989], this equation deserves to be called the Euler–Rodrigues,
formula.
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Step 8: Additional derivations are directed at representation of the Euler–Rodrigues
formula in matrix form.

The cross product (ca × ρa ) may be represented in matrix form by

ca × ρa = Csρa (1.3.15)

where Cs is the skew-symmetric matrix represented by

Cs =
 0 −c3 c2

c3 0 −c1

−c2 c1 0

 . (1.3.16)

Vector ca is represented by

ca = c1ia + c2ja + c3ka . (1.3.17)

Step 9: Equations (1.3.14), (1.3.15), and (1.3.16) yield the following matrix repre-
sentation of the Euler–Rodrigues formula:

ρ∗
a = [I + (1 − cos φ)(Cs )2 + sin φCs ]ρa = Laρa (1.3.18)

where I is the 3 × 3 identity matrix. While deriving Eqs. (1.3.14) and (1.3.18), we
assumed that the rotation is performed counterclockwise. For the case of clockwise
rotation, it is necessary to change the sign preceding sin φ to its opposite. The expression
for matrix La that will cover two directions of rotation is

La = I + (1 − cos φ)(Cs )2 ± sin φCs . (1.3.19)

The upper sign preceding sin φ corresponds to counterclockwise rotation and the lower
sign corresponds to rotation in a clockwise direction. In both cases the unit vector c
must be expressed by the same Eq. (1.3.17) that determines the orientation of c but
not the direction of rotation. The direction of rotation is identified with the proper sign
preceding sin φ in Eq. (1.3.19).

Problem 2. Recall that our goal is to derive the operator Lba in matrix equation (1.3.2)
that transforms components of the same vector (see Eqs. (1.3.3) and (1.3.4)). It will be
shown below that the sought-for operator is represented as

Lba = LT
a = I + (1 − cos φ)(Cs )2 ∓ sin φCs . (1.3.20)

Operator Lba can be obtained from operator La given by Eq. (1.3.19) by changing the
sign of the angle of rotation, φ. The upper and lower signs preceding sin φ in Eq. (1.3.20)
correspond to the cases where Sa will coincide with Sb by rotation counterclockwise
and clockwise, respectively. The proof is based on the determination of components of
the same vector, say vector OA shown in Fig. 1.3.1, in coordinate systems Sa and Sb.

Step 1: We consider initially that vector OA is represented in Sa as

ρa = [a1 a2 a3]T. (1.3.21)

Step 2: To determine components of vector OA in Sb we consider first that coordinate
system Sb and the previously mentioned position vector are rotated as one rigid body
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about c. After rotation through angle φ, position vector OA will take the position OA
∗

and can be represented in Sb as

OA
∗ = a1ib + a2jb + a3kb. (1.3.22)

It is obvious that vector OA
∗

has in Sb the same components as vector OA has in Sa .

Step 3: We consider now in Sb two vectors OA
∗

and OA. Vector OA
∗

will coincide
with OA after clockwise rotation about c. The components of vectors OA

∗
and OA in

Sb are related by an equation that is similar to Eq. (1.3.19). The difference is that we
now have to consider that the rotation from OA

∗
to OA is performed clockwise. Then

we obtain

(OA)b = Lb(OA
∗
)b = [I + (1 − cos φ)(Cs )2 − sin φCs ] (OA

∗
)b. (1.3.23)

Designating components of (OA)b by [b1 b2 b3]T, we receive

[b1 b2 b3]T = [I + (1 − cos φ)(Cs )2 − sin φCs ][a1 a2 a3]T. (1.3.24)

Step 4: We have now obtained components of the same vector OA in coordinate
systems Sa and Sb, respectively. The matrix equation that describes transformation of
components of OA is

(OA)b = Lba (OA)a . (1.3.25)

For the case in which rotation from Sa to Sb is performed counterclockwise we have
obtained that

Lba = I + (1 − cos φ)(Cs )2 − sin φCs . (1.3.26)

Similarly, for the case in which rotation from Sa to Sb is performed clockwise, we obtain

Lba = I + (1 − cos φ)(Cs )2 + sin φCs . (1.3.27)

The general description of operator Lba and the respective coordinate transformation
are as follows:

ρb = Lbaρa = [I + (1 − cos φ)(Cs )2 ∓ sin φCs ]ρa . (1.3.28)

The upper and lower signs preceding sin φ correspond to the cases in which rotation
from Sa to Sb is performed counterclockwise and clockwise, respectively.

In our identification of coordinate systems Sa and Sb we do not use the terms fixed
and movable. We just consider that Sa is the previous coordinate system and Sb is
the new one, and we take into account how the rotation from Sa to Sb is performed:
counterclockwise or clockwise.

Matrix Lba

Using Eqs. (1.3.26) and (1.3.27), we may represent elements of matrix Lba in terms of
components of unit vector c of the axis of rotation and the angle of rotation φ. Thus,
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Figure 1.3.2: Derivation of coordinate transforma-
tion by rotation.

we obtain

Lba =
a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (1.3.29)

Here,

a11 = cos φ
(
1 − c2

1

)+ c2
1

a12 = (1 − cos φ)c1c2 ± sin φc3

a13 = (1 − cos φ)c1c3 ∓ sin φc2

a21 = (1 − cos φ)c1c2 ∓ sin φc3

a22 = cos φ
(
1 − c2

2

)+ c2
2

a23 = (1 − cos φ)c2c3 ± sin φc1

a31 = (1 − cos φ)c1c3 ± sin φc2

a32 = (1 − cos φ)c2c3 ∓ sin φc1

a33 = cos φ
(
1 − c2

3

)+ c2
3.

(1.3.30)

When the axis of rotation coincides with a coordinate axis of Sa , we have to make
two components of unit vector ca equal to zero in Eqs. (1.3.30). For instance, in the
case in which rotation is performed about the za axis (Fig. 1.3.2), we have

ca = ka = [0 0 1]T. (1.3.31)

We emphasize again that in all cases of coordinate transformation only elements (1.3.30)
of matrix Lba , and not the components of ca , depend on the direction of rotation. The
unit vector c can be represented in either of the two coordinate systems, Sa and Sb, by
the equations

c = c1ia + c2ja + c3ka = c1ib + c2jb + c3kb. (1.3.32)

This means that the unit vector c of the axis of rotation has the same components in
both coordinate systems, Sa and Sb. It is easily verified that

[c1 c2 c3]T = Lba [c1 c2 c3]T. (1.3.33)
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Although the significance of this observation has not been recognized in the literature,
it has been found to be advantageous in obtaining coordinate transformations in this
book.

The proof of Eq. (1.3.32) is based on the following considerations. The unit vector c
of the axis C of rotation is directed along the axis that is common to the two coordinate
systems, Sa and Sb. Thus, the orientation of c is not changed when one of the two
coordinate systems rotates with respect to the other about C. For instance, assume that
a unit vector of Sa , say ia , is directed along OA, and the unit vector ib of Sb is directed
along OA∗ (see Fig. 1.3.1). Both unit vectors, ia and ib, are the generatrices of the same
cone and therefore

c · ia = c · ib = c1.

Similarly, we may prove that

c · ja = c · jb = c2, c · ka = c · kb = c3.

Thus, Eq. (1.3.32) is confirmed.

Employment of Additional Coordinate Systems
Generally, the axis of rotation does not coincide with any coordinate axis of Sa . The
movable coordinate system Sb coincides with Sa in the beginning of rotation. Thus,
there is no coordinate axis of Sb that coincides with the axis of rotation. Our goal is to
employ two additional coordinate systems Sm and Sn that will enable us to make one
of their coordinate axes coincide with the axis of rotation. The auxiliary coordinate
system Sm is rigidly connected to Sa , and the auxiliary coordinate system Sn is rigidly
connected to Sb.

The determination of the structure of matrix Lma is based on the following consider-
ations. Let us represent Lma as

Lma =
a1 a2 a3

b1 b2 b3

d1 d2 d3

 . (1.3.34)

A respective axis of Sm will coincide with c if one of three unit vectors (a, b, and d)
coincides with c. We limit this discussion to the case in which the zm axis coincides with
c. Two other cases can be discussed similarly. For the previously mentioned case we
have

d = [c1 c2 c3]T (1.3.35)

and

Lma =
a1 a2 a3

b1 b2 b3

c1 c2 c3

 . (1.3.36)

Unit vectors a and b are represented as follows:

a = [im · ia im · ja im · ka ], b = [jm · ia jm · ja jm · ka ]. (1.3.37)
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It is obvious that

Lma ca = [0 0 1]T (1.3.38)

because a · c = 0, b · c = 0, and c · c = 1. While choosing one of the two unit vectors (a
and b), say b, we have to take into account the following relations: (i)

b1c1 + b2c2 + b3c3 = 0 (1.3.39)

due to the orthogonality of c and b, and (ii)

b2
1 + b2

2 + b2
3 = 1 (1.3.40)

because b is a unit vector. Equations (1.3.39) and (1.3.40) relate two of three components
of b, and only one of them can be chosen.

After determination of c and b we can define the unit vector a using the cross product

a = b × c. (1.3.41)

The motion of movable coordinate system Sn with respect to Sm and Sa (Sm and Sa are
rigidly connected) is rotation about the zm axis through angle φ. Matrix Lnm can be de-
termined in accordance with Eqs. (1.3.29) and (1.3.30). The coordinate transformation
from Sa to Sn is based on the matrix equation

ρn = LnmLmaρa . (1.3.42)

We have discussed above the coordinate transformation from Sa to Sb that is represented
by matrix equation (1.3.30).

At the start of motion, coordinate system Sb coincides with Sa , coordinate system Sn

(which is rigidly connected to Sb) coincides with Sm (which is rigidly connected to Sa ).
With these considerations we can develop the following matrix equations:

Lnb = Lma (1.3.43)

LnmLma = LnbLba = Lma Lba (1.3.44)

L−1
ma LnmLma = Lba . (1.3.45)

We may also prove the correctness of the matrix equations

Lba [c1 c2 c3]T = L−1
ma LnmLma [c1 c2 c3]T = [c1 c2 c3]T (1.3.46)

and

LnmLma [c1 c2 c3]T = Lma Lba [c1 c2 c3]T = m = [m1 m2 m3]T. (1.3.47)

Here, m is the unit vector of the axis of Sm that is the axis of rotation (two components
of m are equal to zero and the third is equal to one). Matrix equations (1.3.44) to
(1.3.47) are illustrated in Problem 1.5.4.
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1.4 ROTATIONAL AND TRANSLATIONAL 4 × 4 MATRICES

Generally, the origins of coordinate systems do not coincide and the orientations of the
systems are different. In such a case the coordinate transformation may be based on the
application of homogeneous coordinates and 4 × 4 matrices that describe separately
rotation about a fixed axis and displacement of one coordinate system with respect to
the other.

Consider that the same point must be represented in coordinate systems Sp and Sq

(Fig. 1.4.1). The origins of Sp and Sq do not coincide and the orientations of coordinate
axes in these systems is also different. It is useful in such a case to apply an auxiliary
coordinate system, Sn, and a matrix, Mnp, that describes translation from Sp to Sn.
Coordinate systems Sp and Sq have a common origin and the coordinate transformation
from Sp to Sq is based on the Euler–Rodrigues equation.

The coordinate transformation from Sp to Sq is represented by the matrix equation

rq = MqnMnprp = Mqprp. (1.4.1)

The 4 × 4 matrix Mnp describes translation from Sp to Sn and is represented by

Mnp =


1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

 . (1.4.2)

Figure 1.4.1: Application of coordinate sys-
tems.
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The 4 × 4 matrix Mqn describes rotation about a fixed axis with unit vector c and is
represented as

Mqn =


a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 1

 . (1.4.3)

The 3 × 3 submatrix of Mqn is determined with Eqs. (1.3.29) and (1.3.30). The inverse
coordinate transformation is represented by the equations

rp = Mpqrq = M−1
qp rq (1.4.4)

M−1
qp = M−1

np M−1
qn = MpnMnq . (1.4.5)

1.5 EXAMPLES OF COORDINATE TRANSFORMATION

The examples of coordinate transformation presented in this section are based on ap-
plication of 4 × 4 rotational and translational matrices. The study of these problems
will give the reader experience in coordinate transformation as it relates to the theory
of gearing.

Problem 1.5.1
Coordinate systems S1 and S2 are rigidly connected to the gear and to the rack-cutter
that perform rotational and translational motions with respect to the fixed coordinate
system Sf (Fig. 1.5.1). A point M in coordinate system S1 is represented by position
vector O1M = r1.

(i) Determine the position vector r2 of the same point in coordinate system S2.
(ii) Express the inverse matrix M12 = M−1

21 in terms of elements of matrix M21 and
then determine the position vector r1 considering that r2 is given.

Solution
(i) The coordinate transformation from S1 to S2 is based on the matrix equation

r2 = M21r1 = M2 f M f 1r1. (1.5.1)

The rotational matrix M f 1 describes rotation about the z f axis with the unit vector,

c f = [0 0 1]T. (1.5.2)

The rotation from S1 to S2 is performed clockwise and the lower sign in Eq. (1.3.30)
must be chosen. Taking into account that c1 = c2 = 0, c3 = 1, we obtain the fol-
lowing expression for the rotational matrix M f 1 :

M f 1 =


cos φ − sin φ 0 0
sin φ cos φ 0 0

0 0 1 0
0 0 0 1

 . (1.5.3)
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Figure 1.5.1: Centrodes in translation–
rotation motions.

The drawings of Fig. 1.5.1 yield that

(O2Of ) f = [ρφ − ρ 0]T,

and the translational matrix is

M2 f =


1 0 0 ρφ

0 1 0 −ρ

0 0 1 0
0 0 0 1

 . (1.5.4)

The position vectors r2 and r1 are

r2 = [x2 y2 z2 1]T, r1 = [x1 y1 z1 1]T. (1.5.5)

Equations (1.5.1) to (1.5.5) yield

M21 =


cos φ − sin φ 0 ρφ

sin φ cos φ 0 −ρ

0 0 1 0
0 0 0 1

 (1.5.6)

and

x2 = x1 cos φ − y1 sin φ + ρφ

y2 = x1 sin φ + y1 cos φ − ρ

z2 = z1.

(1.5.7)
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(ii) Matrix M21 is not singular and the inverse coordinate transformation is possible.
To determine the inverse matrix M12 = M−1

21 , we use equations (1.2.10) to (1.2.13),
which yield

M12 =


cos φ sin φ 0 ρ(sin φ − φ cos φ)

− sin φ cos φ 0 ρ(cos φ + φ sin φ)

0 0 1 0

0 0 0 1

 . (1.5.8)

Then, using the matrix equation

r1 = M12r2 (1.5.9)

we obtain

x1 = x2 cos φ + y2 sin φ + ρ(sin φ − φ cos φ)

y1 = −x2 sin φ + y2 cos φ + ρ(cos φ + φ sin φ)

z1 = z2.

(1.5.10)

Problem 1.5.2
Coordinate systems S1 (x1, y1, z1) and S2 (x2, y2, z2) are rigidly connected to gears 1
and 2 that transform rotation between parallel axes (Fig. 1.5.2). Angles of gear rotation

Figure 1.5.2: Centrodes in rotational mo-
tions of opposite direction.
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φ1 and φ2 are related with the equation

φ2

φ1
= ρ1

ρ2
(1.5.11)

where ρ1 and ρ2 are the radii of gear centrodes (see Section 3.2). E is the shortest distance
between the axes of rotation. The fixed coordinate system Sf is rigidly connected to the
gear housing. Sp is an auxiliary coordinate system that is also rigidly connected to the
gear housing.

(i) Derive equations for coordinate transformation from S2 to S1.
(ii) Derive equations for coordinate transformation from S1 to S2.

Solution
(i) The coordinate transformation in transition from S2 to S1 is based on the matrix

equation

r1 = M12r2 = M1 f M f pMp2r2 (1.5.12)

where M1 f and Mp2 are rotational matrices and M f p is a translational matrix.
Here,

r2 =


x2

y2

z2

1

 , Mp2 =


cos φ2 sin φ2 0 0

− sin φ2 cos φ2 0 0
0 0 1 0
0 0 0 1



r1 =


x1

y1

z1

1

 , M1 f =


cos φ1 sin φ1 0 0

− sin φ1 cos φ1 0 0
0 0 1 0
0 0 0 1



M f p =


1 0 0 0
0 1 0 E
0 0 1 0
0 0 0 1

 . (1.5.13)

Equations (1.5.13) yield

M12 =


cos(φ1 + φ2) sin(φ1 + φ2) 0 E sin φ1

− sin(φ1 + φ2) cos(φ1 + φ2) 0 E cos φ1

0 0 1 0

0 0 0 1

 . (1.5.14)

Using equations (1.5.12) and (1.5.14), we obtain

x1 = x2 cos(φ1 + φ2) + y2 sin(φ1 + φ2) + E sin φ1

y1 = −x2 sin(φ1 + φ2) + y2 cos(φ1 + φ2) + E cos φ1

z1 = z2.

(1.5.15)
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(ii) The inverse matrix M21 = M−1
12 can be expressed in terms of elements of M12 as

follows [see Eqs. (1.2.10) to (1.2.14)]:

M21 =


cos(φ1 + φ2) − sin(φ1 + φ2) 0 E sin φ2

sin(φ1 + φ2) cos(φ1 + φ2) 0 −E cos φ2

0 0 1 0

0 0 0 1

 . (1.5.16)

The inverse coordinate transformation is based on the matrix equation

r2 = M21r1, (1.5.17)

which yields

x2 = x1 cos(φ1 + φ2) − y1 sin(φ1 + φ2) + E sin φ2

y2 = x1 sin(φ1 + φ2) + y1 cos(φ1 + φ2) − E cos φ2

z2 = z1.

(1.5.18)

Problem 1.5.3
Consider that two gears transform rotation about parallel axes in the same direction
(Fig. 1.5.3). Coordinate systems S1 and S2 are rigidly connected to gears 1 and 2; Sf

and Sp are fixed coordinate systems; E is the shortest distance; ρ1 and ρ2 are the radii
of gear centrodes (see Section 3.2). (i) Determine matrices M21 and M12 = M−1

21 and (ii)
perform the coordinate transformation in transition from S1 to S2 and from S2 to S1.

Figure 1.5.3: Centrodes in rotational mo-
tions of the same direction.
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Solution
(i)

M21 = M2pMpf M f 1

=


cos(φ1 − φ2) sin(φ1 − φ2) 0 −E sin φ2

− sin(φ1 − φ2) cos(φ1 − φ2) 0 E cos φ2

0 0 1 0

0 0 0 1

 (1.5.19)

M12 = M−1
21

=


cos(φ1 − φ2) − sin(φ1 − φ2) 0 E sin φ1

sin(φ1 − φ2) cos(φ1 − φ2) 0 −E cos φ1

0 0 1 0

0 0 0 1

 . (1.5.20)

(ii)

x2 = x1 cos(φ1 − φ2) + y1 sin(φ1 − φ2) − E sin φ2

y2 = −x1 sin(φ1 − φ2) + y1 cos(φ1 − φ2) + E cos φ2

z2 = z1

(1.5.21)

x1 = x2 cos(φ1 − φ2) − y2 sin(φ1 − φ2) + E sin φ1

y1 = x2 sin(φ1 − φ2) + y2 cos(φ1 − φ2) − E cos φ1

z1 = z2.

(1.5.22)

Problem 1.5.4
The purpose of this problem is to illustrate the verification of Eqs. (1.3.44) to (1.3.47).
Figure 1.5.4(a) shows two coordinate systems Sa and Sb that coincide with each other
initially. Coordinate system Sb is rotated counterclockwise about the axis with unit
vector

ca = [0 sin γ cos γ ]T. (1.5.23)

Matrix Lba in accordance with Eqs. (1.3.30) is represented as follows:

Lba =

 cos φ sin φ cos γ − sin φ sin γ

− sin φ cos γ cos φ cos2 γ + sin2 γ (1 − cos φ) sin γ cos γ

sin φ sin γ (1 − cos φ) sin γ cos γ cos φ sin2 γ + cos2 γ

 . (1.5.24)

Figure 1.5.4(b) shows an auxiliary coordinate system Sm that is rigidly connected to
Sa . The coordinate axis zm coincides with ca whose components represent the elements
of the third row in matrix Lma represented by Eq. (1.3.36). Coordinate axis xm coincides
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Figure 1.5.4: Auxiliary coordinate systems: (a) illus-
tration of coordinate systems Sa and Sb; (b) illustra-
tion of coordinate systems Sa , Sm, and Sn.

with xa . According to Eq. (1.3.30), matrix Lma is

Lma =

1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 . (1.5.25)

Coordinate systems Sn and Sb which are rigidly connected to each other are rotated
about cm = km through angle φ. Matrix Lnm, in accordance with Eqs. (1.3.30), is rep-
resented by

Lnm =

 cos φ sin φ 0

− sin φ cos φ 0

0 0 1

 . (1.5.26)

Matrix product LnmLma = Lna is

Lna =

 cos φ sin φ cos γ − sin φ sin γ

− sin φ cos φ cos γ − cos φ sin γ

0 sin γ cos γ

 . (1.5.27)
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Figure 1.5.5: General case of coordinate trans-
formation.

Using Eqs. (1.5.24) to (1.5.27) we may be certain that matrix equations (1.3.43)
and (1.3.45) are indeed observed. Equations (1.3.46) and (1.3.47) in the discussed case
yield

Lba [0 sin γ cos γ ]T = L−1
ma LnmLma [0 sin γ cos γ ]T

= [0 sin γ cos γ ]T
(1.5.28)

LnmLma [0 sin γ cos γ ]T = Lma Lba [0 sin γ cos γ ]T

= [0 0 1]T.
(1.5.29)

Problem 1.5.5
Gears 1 and 2 rotate about axes zf and z p that form the twist angle γ and the shortest
distance E (Fig. 1.5.5). Coordinate systems S1, S2, and Sf are rigidly connected to
gear 1, gear 2, and the frame, respectively. The auxiliary systems Sm and Sp are also
rigidly connected to the frame. Derive equations for the coordinate transformation in
transition from S1 to S2 and from S2 to S1.

DIRECTIONS. The coordinate transformation in transition from S1 to S2 is based on
matrix equation

r2 = M21r1 = M2pMpmMmf M f 1r1. (1.5.30)
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Here, matrix Mmf is a translational matrix; matrix M f 1 describes rotation about the
z f axis; matrix Mpm describes the turn about the xm axis to obtain the twist angle γ ;
matrix M2p describes rotation about the z p axis.

Solution
Matrix M21 is represented by

M21 =



cos φ1 cos φ2 − sin φ1 cos φ2 − sin γ sin φ2 E cos φ2

+ cos γ sin φ1 sin φ2 + cos γ cos φ1 sin φ2

− cos φ1 sin φ2 sin φ1 sin φ2 − sin γ cos φ2 −E sin φ2

+ cos γ sin φ1 cos φ2 + cos γ cos φ1 cos φ2

sin γ sin φ1 sin γ cos φ1 cos γ 0

0 0 0 1


.

(1.5.31)

The coordinate transformation in transition from S1 to S2 is represented by the
equations

x2 = x1(cos φ1 cos φ2 + cos γ sin φ1 sin φ2)

+ y1(− sin φ1 cos φ2 + cos γ cos φ1 sin φ2)

− z1 sin γ sin φ2 + E cos φ2

y2 = x1(− cos φ1 sin φ2 + cos γ sin φ1 cos φ2) (1.5.32)

+ y1(sin φ1 sin φ2 + cos γ cos φ1 cos φ2)

− z1 sin γ cos φ2 − E sin φ2

z2 = x1 sin γ sin φ1 + y1 sin γ cos φ1 + z1 cos γ.

The inverse matrix M12 = M−1
21 is represented by

M12 =



cos φ1 cos φ2 − cos φ1 sin φ2 sin γ sin φ1 −E cos φ1

+ cos γ sin φ1 sin φ2 + cos γ sin φ1 cos φ2

− sin φ1 cos φ2 sin φ1 sin φ2 sin γ cos φ1 E sin φ1

+ cos γ cos φ1 sin φ2 + cos γ cos φ1 cos φ2

− sin γ sin φ2 − sin γ cos φ2 cos γ 0
0 0 0 1


.

(1.5.33)
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The coordinate transformation in transition from S2 to S1 is represented by the equations

x1 = x2(cos φ1 cos φ2 + cos γ sin φ1 sin φ2)

+ y2(− cos φ1 sin φ2 + cos γ sin φ1 cos φ2)

+ z2 sin γ sin φ1 − E cos φ1

y1 = x2(− sin φ1 cos φ2 + cos γ cos φ1 sin φ2) (1.5.34)

+ y2(sin φ1 sin φ2 + cos γ cos φ1 cos φ2)

+ z2 sin γ cos φ1 + E sin φ1

z1 = −x2 sin γ sin φ2 − y2 sin γ cos φ2 + z2 cos γ.

1.6 APPLICATION TO DERIVATION OF CURVES

The technique of coordinate transformation can be successfully applied in the derivation
of some curves and surfaces. It is assumed that the to-be-derived curve is generated by a
point that performs a prescribed motion. Respectively, it is considered that the surface
is generated by a curve that performs a prescribed motion as well (see Section 1.7).

Generation of Epicycloid
Consider two circles that are in external tangency [Fig. 1.6.1(a)]. The circles are cen-
trodes and their relative motion is pure rolling. The radii of the circles are ρ1 and ρ2.
Point M, which is rigidly connected to circle 2, traces out an extended epicycloid in
the coordinate system that is rigidly connected to circle 1 [represented in coordinate
system S1(x1, y1) as shown in Fig. 1.6.1(a)]. Mo and M are two positions of the tracing
point.

Equations of the extended epicycloid may be derived by using the coordinate trans-
formation in transition from S2 to S1. Coordinate systems S1 and S2 are shown in
Fig. 1.6.1(b). The coordinate transformation from S2 to S1 has been represented in
Problem 1.5.2 by Eqs. (1.5.15). The generating point M is represented in S2 by [see
Fig. 1.6.1(b)] [

x(M)
2 y(M)

2 z(M)
2 1

]T
= [0 − a 0 1]T (1.6.1)

where a = O2M > ρ2.
Equations (1.5.15) and (1.6.1) yield the following equations of the extended epicy-

cloid:

x1 = −a sin(φ1 + φ2) + E sin φ1

y1 = −a cos(φ1 + φ2) + E cos φ1.
(1.6.2)

Here,

E = ρ1 + ρ2, φ2 = φ1
ρ1

ρ2
.
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Figure 1.6.1: Generation of extended epicycloid: (a)
illustration of generation of extended epicycloid; (b)
illustration of coordinate transformation for deriva-
tion of extended epicycloid.

A shortened epicycloid is generated by point M with a < ρ2. An ordinary epicycloid is
generated with a = ρ2.

Generation of Involute Curves
Henceforth we distinguish between an ordinary involute curve, an extended involute
curve, and a shortened involute curve. Figure 1.6.2 shows that an extended involute
curve is generated by a point M that is rigidly connected to the straight line BD; this
straight line rolls over the circle of radius ρ. The derivation of the extended involute is
based on Eq. (1.5.10) which describes the coordinate transformation in transition from
S2 to S1 (Figs. 1.5.1 and 1.6.3). The generating point is represented in S2 (Fig. 1.6.3) by[

x(M)
2 y(M)

2 z(M)
2 1

]T
= [0 − a 0 1]T. (1.6.3)

Equations (1.6.3) and (1.5.10) yield the following equations of the extended involute:

x1 = −a sin φ + ρ(sin φ − φ cos φ)

y1 = −a cos φ + ρ(cos φ + φ sin φ).
(1.6.4)

An ordinary involute curve will be generated if a = 0, and a shortened involute curve
is generated if y(M)

2 = a > 0.
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Figure 1.6.2: Illustration of generation
of extended involute.

Figure 1.6.3: Generation of involute curve.
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Figure 1.6.4: Generation of extended cycloid.

Problem 1.6.1
Derive the equations of the curve that is generated in S1 by point M (Fig. 1.6.3) if point
M is represented in S2 by

O2M = [0 − ρ 0 1] (1.6.5)

Prove that the generated curve is the Archimedes spiral.

Solution
According to Eqs. (1.6.4) and (1.6.5), the generated curve is represented by

x1 = −ρφ cos φ, y1 = ρφ sin φ. (1.6.6)

The equation of this curve in polar coordinates (r, φ) is

r = (x2
1 + y2

1

)1/2 = ρφ (1.6.7)

where φ is the polar angle.

Generation of a Cycloid
An extended cycloid is generated by a point M that is rigidly connected to the circle
while the circle of radius ρ rolls over a straight line (Fig. 1.6.4). Coordinate system S1

is rigidly connected to the circle, and coordinate system S2 is rigidly connected to the
straight line (Fig. 1.5.1). The generating point is represented in S1 by

O1M = [0 − a 0 1]T. (1.6.8)

The coordinate transformation in transition from S1 to S2 is represented by Eqs. (1.5.7).
Equations (1.5.7) and (1.6.8) yield

x2 = −a sin φ + ρφ, y2 = a cos φ − ρ. (1.6.9)

A shortened cycloid is generated if a < ρ, and an ordinary cycloid is generated if a = ρ.
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1.7 APPLICATION TO DERIVATION OF SURFACES

The technique of coordinate transformation can be also applied to the derivation of
equations of a surface that is generated as a family of curves of the same shape. We
illustrate this technique with the example of a helicoid that is generated by a planar
curve performing a screw motion [Fig. 1.7.1(a)]. Figure 1.7.1(b) shows two coordinate
systems: S1, which is fixed, and a movable coordinate system Sa that performs a screw
motion with respect to S1. The angle of rotation and axial displacement in screw motion
are designated by ψ and pψ , respectively. Here, p is the parameter of screw motion – the
pitch of the screw – and is given by

p = H
2π

(1.7.1)

where H is the axial displacement corresponding to one complete revolution.
Assume that the planar curve L is represented in coordinate system Sa (xa , ya , za )

[Fig. 1.7.1(b)] by equations

xa = xa (θ ), ya = ya (θ ), za = 0 θ1 ≤ θ ≤ θ2 (1.7.2)

where parameter θ is the independent variable. The generated surface is determined in
coordinate system S1 with the matrix equation

r1 = M1a ra (1.7.3)

Figure 1.7.1: Generation of helicoid: (a) illustra-
tion of generation of a helicoid by screw motion of
a planar curve; (b) illustration of coordinate sys-
tems Sa and S1.
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Figure 1.7.2: Surface of revolution.

where

r1 =


x1

y1

z1

1

 , M1a =


cos ψ − sin ψ 0 0

sin ψ cos ψ 0 0

0 0 1 pψ

0 0 0 1



ra =


xa (θ)
ya (θ)
za (θ )

1

 .

(1.7.4)

Matrix equations (1.7.3) and (1.7.4) yield

x1 = xa (θ ) cos ψ − ya (θ ) sin ψ

y1 = xa (θ ) sin ψ + ya (θ ) cos ψ

z1 = pψ

(1.7.5)

where

θ1 ≤ θ ≤ θ2, ψ1 ≤ ψ ≤ ψ2.

Equations (1.7.5) represent the generated helicoid with surface coordinates θ , ψ . By
surface coordinates we mean that a point of the surface is uniquely specified by given
values θ and ψ (see Chapter 5).

Problem 1.7.1
A surface of revolution is generated by rotation of a planar curve about the fixed axis z1.
Figure 1.7.2 shows the axial section of the surface. The generating curve [Fig. 1.7.3(a)]
is represented in coordinate system Sa (xa , ya , za ) by equations

xa = xa (θ ), ya = 0, za = za (θ ). (1.7.6)

The angle of rotation ψ [Fig. 1.7.3(b)] lies within the interval 0 ≤ ψ ≤ 2π . Applying
the matrix method of surface generation, derive the equations of the generated surface.
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Figure 1.7.3: Generation of surface of revolution:
(a) representation of planar curve L in coordinate
system Sa ; (b) illustration of coordinate systems Sa

and S1.

Solution

x1 = xa (θ ) cos ψ, y1 = xa (θ ) sin ψ

z1 = za (θ ), θ1 ≤ θ ≤ θ2 0 ≤ ψ ≤ 2π.
(1.7.7)

Problem 1.7.2
With the conditions of problem 1.7.1, determine the equations of the surface generated
by the segment of a circle centered at C (Fig. 1.7.4).

Solution

x1 = (a cos θ + Cx) cos ψ, y1 = (a cos θ + Cx) sin ψ

z1 = (a sin θ + Cx), θ1 ≤ θ ≤ θ2, 0 ≤ ψ ≤ 2π

Cx < 0, Cz < 0.

(1.7.8)

Problem 1.7.3
A spherical surface may be represented as a particular case of the surface represented
by Eqs. (1.7.7). Determine equations of a spherical surface that is centered at Oa

(Fig. 1.7.4).



P1: JYT

CB672-01 CB672/Litvin CB672/Litvin-v2.cls December 19, 2003 17:5

1.7 Application to Derivation of Surfaces 31

Figure 1.7.4: For generation of surface of
revolution.

Solution

x1 = a cos θ cos ψ, y1 = a cos θ sin ψ, z1 = a sin θ

θ1 ≤ θ ≤ θ2, 0 ≤ ψ ≤ 2π.
(1.7.9)

Problem 1.7.4
Straight line AL is represented in coordinate system Sa (Fig. 1.7.5). The location of a
current point on AL is determined with parameter θ . Coordinate system Sa with the
straight line performs rotation about the z1 axis. Derive equations of the cone surface
that is generated in S1.

Figure 1.7.5: Cone generation.
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Figure 1.7.6: Generation of screw surface: (a) illustra-
tion of generating blade; (b) illustration of coordinate
systems S1, Sa , and Sf .

Solution

x1 = (d − θ cos α) cos ψ, y1 = (d − θ cos α) sin ψ

z1 = θ sin α.
(1.7.10)

Problem 1.7.5
A screw surface is generated by a straight-lined edge MOa of a blade [Fig. 1.7.6(a)]. We
consider three coordinate system Sa , S1, and S f that are rigidly connected to the blade,
to the blank of the screw being generated, and to the frame of the cutting machine,
respectively [Fig. 1.7.6(b)]. While the blank of the screw rotates through angle θ , the
blade translates on the distance pθ where p is the screw parameter. The edge of the
blade is represented in Sa by the equations [Fig. 1.7.6(a)]

xa = 0, ya = u cos α, za = −u sin α. (1.7.11)

Here, u is the variable parameter that determines the location of a current point of the
edge; α is the blade angle. Derive equations of the generated screw surface.

Solution

x1 = −u cos α sin θ, y1 = u cos α cos θ, za = −u sin α + pθ

u1 ≤ u ≤ u2, 0 ≤ θ ≤ 2π. (1.7.12)
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2 Relative Velocity

2.1 VECTOR REPRESENTATION

The concept of relative velocity is used for the derivation of the equation of meshing
(see Section 6.1) and for the derivation of centrodes and axodes (see Chapter 3). Con-
sider that two bodies are rotated about crossed axes with angular velocities ω(1) and
ω(2), respectively (Fig. 2.1.1). Vector ω(1) passes through the origin of fixed coordinate
system Sf that is employed in the gear housing. The twist angle is γ and the shortest
distance is E . Point M is common to both rotating bodies. The relative velocity of point
M(1) of body 1 with respect to point M(2) of body 2 is represented by the equation

v(12) = v(1) − v(2) (2.1.1)

where v(i ) is the velocity of point M(i ) of body i (i = 1, 2).
The velocity v(1) is represented by the equation

v(1) = ω(1) × r (2.1.2)

where r is the position vector that is drawn to point M from an arbitrary point on
the line of action of ω(1), for instance, from point Of . Similarly, we may represent the
velocity v(2) by

v(2) = ω(2) × ρ (2.1.3)

where ρ is drawn to point M from an arbitrary point on the line of action of ω(2), for
instance, from point O2. An alternative equation for v(2) is based on the substitution of
the sliding vector ω(2) with the line of action O2 − O ′

2 by an equal vector that passes
through Of and by the vector-moment,

m = R × ω(2). (2.1.4)

Here, R is a position vector that is drawn from Of to an arbitrary point O ′
2 on the

line of action of ω(2). For instance, we may choose that O ′
2 coincides with O2 and

R = Of O2 = E. Note that the moment m has the unit and physical meaning of linear
velocity. By replacing ω(2) by an equal vector that passes through point Of and moment
m, we may represent the velocity v(2) as follows:

v(2) = (ω(2) × r) + (R × ω(2)). (2.1.5)

33
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Figure 2.1.1: Rotation about crossed axes.

It is easy to prove that Eqs. (2.1.3) and (2.1.5) are equivalent by taking into account
that R = Of O2 + O2O ′

2 and r = Of O2 + ρ. Then we obtain that

v(2) = ω(2) × (r − R) = ω(2) × ρ. (2.1.6)

The final expression for the relative velocity may be represented as

v(12) = [(ω(1) − ω(2)) × r] − (E × ω(2)) (2.1.7)

where E = Of O2; r = Of M. The relative velocity v(21) of point M of body 2 with
respect to point M of body 1 is

v(21) = −v(12) = [(ω(2) − ω(1)) × r] + (E × ω(2)). (2.1.8)

Consider now that points M(1) and M(2) are the points of gear tooth surfaces �1 and
�2. If the coinciding points M(1) and M(2) form the point M of tangency of �1 and �2,
the surfaces have a common normal at M, and v(12) (as well as v(21)) lies in the plane
that is tangent to �1 and �2 at M. Thus, we can say that the relative velocity of point
M(1) with respect to M(2) is the sliding velocity of surface �1 with respect to �2 at the
point of tangency M.

We have to emphasize that the velocity v(12) can be seen by an observer located on
the reference frame 2 (on gear tooth surface �2) and watching the motion of body 1
(surface �1) with respect to body 2 (surface �2). Respectively, the observer must be
located on reference frame 1 to watch v(21).

The vector of sliding velocity, vector v(12), can be represented in any of the three
coordinate systems Sf , S1, and S2. To recognize the coordinate system in which, the
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sliding velocity is represented, we use the following expression for v(12):

v(12)
i = [(ω(1)

i − ω
(2)
i ) × ri ] − (Ei × ω

(2)
i ) (i = 1, f, 2). (2.1.9)

The subscript “i” indicates that the vector is represented in coordinate system Si .
Consider now that vector v(12) is represented in a coordinate system, say Sf , and that

it is necessary to represent v(12) in coordinate systems S1 and S2. There are two solutions
for this problem. The first one is based on Eq. (2.1.9) and representation of all vectors
of this equation in the respective coordinate system.

The other solution is based on matrix equation

v(12)
m = Lmf v(12)

f (m = 1, 2) (2.1.10)

for representation of v(12)
m in coordinate system Sm. However, components of vector v(12)

m

are still represented in components of the position vector

r f = [xf yf zf ]T. (2.1.11)

To represent v(12)
m in components (xm, ym, zm), we have to use the matrix equation

r f = M f mrm. (2.1.12)

The discussed approaches are illustrated with Problem 2.1.2.

Problem 2.1.1
Gears 1 and 2 transform rotation between two parallel axes with angular velocities ω(1)

and ω(2) (Fig. 2.1.2). Derive and represent in coordinate system Sf the sliding velocity
v(12) for point M.

Figure 2.1.2: Rotation about parallel axes.
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Solution
The solution is based on vector equation (2.1.9) whose vectors are represented in Sf as
follows:

ω
(1)
f = [0 0 ω(1)]T, ω

(2)
f = [0 0 − ω(2)]T

r f = [xf yf zf ]T, E f = [−E 0 0]T. (2.1.13)

Equation (2.1.9) with expressions (2.1.13) yields

v(12)
f = [−yf (ω(1) + ω(2))] i f + [xf (ω(1) + ω(2)) + Eω(2)] j f (2.1.14)

where if , jf , and kf are the unit vectors of the Sf coordinate system.

Problem 2.1.2
With the main conditions of problem 2.1.1, express the sliding velocity v(12)

1 in coordi-
nate system S1.

Solution

APPROACH 1. The solution is based on Eq. (2.1.9) whose vectors are represented in S1

by the following expressions:

ω
(1)
1 = [0 0 ω(1)]T, ω

(2)
1 = [0 0 − ω(2)]T

r1 = [x1 y1 z1]T, E1 = L1 f E f = [−E cos φ1 E sin φ1 0]T. (2.1.15)

Here,

L1 f =


cos φ1 sin φ1 0

− sin φ1 cos φ1 0

0 0 1

 . (2.1.16)

Equations (2.1.9), (2.1.15), and (2.1.16) yield

v(12)
1 = [−(ω(1) + ω(2))y1 + ω(2) E sin φ1] i1

+ [(ω(1) + ω(2))x1 + ω(2) E cos φ1] j1. (2.1.17)

APPROACH 2. Consider that v(12)
f is represented by Eq. (2.1.14). Determine v(12)

1 repre-
senting it in coordinate system S1.

The solution is based on the following two steps.
Step 1: We use an equation that is similar to (2.1.10) and take into account that L1 f

is represented by (2.1.16) and v(12)
f is represented by (2.1.14). Then we obtain

v(12)
1 = L1 f v(12)

f = [−(ω(1) + ω(2))yf cos φ1 + (ω(1) + ω(2))xf sin φ1 + ω(2) E sin φ1] i1

+ [(ω(1) + ω(2))yf sin φ1 + (ω(1) + ω(2))xf cos φ1 + ω(2) E cos φ1] j1.

(2.1.18)
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Step 2: Equation (2.1.18) still contains coordinates (xf , yf ). We may represent (xf , yf )
in terms of (x1, y1, φ1) using the matrix equation

r f =



cos φ1 − sin φ1 0 0

sin φ1 cos φ1 0 0

0 0 1 0

0 0 0 1


r1. (2.1.19)

Matrix equation (2.1.19) allows us to represent xf (and yf ) in terms of x1 and φ1

(and y1, φ1). Equations (2.1.18) and (2.1.19) yield equation (2.1.17) for representation
of v(12)

1 .

Problem 2.1.3
Consider three reference frames 1, 2, and f that are rigidly connected to a gear, a rack,
and the housing of the train, respectively (Fig. 2.1.3). The rack translates with velocity v
and the gear rotates with angular velocity ω. It is assumed that the ratio |v|/ω is constant.
The instantaneous center of rotation I is located on line Of I that is perpendicular to v.
The location of I satisfies the vector equation (see Section 3.1)

v = ω × Of I . (2.1.20)

Figure 2.1.3: Transformation of rotation
into translation.
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Point I is the point of tangency of centrodes of the rack and the gear. The gear centrode
is a circle of radius

ρ = |v|
ω

. (2.1.21)

The relative motion of centrodes is pure rolling about I and the displacements of the
rack and the angle of gear rotation φ are related by

s = ρφ. (2.1.22)

The goal of the to-be-solved problem is to determine the sliding velocity v(21)
2 at point

M(x2, y2, z2).

Solution

v(21)
2 = v(2)

2 − v(1)
2 . (2.1.23)

Here, v(2)
2 = v2 is the velocity of the rack represented in S2; v(1)

2 is the velocity of the
gear at point M that is also represented in S2.

The gear rotates about O1 with angular velocity ω. Substituting sliding vector ω,
which passes through O1, with an equal vector that passes through O2 and the respective
vector-moment m, we obtain

v(1)
2 = (ω2 × r2) + (R2 × ω2) (2.1.24)

where

R2 = O2O1. (2.1.25)

The final expression for v(21)
2 is

v(21)
2 = v2 − (ω2 × r2) − (R2 × ω2). (2.1.26)

Vectors of Eq. (2.1.26) are represented in S2 as follows:

v(2)
2 = −vi2 = −ωρi2, ω2 = ωk2, R2 = O2O1 = ρφi2 − ρj2

r2 = x2i2 + y2j2. (2.1.27)

Equations (2.1.26) and (2.1.27) yield

v(21)
2 = ω[y2i2 + (ρφ − x2) j2]. (2.1.28)

Problem 2.1.4
Consider the reference frames S1, S2, and Sf that have been represented in Fig. 1.5.5.
Gear 1 rotates with angular velocity ω(1) about the zf axis. Gear 2 rotates with angular
velocity ω(2) about axis O2O ′

2 (Fig. 2.1.1) that coincides with the z2 axis (Figs. 1.5.5
and 2.1.1). Axes zf and z2 form the twist angle γ and the shortest distance between the
axes is E . Derive the equation for the sliding velocity v(12) and represent it in coordinate
systems Sf and S1.
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Solution

v(12)
f =


−yf (ω(1) − ω(2) cos γ ) − zf ω

(2) sin γ

xf (ω(1) − ω(2) cos γ ) − Eω(2) cos γ

(xf + E)ω(2) sin γ

 (2.1.29)

v (12)
1x = −y1(ω(1) − ω(2) cos γ ) − z1ω

(2) sin γ cos φ1

− Eω(2) cos γ sin φ1 (2.1.30)

v (12)
1y = x1(ω(1) − ω(2) cos γ ) + z1ω

(2) sin γ sin φ1

− Eω(2) cos γ cos φ1 (2.1.31)

v (12)
1z = (x1 cos φ1 − y1 sin φ1 + E)ω(2) sin γ. (2.1.32)

2.2 MATRIX REPRESENTATION

Matrix representation of sliding velocity is an alternative solution to vector represen-
tation. The advantage of matrix representation is the possibility of formalizing and
computerizing the design, especially when the meshing has to be simulated (see Sec-
tion 6.1) and surface singularities (undercutting) have to be avoided (see Section 6.3).

The computational procedure is as follows.
Step 1: Consider the matrix equation

r2(x2, y2, z2, 1) = M21(φ)r1(x1, y1, z1, 1) (2.2.1)

that describes relations between homogeneous coordinates of position vectors r1 and r2

represented in coordinate systems S1 and S2, respectively. Parameter φ is the generalized
parameter of motion. The goal is representation of relative velocity v(12) in S1 and S2.

Step 2: Matrix equation (2.2.1) yields the relation

ρ2(x2, y2, z2) = L21(φ)ρ1(x1, y1, z1) + [a14(φ) a24(φ) a34(φ)]T . (2.2.2)

Here, L21(φ) is the 3 × 3 submatrix of M21. Designations akl (k = 1, 2, 3; l = 1, 2, 3, 4)
indicate elements of matrices M21 and L21. Vectors ρi (i = 1, 2) are represented in terms
of Cartesian coordinates.

Step 3: Differentiation of matrix equation (2.2.2) yields

ρ̇2(x2, y2, z2) = {L̇21(φ)ρ1(x1, y1, z1) + [ȧ14(φ) ȧ24(φ) ȧ34(φ)]T }φ̇. (2.2.3)

We may interpret ρ̇2 as follows:

(i) An observer located in coordinate system S2 at point M2 of S2 will see that point
M1 of coordinate system S1 is moving with respect to point M2 of S2 where the
observer is located.
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(ii) M1 is in motion because the parameter of motion φ is varied.
(iii) At the start of variation of φ, point M1 coincides with M2.

Based on the considerations above, we identify ρ̇2 as v(12)
2 . Thus, we can rewrite

Eq. (2.2.3) as

v(12)
2 = {L̇21(φ)ρ1(x1, y1, z1) + [ȧ14(φ) ȧ24(φ) ȧ34(φ)]T }φ̇. (2.2.4)

The designation “2” means that vector v(12)
2 is represented in coordinate system S2.

Step 4: The representation of v(12) in coordinate system S1 is obtained by the following
transformation:

v(12)
1 = L12(φ)v(12)

2

= {
L12(φ)L̇21(φ)ρ1(x1, y1, z1) + L12(φ) [ȧ14(φ) ȧ24(φ) ȧ34(φ)]T }φ̇. (2.2.5)

Here, L12 is the inverse matrix of L21 and L12L21 = I where I12 is the unit matrix
3 × 3.

Note 1. The product L12L̇21 is a skew-symmetric matrix (see Section 2.3).

Note 2. We may consider matrix equation

r1(x1, y1, z1, 1) = M12(φ)r2(x2, y2, z2, 1). (2.2.6)

Similar derivations enable us to obtain v(21)
1 = ρ̇1 and v(21)

2 = L21(φ)v(21)
1 , resulting in

the following equations:

v(21)
1 = {L̇12(φ)ρ2(x2, y2, z2) + [ȧ14(φ) ȧ24(φ) ȧ34(φ)]T }φ̇ (2.2.7)

v(21)
2 = L21(φ)v(21)

1

= {
L21(φ)L̇12(φ)ρ2(x2, y2, z2) + L21(φ) [ȧ14(φ) ȧ24(φ) ȧ34(φ)]T }φ̇. (2.2.8)

Elements ȧ14(φ), ȧ24(φ), and ȧ34(φ) in Eqs. (2.2.4) and (2.2.5) do not coincide with
corresponding elements ȧ14(φ), ȧ24(φ), and ȧ34(φ) in Eqs. (2.2.7) and (2.2.8). These
elements have to be obtained from matrices M21 and M12, respectively.

Problem 2.2.1
Consider the coordinate transformation represented in Fig. 2.1.3. Derive and represent
the sliding velocities v(12)

2 and v(12)
1 .

Solution
Matrix M21 is represented as

M21(φ) =



cos φ − sin φ 0 ρφ

sin φ cos φ 0 − ρ

0 0 1 0

0 0 0 1


. (2.2.9)
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The performed derivations yield

v(12)
2 = ω(1)


−x1 sin φ − y1 cos φ + ρ

x1 cos φ − y1 sin φ

0

 (2.2.10)

v(12)
1 = ω(1)


−y1 + ρ cos φ

x1 − ρ sin φ

0

 . (2.2.11)

Considering matrix equation

r1(x1, y1, z1, 1) = M12(φ)r2(x2, y2, z2, 1) (2.2.12)

where

M12(φ) =



cos φ sin φ 0 ρ(sin φ − φ cos φ)

− sin φ cos φ 0 ρ(cos φ + φ sin φ)

0 0 1 0

0 0 0 1


, (2.2.13)

we can represent the sliding velocity v(12)
2 in terms of position vector r2(x2, y2, z2, 1) as

v(12)
2 = ω(1)


−y2

x2 − ρφ

0

 . (2.2.14)

2.3 APPLICATION OF SKEW-SYMMETRIC MATRICES

Equations (2.2.5) and (2.2.8) may be used directly for computerized operations on
matrices. It may also be shown that these equations express the representation of v(12)

in terms of skew-symmetric matrices.
Let us recall that a cross product

v = ω × r (2.3.1)

may be represented in matrix form as

v = ωs r (2.3.2)
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where the skew-symmetric matrix ωs is represented as

ωs =


0 − ωz ωy

ωz 0 − ωx

− ωy ωx 0

 . (2.3.3)

It is easy to verify that

{
L12(φ)L̇21(φ)

}
φ̇ =


0 −ω(1) 0

ω(1) 0 0

0 0 0

 = (ω(1)
1

)s (2.3.4)

represents in S1 the skew-symmetric matrix for the case in which (Figs. 1.5.5 and 2.1.1)

ω
(1)
1 = ω(1)k1. (2.3.5)

The final expression of the sliding velocity v(12) in terms of the skew-symmetric matrix
in coordinate systems S1 is represented as

v(12)
1 = (ω(1)

1

)s
ρ1(x1, y1, z1) + {L12(φ) [ȧ14(φ) ȧ24(φ) ȧ34(φ)]T }φ̇. (2.3.6)

Problem 2.3.1
Consider the coordinate transformation represented in Fig. 2.1.3. Derive and represent
the sliding velocity v(12)

1 using the skew-symmetric matrix for the vector of angular
velocity.

Solution
Matrix M21 is represented by Eq. (2.2.9). From Eq. (2.2.9), we obtain

L21(φ) =


cos φ − sin φ 0

sin φ cos φ 0

0 0 1

 (2.3.7)

L12(φ) = L−1
21 (φ) =


cos φ sin φ 0

− sin φ cos φ 0

0 0 1

 (2.3.8)

and

ȧ14(φ) = ρφ̇ (2.3.9)

ȧ24(φ) = 0 (2.3.10)

ȧ34(φ) = 0.
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The skew-symmetric matrix for the vector of angular velocity (ω(1)
1 )s is given by

(
ω

(1)
1

)s = ω(1)


0 − 1 0

1 0 0

0 0 0

 . (2.3.11)

Using Eq. (2.3.6), we obtain

v(12)
1 = ω(1)


−y1 + ρ cos φ

x1 − ρ sin φ

0

 . (2.3.12)
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3 Centrodes, Axodes, and Operating
Pitch Surfaces

3.1 THE CONCEPT OF CENTRODES

Consider that two bodies, 1 and 2, perform planar motions with respect to a fixed
reference frame, f . We consider three cases:

(a) Both bodies perform rotational motion in opposite direction about parallel axes
O1 and O2 with instantaneous angular velocities ω(1) and ω(2) (Fig. 3.1.1).

(b) Both bodies perform rotational motions in the same direction with angular veloci-
ties ω(1) and ω(2) (Fig. 3.1.2).

(c) One of the bodies, say 1, performs rotational motion with angular velocity ω, and
the other body performs translational motion in the plane of motion with linear
velocity v (Fig. 3.1.3).

The instantaneous center of rotation, designated I , is the point in the fixed coordinate
system where the relative velocity v(12) is equal to zero, that is,

v(12) = v(1) − v(2) = 0. (3.1.1)

Vector equation

v(1) = v(2) (3.1.2)

can be observed only at such a point I that lies on the shortest distance O1O2 and
satisfies the equation

ω(1)

ω(2)
= O2 I

O1 I
. (3.1.3)

The location I on the center distance O1O2 provides the same direction for vectors v(1)

and v(2). Equation (3.1.3) provides that vectors v(1) and v(2) not only are of the same
direction but also have the same magnitude.

For the most common case, the gear ratio

m21 = ω(2)

ω(1)
(3.1.4)

44
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Figure 3.1.1: Rotation between paral-
lel axes in opposite direction.

is constant and the instantaneous center I of rotation keeps its position on O1O2. In
some cases, the gear ratio is given by a function

m21 = f (φ1)

where φ1 is the input parameter, the angle of rotation of body 1. Then, the instantaneous
center of rotation translates along O1O2 in the process of transformation of rota-
tion.

The centrode i is the locus of instantaneous centers of rotation in coordinate system
Si (i = 1,2). We may imagine that point I (it translates along O1O2 or it is at rest) traces
out the centrode while coordinate system Si rotates about Oi . For the case in which

Figure 3.1.2: Rotation between parallel
axes in the same direction.
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Figure 3.1.3: Transformation of rotation
into translation.

m12 is constant, the centrodes are circles of radii ρ1 and ρ2 that are determined from
the following equations:

(i) The rotation is performed in opposite directions (Fig. 3.1.4)

ρ1 = E
1 + m12

, ρ2 = E
1 + m21

= m12 E
1 + m12

(3.1.5)

where

m12 = 1
m21

.

(ii) The rotation is performed in opposite directions (Fig. 3.1.5)

ρ1 = E
|1 − m12| , ρ2 = E

|1 − m21| = m12 E
|1 − m12| . (3.1.6)

Figure 3.1.4: Centrodes in external
tangency.
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Figure 3.1.5: Centrodes in internal
tangency.

The relative motion of centrode 1 with respect to centrode 2 is pure rolling about I
with angular velocity

ω(12) = ω(1) − ω(2). (3.1.7)

For the case in which m21 �= constant, the centrodes are noncircular curves, either
closed or unclosed. Gears with such centrodes are called noncircular gears (See Chap-
ter 12 and Litvin, 1956, 1968).

Figure 3.1.6 shows two unclosed centrodes that are in tangency at point I . We recall
that the relative motion of the centrodes is pure rolling. Respective points M1 and M2

Figure 3.1.6: Noncircular centrodes of mating gears.
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of the centrodes that will become the points of tangency satisfy the equations

Î M1 = Î M2, ρ1(θ1) + ρ2(θ2) = E . (3.1.8)

Function ρi (θi ) (i = 1, 2), where θi is the polar angle, determines the centrodes. We
emphasize that for noncircular centrodes, angles θ1 and θ2 are related as follows:

θ2 =
∫ θ1

0
m21(φ1)dθ1 =

∫ θ1

0
m21(θ1)dθ1. (3.1.9)

Here, θi = φi , where φi is the angle of rotation, but the polar angle θi is measured in a
direction that is opposite to the direction of rotation.

It is evident that

φ2 =
∫ φ1

0
m21(φ1)dφ1. (3.1.10)

We recall that for the case where m21 is constant, we have

φ2

φ1
= m21. (3.1.11)

Let us consider now the case where rotation is transformed into translation and vice
versa (Fig. 3.1.3). The instantaneous center of rotation I lies on line O1n that is drawn
from O1 perpendicular to the velocity v of translation. The location of I satisfies the
equation

O1 I = v
ω

. (3.1.12)

The relative motion of body 1 with respect to body 2 is pure rolling about I with
angular velocity ω(12) = ω. For the case where the ratio v/ω is given as function v/ω =
f (φ) where φ is the angle of rotation of body 1, the instantaneous center of rotation
moves along O1n in the process of transformation of motion. Figure 3.1.7 shows the
centrodes for such a case. Usually the ratio v/ω is constant, the magnitude of segment
OI is also constant, and the centrodes represent respectively a circle of radius r = v/ω

and a straight line a–a that is tangent to the circle (Fig. 3.2.1).

Figure 3.1.7: Centrodes of noncircular gear and rack.
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Figure 3.2.1: Centrodes of rack-cutter and spur gear.

3.2 PITCH CIRCLE

The pitch circle is the reference circle that is used for determination of tooth element
proportions. The tooth addendum and dedendum are measured from the pitch circle.
The tooth thickness and the distance between the teeth are also referred to the pitch
circle.

Another definition of the pitch circle is based on the fact that the pitch circle is
the centrode of the gear, which is in mesh with the rack-cutter (Fig. 3.2.1). The pitch
circle of radius r is the gear centrode in the process of generation because the angular
velocity of the gear being generated and the linear velocity of the rack-cutter satisfy the
equation

v
ω

= r. (3.2.1)

The rack-cutter centrode is the straight line a–a that is tangent to the pitch circle.
The radius r of the gear pitch circle can be expressed in terms of the number N of
gear teeth and the distance pc between two neighboring teeth of the rack-cutter. Due to
pure rolling of the rack-cutter and the gear centrode, the distance along the pitch circle
between two neighboring gear teeth is equal to pc and

r = Npc

2π
. (3.2.2)

The ratio π/pc is called diametral pitch, P , and its unit is 1/in. The magnitude of P
is standardized to decrease the number of applied tools. The diameter of the pitch circle
can be expressed as

d = N
P

. (3.2.3)
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The term – diametral pitch – is based on the consideration that the ratio

P = N
d

(3.2.4)

indicates the number of teeth corresponding to one inch of the diameter of the gear
pitch circle.

3.3 OPERATING PITCH CIRCLES

The gear pitch circle can be identified uniquely by knowing the number N of gear teeth
and the diametral pitch P (or the circular pitch pc ). The centrodes of gears can be identi-
fied considering as given the ratio m12 = ω(1)/ω(2) and the actual center distance E . This
means that if m12 is of the same magnitude but the designed value E has been changed,
then the radii of the centrodes ρ1 and ρ2 will also be changed [see Eqs. (3.1.5) and (3.1.6)].

Usually, a change in the gear center distance is accompanied by a change in the gear
ratio m12 due to the caused transmission errors. Involute spur and helical gears are
exceptions to this rule. We have to differentiate two cases of design of involute gears:
those with standard and those with nonstandard center distances (see more details in
Chapter 10). The standard center distance is determined as

Eo = N1 + N2

2P
(3.3.1)

and the gear centrodes coincide with the pitch circles.
If the center distance E differs from Eo, the gear centrodes do not coincide with the

pitch circles. The term “operating pitch circles” that is used in the technical literature is
just a synonym of gear centrodes. Figure 3.3.1 shows the gear centrodes and the pitch
circles for the case when E > Eo. It is evident from Eqs. (3.1.5) and (3.1.6) that the
ratio between the radii of pitch circles and operating circles is related as follows:

ρ
(0)
i

ρi
= Eo

E
. (3.3.2)

Figure 3.3.1: Pitch circles and cen-
trodes.
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Figure 3.4.1: Axodes: rotation between in-
tersected axes.

3.4 AXODES IN ROTATION BETWEEN INTERSECTED AXES

Figure 3.4.1 shows that the rotation is transformed between two intersected axes Oa
and Ob that form the angle γ . The gears rotate in opposite directions. The instantaneous
axis of rotation OI is the line of action of the angular velocity ω(12) in relative motion
of gear 1 with respect to 2 (or 2 with respect to 1). Here,

ω(12) = ω(1) − ω(2). (3.4.1)

Similarly,

ω(21) = ω(2) − ω(1). (3.4.2)

The orientation of OI with respect to the gear axes is determined with angles γ1 and
γ2 that are represented as

tan γ1 = sin γ

m12 + cos γ
, tan γ2 = sin γ

m21 + cos γ
. (3.4.3)

Here,

γ = γ1 + γ2 (3.4.4)

m12 = ω(1)

ω(2)
, m21 = 1

m12
= ω(2)

ω(1)
(3.4.5)

where m12 (or m21) is the gear ratio. The gear ratio can also be expressed in terms of
angles of the pitch cones and the numbers of gear teeth

m12 = sin γ2

sin γ1
= N2

N1
. (3.4.6)

The locus of instantaneous axes of rotation in the movable reference frame,
Si (i =1,2), which is rigidly connected to rotating gear i , forms the axode. In the case
of transformation of rotation between the intersected axes, the axodes are two circular
cones with apex angles γ1 and γ2 (Fig. 3.4.2). These cones are called pitch cones, their
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Figure 3.4.2: Plane and cone as axodes.

line of tangency is OI, and the relative motion is pure rolling – rotation about OI. The
angular velocity ω(12) = ω(1) − ω(2) represents the angular velocity of pitch cone 1 when
it is rotated about OI while cone 2 is held at rest.

Problem 3.4.1
Consider that the transformation of rotation is performed between intersected axes und-
er the condition that the pitch cone of gear 1 is turned out into a plane � (Fig. 3.4.2).
The gear ratio is m12 and the gears rotate in opposite directions. (i) Determine the angle
of pitch cone of gear 2; (ii) express the angle γ between the intersected axes in terms
of γ2.

Solution
(i) Equation (3.4.6) yields

sin γ2 = m12. (3.4.7)

(ii) Using the expression for tan γ1 in Eq. (3.4.3), we obtain

cos γ = −m12 = − sin γ2. (3.4.8)

The equation provides two solutions for γ that are represented in Fig. 3.4.3,

γ = 90◦ + γ2 and γ = 270◦ − γ2.

3.5 AXODES IN ROTATION BETWEEN CROSSED AXES

Consider two bodies rotating about crossed axes with the angular velocities ω(1) and
ω(2), respectively (Fig. 3.5.1). The axes of rotation form the twist angle γ , and the
shortest distance between the axes is E . The relative motion of body 1 with respect to
body 2 may be represented as a motion of two components: (a) rotation about axis z2

with angular velocity (−ω(2)) and (b) rotation about axis z f with angular velocity ω(1).
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Figure 3.4.3: Two locations of cone-axode with re-
spect to plane �.

Figure 3.5.1: Rotation between crossed
axes: substitution of vectors of angular
velocities.
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Our goal is to prove that the described relative motion may be represented as screw
motion about an axis s–s. This axis and the lines of action of ω(1) and ω(2) lie in parallel
planes that are perpendicular to the line of shortest distance O1 − O2. The proof is
based on the concept that a given sliding vector may be substituted with an equal vector
with a parallel line of action and a corresponding vector moment. Figure 3.5.1 shows
that vector ω(1) that passes through O1 is substituted with an equal vector that passes
through B and the moment

m(1) = BO1 × ω(1).

Similarly, vector (−ω(2)) that passes through O2 is substituted with an equal vector that
passes through point B and the moment

m(2) = BO2 × (−ω(2)).

Then, the relative motion of body 1 with respect to body 2 may again be represented in
two components: (i) rotation about s–s with the angular velocity

ω(12) = ω(1) + (−ω(2)) = ω(1) − ω(2) (3.5.1)

and (ii) translation with the velocity

m(12) = m(1) + m(2) = (BO1 × ω(1))+ [BO2 × (−ω(2))
]
. (3.5.2)

Choosing a certain location of point B, we can provide the collinearity of vector ω(12)

and m. This means that the relative motion of body 1 with respect to body 2 will be a
screw motion about axis s–s.

Henceforth, we consider three reference frames 1, 2, and f that are rigidly connected
to the bodies and the housing of the gear train. We employ in the reference frame f ,
the fixed coordinate system Sf (xf , yf , z f ) whose axis xf is collinear to the vector of the
shortest distance O1O2 = E and the z f axis is the axis of rotation of body 1. Vectors
ω(12) and m(12) are represented in Sf by the following equations:

ω
(12)
f = [0 − ω(2) sin γ (ω(1) − ω(2) cos γ )

]T
(3.5.3)

m(12)
f =


0

Xf ω
(1) − (Xf + E)ω(2) cos γ

(Xf + E)ω(2) sin γ

 . (3.5.4)

Here, Xf is considered as an algebraic value and determines the location of point B
on axis x f . The direction of vector-moment m(12) depends on the sign of Xf .

We may require the collinearity of m(12) and ω(12), which means the relative motion
will be a screw one. Using the equation

m(12) = λω(12) (3.5.5)
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and Eqs. (3.5.3) and (3.5.4), we obtain the equations of the axis of screw motion, s–s
(Fig. 3.5.1),

Xf = Em21(cos γ − m21)

1 − 2m21 cos γ + m2
21

(3.5.6)

Yf

Zf
= − m21 sin γ

1 − m21 cos γ
(3.5.7)

where

m21 = ω(2)

ω(1)
.

Equation (3.5.6) determines the location of plane � where lies s–s ; the negative value of
Xf indicates that the plane intersects the negative axis x f . Equation (3.5.7) determines
the orientation of s–s in plane �.

For the case when body 2 rotates in the direction opposite to that shown in
Fig. 3.5.1, it is necessary to change the sign of m21 in Eqs. (3.5.6) and (3.5.7). Due
to the collinearity of m(12) and ω(12), we may represent m(12) as

m(12) = pω(12). (3.5.8)

Here, p is the screw parameter that relates the angular velocity ω(12) and the linear
velocity m(12) in the screw motion. Parameter p is determined by the equation

p = E
m21 sin γ

1 − 2m21 cos γ + m2
21

. (3.5.9)

The instantaneous axis of screw motion does not change its location or orientation if
m21, γ, and E are constants. While bodies 1 and 2 are rotated, the instantaneous axis of
screw motion, s–s , generates in reference frames 1 and 2 two surfaces – the hyperboloids
of revolution. These surfaces are the axodes for the case of transformation of rotation
between crossed axes. The axode represents the locus of the instantaneous axis of screw
motion that is generated in coordinate system Si (i =1, 2).

The derivation of axodes is based on the following considerations:

(i) Using Eqs. (3.5.6) and (3.5.7) we may represent in Sf the axis of screw motion by
the following equations:

xf = Em21(cos γ − m21)

1 − 2m21 cos γ + m2
21

, yf = −u sin β, zf = u cos β. (3.5.10)

Here, u = BM is the variable parameter that determines the location of a point
on s–s (Fig. 3.5.2); β is a constant parameter and indicates the angle that is formed
by s–s and axis zf and is determined with the equations

sin β = − m21 sin γ

(1 − 2m21 cos γ + m2
21)1/2

,

cos β = 1 − m21 cos γ

(1 − 2m21 cos γ + m2
21)1/2

. (3.5.11)
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Figure 3.5.2: Representation of axis of screw motion in Sf .

(ii) The coordinate transformations from Sf to S1 and S2, respectively, yield the
following equations of hyperboloids in S1 and S2:

x1 = −ro cos φ1 − u sin β sin φ1

y1 = ro sin φ1 − u sin β cos φ1

z1 = u cos β

(3.5.12)

x2 = (E − ro) cos φ2 − u sin(β + γ ) sin φ2

y2 = −(E − ro) sin φ2 − u sin(β + γ ) cos φ2

z2 = u cos(β + γ ).

(3.5.13)

Here, ro = −Xf , and u and φi (i = 1, 2) are the surface coordinates (see the definition of
surface coordinates in Section 5.2). A hyperboloid of revolution is shown in Fig. 3.5.3.
Two mating hyperboloids contact each other along a straight line that is the axis of
screw motion (Fig. 3.5.4). The relative motion of hyperboloids is rolling with sliding
(about and along the axis of screw motion).

There are three types of gear trains that perform rotation between crossed axes:
hypoid gears, worm-gear drives, and crossed helical gears.

3.6 OPERATING PITCH SURFACES FOR GEARS WITH CROSSED AXES

The idea of gear axodes is useful for visualization of the sliding velocity but it has not
found application in design. The reason is that the dimensions of the driving and driven
gears must satisfy many requirements that cannot be observed with the dimensions that
are chosen for gear axodes. Therefore, the design of gears with crossed axes is based on
the idea of operating pitch surfaces but not on the concept of axodes.

The operating pitch surfaces represent (i) two cylinders for a worm-gear drive and
helical gears with crossed axes, and (ii) two cones for spiral and hypoid gear drives. The
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Figure 3.5.3: Hyperboloid of revolution.

chosen surfaces, which are called “operating pitch surfaces” in the technical literature,
must satisfy the following requirements:

(i) The axes of cylinders (cones) have to form the same twist angle and be at the same
shortest distance as the gears to be designed.

(ii) The cylinders (cones) must be in tangency at the mean point of contact of the
surfaces of the gears to be designed.

Figure 3.5.4: Mating hyperboloids.



P1: JXR

CB672-03 CB672/Litvin CB672/Litvin-v2.cls February 26, 2004 23:50

58 Centrodes, Axodes, and Operating Pitch Surfaces

(iii) The relative sliding velocity v(12) at point P of tangency of the cylinders (cones) must
lie in the plane that is tangent to the cylinders (cones), and v(12) must be directed
along the common tangent to the helices of the gears to be designed. The term
“helix” is a conventional one. Actually, we have to consider a spatial curve that
belongs to the operating cylinders (cones) and represents the line of intersection of
the gear tooth surface with the operating cylinders (cones). For the case of a helical
gear, a cylinder worm, this line of intersection is indeed a helix. For the case of
spiral bevel gears and hypoid gears, the line of intersection is a spatial curve that
differs from a helix and might be represented with complicated equations.

(iv) Point P of tangency of operating pitch cylinders (cones) will be simultaneously the
point of tangency of gear tooth surfaces if the surfaces have a common normal N
at P and N is perpendicular to v(12) (see Section 6.1).

It is shown below that the ratio of radii of two cylinders (cones) at point of contact P
is not unique for the given gear ratio m12. Therefore the previously mentioned require-
ments for the operating pitch surfaces must be complemented with additional relations
between their parameters. The idea of operating pitch surfaces will be illustrated in
following chapters for (i) helical gears with crossed axes, (ii) a worm-gear drive, and
(iii) hypoid gears.
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4 Planar Curves

4.1 PARAMETRIC REPRESENTATION

Consider a coordinate system S(x, y). A position vector that is drawn from the origin
of coordinate system S to a current point of the curve is represented by vector function

r(θ ) = x(θ )i + y(θ )j, r(θ ) ∈ C0, θ ∈ G (4.1.1)

where i and j are the unit vectors of coordinate axes. The symbol C0 means that x(θ )
and y(θ) are continuous functions; G designates the open interval a < θ < b for the
variable parameter θ . Functions x(θ ) and y(θ ) associate the point of the curve with the
variable parameter θ .

A simple curve means that there is one-to-one correspondence between the point of
the curve and parameter θ . A simple curve does not have points of self-intersection.
Examples of self-intersecting curves are an extended involute curve (Fig. 1.6.2) and an
extended epicycloid (Fig. 1.6.1). In some cases, to avoid the appearance of a point of
self-intersection it is sufficient to just limit the interval (a, b) for the variable parameter θ .

A parametric curve is a regular curve if

r(θ) ∈ C1, rθ �= 0, θ ∈ G. (4.1.2)

Here,

rθ = dr
dθ

= xθ i + yθ j (4.1.3)

where

xθ = dx
dθ

, yθ = dy
dθ

.

The inequality rθ �= 0 means that

|xθ | + |yθ | �= 0 or x2
θ + y2

θ �= 0.

Symbol C1 means that functions x(θ ) and y(θ ) have continuous derivatives to the first
order at least.

59
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4.2 REPRESENTATION BY IMPLICIT FUNCTION

An equation

φ(x, y) = 0, (x, y) ∈ G (4.2.1)

does not necessarily represent a planar curve. Rather it merely represents a set of points
in the (x, y) plane. Some of these points may be just isolated points and some may form
a curve.

Consider that Eq. (4.2.1) is given. There is a set of parameters

P = (xo, yo) (4.2.2)

that satisfies Eq. (4.2.1). The existence of a simple and regular curve in a local sense, in
the neighborhood of P , is guaranteed if the curve is represented by

φ(x, y) = 0, φ ∈ C1, |φx| + |φy| �= 0. (4.2.3)

The inequality in expressions (4.2.3) may also be represented by

φ2
x + φ2

y �= 0. (4.2.4)

Inequality (4.2.3) means that both partial derivatives cannot be equal to zero simulta-
neously. Consider that inequality (4.2.4) is observed just because φy �= 0. Then in the
neighborhood of point P [see Eq. (4.2.2)] Eq. (4.2.1) may be solved by function y(x)
and this function represents a simple and regular curve.

4.3 TANGENT AND NORMAL TO A PLANAR CURVE

The concept of a tangent to a planar curve is based on the so-called limiting positions
of rays [Zalgaller, 1975]. Consider a set of rays that are drawn through a curve point
M and its neighboring curve points Mi (i = 1, 2, . . . , n). As points Mi approach point
M, all rays come to some limit position. In the case shown in Fig. 4.3.1(a), there are
two limiting rays with coinciding lines of action. These two rays form the tangent to
the curve at point M. Point M is identified as a regular point of the curve. Only one
limiting ray exists at curve point M, as shown in Figs. 4.3.1(b) and 4.3.1(c). Thus, only
a “half” tangent exists at these points. Point M shown in Figs. 4.3.1(b) and 4.3.1(c) is
called the point of regression, which is of the variety of singular points. A tangent T
exists only at a regular point of a curve. A curve point where the tangent T does not
exist or is equal to zero is identified as a singular point.

Consider two cases for determination of tangent T:

(a) The curve is represented in parametric form by

r(θ ) ∈ C1, rθ �= 0, θ ∈ G.

Then,

T = rθ = xθ i + yθ j. (4.3.1)
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Figure 4.3.1: Limiting rays and tangent:
(a) illustration of rays and tangent; (b) and
(c) illustration of limiting ray, tangent, and
two branches of a planar curve.

(b) The curve is represented by an implicit function,

φ(x, y) = 0, φ ∈ C1, (x, y) ∈ G, φ2
x + φ2

y �= 0.

Then, the tangent is represented by the equation,

Txφx + Tyφy = 0. (4.3.2)

Curve singular points are determined with rθ = 0 and φ2
x + φ2

y = 0 for the previously
mentioned two cases, respectively. A point of regression is a particular case of a singular
point where a “half” tangent exists [Figs. 4.3.1(b) and 4.3.1(c)]. Limiting the discussions
to parametric curves, we say [Rashevski, 1956]:

(a) a point of regression exists if

rθ = 0, rθθ �= 0;

(b) the direction of the tangent at the point of regression is determined by vector rθθ .

Henceforth, we consider regular points. The unit tangent to the curve, t, is determined
with the equation

t = T
|T| = 1

m
(Txi + Tyj) (4.3.3)
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where m = (T 2
x + T 2

y )1/2. The normal to a planar curve is perpendicular to its tangent
and is represented by the equation

N = T × k or N∗ = k × T. (4.3.4)

Here, k is the unit vector of the z axis; vectors N and N∗ are of opposite direction.
Henceforth, we use the equation

N = T × k =

∣∣∣∣∣∣∣
i j k

Tx Ty 0

0 0 1

∣∣∣∣∣∣∣ =
 Ty

−Tx

0

 . (4.3.5)

The unit vector is determined by

n = N
|N| = 1√

T 2
x + T 2

y

(Tyi − Txj) (provided N �= 0). (4.3.6)

It is also necessary to derive the equation of a tangent or a normal that is drawn
to the curve from a given point. Consider that the tangent to the curve is drawn from
point D(X, Y) [Fig. 4.3.2(a)] and the position vector for point D is

OD = OM + MD = xi + yj + λT (Txi + Tyj). (4.3.7)

Figure 4.3.2: Tangent (a), and tangent and
normal (b) to a planar curve.
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Here, point M(x, y) is the point of tangency of line MD with the curve; λT is a scalar
and relates the length of MD and T(MD = λT T). Equations (4.3.7) yield

X − x
Tx

− Y − y
Ty

= 0. (4.3.8)

We may obtain the following equations for tangents to curves represented in para-
metric form [Eq. (4.1.2)] and by an implicit function [Eq. (4.2.3)], respectively:

X − x(θ )
xθ

− Y − y(θ )
yθ

= 0 (4.3.9)

(X − x)φx + (Y − y)φy = 0. (4.3.10)

Similarly, we may derive the equations of a normal that is drawn to the curve from point
E [Fig. 4.3.2(b)]. These equations are represented for the two previously mentioned
cases as follows:

X − x(θ )
yθ

+ Y − y(θ )
xθ

= 0 (4.3.11)

X − x
φx

− Y − y
φy

= 0. (4.3.12)

Some curves that are applied as gear tooth shapes are generated by the rolling of a
circle or a straight line over another circle. It is evident that the curve normal must pass
through the instantaneous center of rotation, I .

Figure 4.3.3 shows a plane curve – an extended epicycloid – that is generated by point
M; M is rigidly connected to circle 2. At every instant, the relative motion of circle 2
with respect to circle 1 may be represented as rotation about the instantaneous center
I with the angular velocity,

ω(21) = ω(2) + ω(1)
(

ω(2) = dψ

dt
, ω(1) = dθ

dt

)
.

We may easily determine tangent T and normal N to the curve at point M using the
following considerations:

(1) While circle 2 rotates about I , point M moves along tangent T to the curve. Thus
T is perpendicular to MI .

(2) The direction of normal N at point M coincides with MI and is directed from M
to I according to the cross product,

N = T × k.

Problem 4.3.1
An involute curve is generated by point M of a straight line that rolls over a circle
of radius rb – the base circle. There are two possible parametric representations of an
involute curve (see Section 10.2).
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Figure 4.3.3: Derivation of extended epicycloid: (a) illustra-
tion of tangent T and normal N; (b) illustration of relation of
θ and ψ .

Solution

REPRESENTATION 1. [Fig. 4.3.4(a)]:

r(θ ) = rb

cos θ
[sin(inv θ )i + cos(inv θ )j]

inv θ = tan θ − θ, −π

2
< θ <

π

2
.

(4.3.13)

Equation (4.3.13) may be derived as follows:

OM = rb

cos θ
, x = OM sin ψ, y = OM cos ψ,

�

Mo B = rb(ψ + θ ), MB = rb tan θ,

�

Mo B = MB, and ψ = tan θ − θ = inv θ.

REPRESENTATION 2. [Fig. 4.3.4(b)]:

R(u) = rb[(sin u − u cos u)i + (cos u + u sin u)j], −∞ < u < ∞. (4.3.14)
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Figure 4.3.4: Parametric representation of involute
curve: (a) in terms of θ , and (b) in terms of u.

To derive this equation we use the following relations:

OM = OB + BM, x = OB · i + BM · i

y = OB · j + BM · j, MB =
�

Mo B= rbu.

Parametric representation (4.3.14) may be derived from Eq. (4.3.13) by changing the
parameter θ to parameter u using a continuous strongly monotonic function,

θ (u) = arctan u, −∞ < u < ∞. (4.3.15)

Relation (4.3.15) may be verified by the drawings in Fig. 4.3.4, which yield

MB = rb tan θ [Fig. 4.3.4(a)]

MB =
�

Mo B= rbu [Fig. 4.3.4(b)].

Problem 4.3.2
An involute curve R(u) represented by Eq. (4.3.14) is considered.

(i) Derive the equation of tangent T, the unit tangent t, the normal N = T × k, and
the unit normal n.

(ii) Interpret geometrically the direction of normal N.
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(iii) Determine the point of regression and the direction of the “half” tangent at this
point.

Solution
(i)

T = Ru = rbu(sin u i + cos u j) (4.3.16)

t = sin u i + cos u j (provided u �= 0) (4.3.17)

N = rbu(cos u i − sin u j) (4.3.18)

n = cos u i − sin u j (provided u �= 0). (4.3.19)

(ii) The direction of normal N at the instantaneous point M coincides with the direction
of tangent MB to the base circle.

(iii) The point of regression is determined with Ru = 0 and Ruu �= 0, where

Ruu = rb[(sin u + u cos u)i + (cos u − u sin u)j]. (4.3.20)

Equations (4.3.16) and (4.3.20) yield that u = 0 corresponds to the point of re-
gression. Equation (4.3.20) with u = 0 gives Ruu = rbj. Thus the half tangent at
point M0 is directed along the positive y axis.

Problem 4.3.3
The derivation of the extended epicycloid is shown in Fig. 4.3.3. Position vector OM
for a current point M of the curve is represented by

OM = OO2 + O2M.

It is necessary to (i) represent the extended epicycloid in coordinate system S(x, y); (ii)
derive the equations of the tangent T, unit tangent t, normal N, and the unit normal n;
and (iii) investigate the existence of singular points.

Solution
(i) Equations of the extended epicycloid are

x = (r + ρ) sin θ − a sin(θ + ψ)

y = (r + ρ) cos θ − a cos(θ + ψ)
(4.3.21)

where

a = O2M, ψ = r
ρ

θ.

(ii) The components of tangent T are represented as

Tx = xθ = (r + ρ)[cos θ − m cos(θ + ψ)]

Ty = yθ = −(r + ρ)[sin θ − m sin(θ + ψ)]
(4.3.22)

where

m = a
ρ

.
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The unit tangent is

t = (1 − 2m cos ψ + m2)−1/2{[cos θ − m cos(θ + ψ)]i

−[sin θ − m sin(θ + ψ)]j}. (4.3.23)

The components of the normal N are

Nx = Ty, Ny = −Tx. (4.3.24)

The components of the unit normal n are

nx = ty, ny = −tx. (4.3.25)

(iii) The extended epicycloid does not have singular points because T �= 0.

Problem 4.3.4
Consider an ordinary epicycloid that is generated by point Mo [Fig. 4.3.3(a)].

(i) Derive the equations that represent the curve in coordinate system S(x, y)
[Fig 4.3.3(a)].

(ii) Derive the equation of tangent T = rθ and the equation for rθθ .
(iii) Investigate the existence of singular points and points of regression.

Solution
(i) The ordinary epicycloid is represented by the following equations:

x = (r + ρ) sin θ − ρ sin(θ + ψ), y = (r + ρ) cos θ − ρ cos(θ + ψ).

(ii) The tangent T is

T = rθ = (r + ρ){[cos θ − cos(θ + ψ)]i − [sin θ − sin(θ + ψ)]j}.

The derivative rθθ is

rθθ = (r + ρ)
{[

− sin θ +
(

1 + r
ρ

)
sin(θ + ψ)

]
i

−
[
cos θ −

(
1 + r

ρ

)
cos(θ + ψ)

]
j
}

.

(iii) The equation of singular points is rθ = 0. Such points occur at positions where
ψ = 2πn (n = 0, 1, 2, . . . ) and θ = 2πnρ

r . The above-mentioned singular points are
points of regression because rθθ �= 0.

The direction of the “half” tangent is determined with

rθθ = (r + ρ)r
ρ

[
sin
(

2πnρ
r

)
i + cos

(
2πnρ

r

)
j
]

(n = 0, 1, 2, . . . ).

The half tangent coincides with the position vector that makes the angle θ = 2πnρ/r
with the y axis.
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Figure 4.4.1: For derivation of curvature
of a planar curve: (a) illustration of two
tangents at neighboring points M and N ;
(b) osculating circle at point M.

4.4 CURVATURE OF PLANAR CURVES

Introduction
To simplify the following derivations, we consider that the curve is represented by vector
function

r(s ) ∈ C2, s ∈ E (4.4.1)

where s is the length of the curve arc. Consider two neighboring points M and N of
the curve that correspond to s and (s + �s ), respectively [Fig. 4.4.1(a)]. The length of
the arc between points M and N is �s , and �α is the angle between the tangents at M
and N .

The limit of the ratio �α/�s as point N approaches point M is known as the curvature
of the curve at point M (denoted as κ). We may also consider the limit of the inverse
ratio �s/�α, which is known as the radius of curvature (denoted as ρc ) of the curve
at point M. Here, ρc is the radius of the limiting (osculating) circle which is drawn
through point M and two neighboring points N and N ′ as they approach point M
[Fig. 4.4.1(b)]. Center C of the circle is called the center of curvature. The deviation of the
curve from the osculating circle can be determined by application of Taylor’s expansion
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(see below). It is proven in differential geometry that the curve and the osculating circle
have tangency of the second order at current point M (see below).

Frenet Trihedron
The right-hand Frenet trihedron is formed by three unit vectors t, m, and b shown in
Fig. 4.4.2. Here,

t = m × b, m = b × t, b = t × m. (4.4.2)

Unit vector t is determined as

t(s ) = dr
ds

= rs . (4.4.3)

Vector t is the unit tangent vector to the curve at its current point M; t is a unit vector
because |dr| = ds . Unit vector m is determined as

m = rss

|rss | (4.4.4)

where rss = ∂2r/∂s2.

Our intermediate goal is to prove the following properties of unit vector m(s ):

(a) Unit vector m(s ) is located in the plane where the curve is represented, and m(s ) is
the unit normal to the planar curve.

(b) Unit vector m(s ) is such a unit normal to the planar curve that is directed from
current point M of the curve to the curvature center C [Fig. 4.4.1(b)].

The proof of this statement is based on the following procedure:
Step 1: The derivative aθ = (d/dθ )(a(θ )) of a unit vector a(θ ) is perpendicular to a(θ ).

Here, θ is the variable of vector function a(θ ).
The proof of this statement is based on the following considerations:

(i)

[a(θ )]2 = a(θ ) · a(θ ) = 1 (4.4.5)

Figure 4.4.2: Frenet’s trihedron for a planar curve.
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because a(θ ) is a unit vector. Differentiating both parts of Eq. (4.4.5), we obtain

a · aθ = 0. (4.4.6)

(ii) Equation (4.4.6) confirms that the derivative aθ of unit vector a(θ ) is perpendicular
to a(θ ).

Step 2: Consider vector equation r(s ) of a planar curve. The unit tangent to the curve
is represented as

t = d
ds

(r(s )) = rs . (4.4.7)

Vector

rss = d
ds

(t(s )) = ts (4.4.8)

is the derivative of unit vector t. Thus, similar to Eq. (4.4.5), we have

rss · t = 0. (4.4.9)

Unit vector m has the same direction as rss [see Eq. (4.4.4)] and therefore m is perpen-
dicular to the unit tangent t.

Step 3: Vector b in the Frenet trihedron is perpendicular to plane � of the curve
(Fig. 4.4.2) and is represented as follows:

b = t × m = rs × rss

|rss | = rs × rss

|rs × rss | . (4.4.10)

Vector rs lies in plane � already. It was proven in Step 2 that rss is perpendicular to t.
Equation (4.4.10) is observed indeed if vector rss lies in plane � as well. Vector m is
the unit normal to the planar curve because it is perpendicular to the unit tangent t and
lies in plane � where the curve is represented. Statement (b) emphasizes that the unit
normal m is directed from M to center C of the osculating circle. The proof is based on
application of Taylor’s expansion and the following discussion:

Step 1: Consider that the curve is represented by the vector function r(s ). Points M
and N are neighboring points of the curve, and MN is the vector of the displacement
of N with respect to M [Fig. 4.4.1(b)].

Step 2: The displacement vector MN may be represented by Taylor’s expansion as

MN = r(s + �s ) − r(s ) = rs�s + rss
�s2

2
+ rsss

�s3

6
+ · · · . (4.4.11)

The derivatives rs , rss , and rsss are taken at point M of the curve.
Step 3: It is known from differential geometry that the planar curve and the osculating

circle are in tangency of second order at curve current point M [Fig. 4.4.1(b)]. Thus,
we can take only the first two members of Taylor’s expansion while considering the
displacement vector MN .

Vector rs�s is directed along the tangent to the curve. Vector rss (�s2/2) (�s2 > 0) is
directed along the normal to the curve and determines the deviation of the curve from
the tangent. The curve and the osculating circle are in tangency of second order and
therefore the deviation of the osculating circle and the curve from the tangent are the
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same. Therefore, the deviation of the curve from the tangent is directed to point C, the
center of curvature of the curve.

Step 4: Vector m has the same direction as rss (�s2/2). Thus, m is such a unit normal
to the planar curve that is always directed to the curvature center of the curve at a
regular point of the curve. Statement (b) is proven.

Using Taylor’s expansion (4.4.11) with at least three members, we can visualize the
deviation of the curve from the osculating circle. Such a deviation is represented by vector
rsss (�s3/6), where �s is positive for point N and negative for point N ′ [Fig. 4.4.1(b)].
This means that the deviation of the curve from the osculating circle is of different sign
for points N and N ′. The deviation is zero at point M.

Frenet Equations
Consider two trihedrons (t, m, b) and (t′, m′, b) that are located at neighboring points
M and N of the curve (Fig. 4.4.2). The motion of trihedron (t, m, b) which has to
coincide with trihedron (t′, m′, b) may be represented as a motion of two components:
(1) translation along the curve from M to N (unit vectors t, m, b of the trihedron keep
their original directions), and (2) rotation about b (then, trihedron t, m, b will coincide
with trihedron t′, m′, b).

We designate the angle of rotation about b as

dα = dα b. (4.4.12)

The displacement of the tips of vectors m and t is represented by the following equa-
tions:

dm = dα × m =
∣∣∣∣∣∣

t m b
0 0 dα

0 1 0

∣∣∣∣∣∣ = −dα t (4.4.13)

dt = dα × t =
∣∣∣∣∣∣

t m b
0 0 dα

1 0 0

∣∣∣∣∣∣ = dα m. (4.4.14)

Equations (4.4.13) and (4.4.14), taking into account that dα/ds = κ, yield

ms = −κ t (4.4.15)

ts = κ m. (4.4.16)

Equations (4.4.15) and (4.4.16) are known as Frenet’s equations.

Curvature of curve represented by vector function r(s)
Henceforth, we consider that the curve is represented in plane (x, y) and vectors of
Eqs. (4.4.15) and (4.4.16) can be represented as

ms = msx i + msy j, t = rs = xs i + ys j

ts = rss = xss i + yss j, m = mx i + my j
(4.4.17)

where i and j are the unit vectors of axes x and y, respectively.
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Equation (4.4.15) yields the following equations for determination of the curve
curvature:

κ = −ms · t (4.4.18)

(recall that t is a unit vector)

κ = −msx

xs
= −msy

ys
. (4.4.19)

Equation (4.4.16) yields the following equations for determination of curvature κ:

κ = rss · m (4.4.20)

κ = |rss | = |rs × rss |. (4.4.21)

The derivation of Eq. (4.4.20) is based on the following procedure.

(i) Consider Eq. (4.4.16) and take into account that m is a unit vector. Then, we obtain

κ = ts · m = d
ds

(t) · m. (4.4.22)

Here,

t = rs ,
d
ds

(t) = rss . (4.4.23)

(ii) Equations (4.4.22) and (4.4.23) yield Eq. (4.4.20).
The derivation of Eqs. (4.4.21) is based on the following considerations.

(a) Taking into account that m is a unit vector, we obtain from Eq. (4.4.16) that

κ = |ts | = |rss |. (4.4.24)

(b) Equations (4.4.10) for determination of unit vector b yield

|rss | = |rs × rss |. (4.4.25)

(c) Equations (4.4.24) and (4.4.25) confirm Eq. (4.4.21).

We emphasize that the curve curvature determined by Eqs. (4.4.18), (4.4.19), (4.4.20),
and (4.4.21) is always positive. The direction of the curvature radius MC [Fig. 4.4.1(b)]
is the same as that of the unit normal m(s ).

Curvature of parametric curve represented by vector function r(θ)
Usually, a planar curve is represented in parametric form by the vector function r(θ).
Our goal is to derive equations for the direct determination of the curve curvature κ(θ )
and the unit vectors t(θ ), m(θ ), and b(θ ).

It can be proven that the curvature of the curve r(θ) may be represented by the
following equations:

κ(θ ) = −mθ · rθ

r2
θ

(4.4.26)

κ(θ ) = −mθx

xθ

= −mθy

yθ

(4.4.27)
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κ(θ ) = tθ · m(θ )
|rθ | (4.4.28)

κ(θ ) = tθx

|rθ |mx
= tθy

|rθ |my
(4.4.29)

κ(θ ) = |rθ × rθθ |
|rθ |3 (4.4.30)

κ(θ ) = rθθ · m(θ )

r2
θ

. (4.4.31)

The derivation of Eqs. (4.4.26) to (4.4.31) is based on the following procedure.

(i) We consider that the planar curve is represented by vector function r(s (θ )), where
s is the arc length.

(ii) Differentiating the previously mentioned vector function, we obtain the auxiliary
relations

rθ = rs
ds
dθ

. (4.4.32)

Here,

ds
dθ

= |rθ | because |rs | = 1 (4.4.33)

rθθ = rss

(
ds
dθ

)2

+ rs

(
d2s
dθ2

)
. (4.4.34)

It is easy to verify that

rs × rss = rθ × rθθ(
ds
dθ

)3 = rθ × rθθ

|rθ |3 . (4.4.35)

(iii) Using Eqs. (4.4.15) and (4.4.16), and auxiliary relations (4.4.32) to (4.4.35), we
obtain after transformation the represented Eqs. (4.4.26) to (4.4.31).

We emphasize that curvature κ in the derived equations is always positive, and the
orientation of vector MC of the curvature radius is the same as that of vector m(θ ). The
orientation of unit vectors t(θ ), b(θ ), and m(θ ) for the Frenet trihedron is represented
by the following equations:

t(θ ) = rθ

|rθ | (4.4.36)

b(θ ) = rθ × rθθ

|rθ × rθθ | (4.4.37)

m(θ ) = b(θ ) × t(θ ) = (rθ × rθθ ) × rθ

|rθ × rθθ ||rθ | . (4.4.38)

We have used for derivation of equation b(θ ) expression (4.4.35) and Eq. (4.4.10).
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It is important to recognize for further discussions that vector m(θ) has the same
direction as rss and forms an acute angle with rθθ . The inequality

rθθ · m(θ ) > 0 (rθθ �= 0, m(θ) �= 0) (4.4.39)

follows from Eq. (4.4.34) which yields

rθθ · rss = r2
ss

(
ds
dθ

)2

= (r2
ss ) · (r2

θ ) > 0. (4.4.40)

Recall that rs · rss = 0 because these vectors are perpendicular. Vector m has the same
direction as rss .

The most effective equations for determination of the curve curvature are Eq. (4.4.30)
and the modified Eq. (4.4.31) (see below). Other equations from the set of (4.4.26) to
(4.4.29) are more complex because they require the determination of complex deriva-
tives mθ = (d/dθ )(m), tθ = (d/dθ )(t).

Modification of Eq. (4.4.31)
The modification is based on representation of the unit normal n to the planar curve by
the vector equation

n = k × rθ

|rθ | (4.4.41)

or by

n = rθ × k
|rθ | . (4.4.42)

Here, k is the unit vector that is perpendicular to plane (x, y) where the curve is repre-
sented. Vector Eqs. (4.4.41) [or (4.4.42)] determine the unit normal to the planar curve
as a unit vector that is perpendicular to the tangent to the curve and lies in plane (x, y).
Vector n may coincide with m or be opposite to m. This means that the direction of n
might coincide or be opposite to the curvature radius MC [Fig. 4.4.1(b)]. The modified
Eq. (4.4.31) is represented as

κ(θ ) = rθθ · n
r2
θ

. (4.4.43)

Equation (4.4.43) determines the curvature κ as an algebraic value. The positive (neg-
ative) value of κ indicates that the curvature center lies on the positive (negative) value
of the unit normal n. This rule works for both representations of the unit normal n by
vector Eqs. (4.4.41) or (4.4.42).

It is easy to verify that the direction of n with respect to m can be determined with
the sign of the scalar product m · n: the positive (negative) sign of n indicates that n has
the same (opposite) direction as m. Let us assume that the unit normal n is determined
with vector Eq. (4.4.42). Using Eqs. (4.4.42) and (4.4.38) we obtain

m · n = [(rθ × rθθ ) × rθ ] · (rθ × k)

|rθ × rθθ |r2
θ

. (4.4.44)
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Equation (4.4.44) yields (see vector algebra)

m · n = rθθ · (rθ × k)
|rθ × rθθ | = xθθ yθ − yθθ xθ

|yθθ xθ − xθθ yθ | . (4.4.45)

The direction of n determined by Eq. (4.4.42) coincides with the direction of m, if

xθθ yθ − yθθ xθ > 0. (4.4.46)

Representation of Eq. (4.4.43) in terms of velocity and acceleration
Consider that the planar curve is represented by vector equation r(θ ). The velocity vr and
acceleration ar of a point that moves along the curve are represented by the following
equations:

vr = (xθ i + yθ j)
dθ

dt
(4.4.47)

ar = (xθθ i + yθθ j)
(

dθ

dt

)2

+ (xθ i + yθ j)
d2θ

dt2
= a(n)

r + a(t)
r . (4.4.48)

The subscript “r ” indicates that the point moves along the curve, performing a relative
motion with respect to the curve. The superscripts “n” and “t” indicate the normal and
tangential components of the acceleration. Equations (4.4.43), (4.4.47), and (4.4.48)
yield as the equation for the determination of the curve curvature,

κ = ar · n
v2

r
= a(n)

r · n
v2

r
, (4.4.49)

because a(t)
r · n = 0. It is easy to verify that Eqs. (4.4.43) and (4.4.49) are identical.

Curvature of curves represented by explicit or implicit functions
Consider that the curve is represented as

y(x) ∈ C2, x1 < x < x2 (4.4.50)

or

F (x, y) = 0, F ∈ C2, |Fx| + |Fy| �= 0. (4.4.51)

Recall that the curvature is represented by

κ = dα

ds
. (4.4.52)

For the curve given by function (4.4.50), we have

tan α = dy
dx

= yx (4.4.53)

ds =
√

dx2 + dy2 =
√

1 + y2
xdx. (4.4.54)
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Differentiating Eq. (4.4.53), we get

1
cos2 α

dα = d2y
dx2

dx = yxxdx

and

dα = cos2 α yxxdx = 1
1 + tan2 α

yxxdx = yxx

(1 + y2
x)

dx. (4.4.55)

Equations (4.4.52), (4.4.54), and (4.4.55) yield

κ = yxx

(1 + y2
x)(3/2)

. (4.4.56)

For the curve represented by Eq. (4.4.51), we get

Fxdx + Fydy = 0.

Assuming that Fy �= 0, we get

dy
dx

= − Fx

Fy
(4.4.57)

d2y
dx2

= 2Fx Fy Fxy − F 2
x Fyy − Fxx F 2

y

F 3
y

(4.4.58)

κ = 2Fx Fy Fxy − F 2
x Fyy − Fxx F 2

y(
F 2

x + F 2
y

)3/2 . (4.4.59)

While differentiating Eq. (4.4.57), we have considered that

Fx = Fx(x, y), Fy = Fy(x, y)

and
∂

∂x
(Fx) = Fxx + Fxy

dy
dx

= Fxx − Fxy
Fx

Fy

∂

∂x
(Fy) = Fyx + Fyy

dy
dx

= Fyx − Fyy
Fx

Fy
.

Problem 4.4.1
An involute curve is represented by the equations

x1 = ρ(sin φ − φ cos φ), y1 = ρ(cos φ + φ sin φ) (4.4.60)

where φ is the curve parameter. These equations can be derived from Eqs. (1.6.4) for an
extended involute curve taking that the tracing point M belongs to the rolling straight
line and a = |AMo| = 0 (Fig. 1.6.2); ρ is the radius of the base cylinder. The unit normal
to the involute curve is represented as

n = t × k (4.4.61)
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where k is the unit vector of the z axis; t is the unit tangent to the planar curve. Determine
the curvature of the involute curve by using Eq. (4.4.43).

Solution

κ = 1
ρφ

(provided φ �= 0).

Problem 4.4.2
An extended epicycloid (Fig. 1.6.1) is represented by Eqs. (1.6.2). Consider an ordinary
epicycloid [take a = |O2M| = ρ2 in Eqs. (1.6.2)]. The unit normal to the epicycloid is
represented by Eq. (4.4.61). Determine the curvature using Eq. (4.4.43).

DIRECTION: Express after transformations the tangent T1 to the epicycloid as follows:

Tx1 = 2 sin
φ2

2

[
sin
(

φ1 + φ2

2

)]
E

Ty1 = 2 sin
φ2

2

[
cos
(

φ1 + φ2

2

)]
E .

(4.4.62)

Solution

κ = ρ1 + 2ρ2

4ρ2(ρ1 + ρ2) sin
φ2

2

(provided φ2 �= 0).
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5 Surfaces

5.1 PARAMETRIC REPRESENTATION OF SURFACES

Parametric representation of a surface means that the position vector of a current surface
point is associated with two variable parameters u and θ and is represented by the
following vector equation:

r(u, θ ) = f (u, θ )i + g(u, θ )j + s (u, θ )k. (5.1.1)

Here, i, j, and k are the unit vectors of the coordinate axes; functions

f (u, θ ) = x(u, θ ), g(u, θ ) = y(u, θ ), s (u, θ ) = z(u, θ ) (5.1.2)

determine the Cartesian coordinates of the surface points if u and θ are given.
We may imagine a rectangle G in the plane of parameters (u, θ ) (Fig. 5.1.1). Vector

equation (5.1.1) sets the correspondence between the given point of the rectangle G
and the single point r(u, θ ) of the surface. Generally, one-to-one correspondence is not
guaranteed; it may happen that the given surface point r(u, θ ) corresponds to more than
one point of the rectangle G. A surface with one-to-one correspondence between the
set of parameters (u, θ ) and the position vector r(u, θ ) is called a simple surface. Such a
surface does not have points of self-intersection.

5.2 CURVILINEAR COORDINATES

Parameters (u, θ ) are called curvilinear coordinates (Gaussian coordinates) on the sur-
face. Consider that one of the curvilinear coordinates is fixed, for instance θ = θ0, and
the other one (u) is varied. Then, equation

r(u, θ0) = x(u, θ0)i + y(u, θ0)j + z(u, θ0)k (5.2.1)

represents a line on the surface that is called the u line. Similarly, by setting u = u0, we
may determine by r(u0, θ ) the θ line on the surface. Thus, the surface may be covered
with u lines and θ lines, as shown in Fig. 5.2.1.

78
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Figure 5.1.1: Mapping of a surface.

5.3 TANGENT PLANE AND SURFACE NORMAL

Consider that point M0 is fixed on the surface and the position vector of this point is
represented by r(u0, θ0). A neighboring point M is represented by

r(u, θ ) = r(u0 + �u, θ0 + �θ ).

Figure 5.2.1: Coordinate lines on a sur-
face.
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Figure 5.3.1: Regular and singular sur-
face points.

The location of M with respect to M0 depends on the chosen set of �u and �θ . Draw
a ray from point M0 to point M. This ray intersects the surface, and the orientation of
this ray depends on the ratio �u/� θ . The position of the ray when point M approaches
M0 [when (u, θ ) approaches (u0, θ0)] is called the limiting position of the ray [Zalgaller,
1975]. The ray at its limiting position is tangent to the surface. Because the location
of M with respect to M0 depends on (�u, �θ ), there is a set of points M within the
neighborhood of M0; there is also a set of limiting rays that are drawn from M0 and
that are tangents to the surface. We say that a surface has a tangent plane at M0 if the
set of limiting rays fills in a plane.

Figure 5.3.1 shows three types of sets of limiting rays. In the first case, the set of
limiting rays fills in a plane P that is tangent to the surface at point M [Fig. 5.3.1(a)].
In the second case [Fig. 5.3.1(b)], two branches of the surface have a common line, L,
the so-called edge of regression. The set of limiting rays that are drawn from point M
of L fills in only a half-plane that is limited with the tangent T drawn to L at point M.
In the third case [Fig. 5.3.1(c)], point M is the cone apex, and the set of limiting rays
fills in the cone surface; the tangent plane at M does not exist.

A surface point at which the set of limiting rays fills in a full plane is called a regular
point. The surface at such a point has a tangent plane. A surface point at which a tangent
plane does not exist is called a singular point. The tangent plane P to a surface (if such
a plane exists) is determined by the pair of vectors ru and rθ that are tangents to the
u-line and the θ -line, respectively (Fig. 5.3.2). It is assumed that ru �= 0 and rθ �= 0 and
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Figure 5.3.2: Surface tangent plane.

that vectors ru and rθ are not collinear. The tangent plane P at the surface point r(u0, θ0)
is represented by the equation

A · (ru × rθ ) = 0. (5.3.1)

Here,

A = R − r(u0, θ0) = MM
∗
.

Position vector R is drawn from the same origin as r(u0, θ0) to an arbitrary point M∗ of
the tangent plane. Equation (5.3.1) yields that vector A = MM

∗
lies in the plane drawn

through vectors ru and rθ taken at point r(u0, θ0). The surface normal N is perpendicular
to the tangent plane P and is represented by the equation

N = ru × rθ . (5.3.2)

The direction of the surface normal depends on the order of factors in the cross
product (5.3.2). The surface normal may be expressed in terms of projections on the
coordinate axis by

N =
∣∣∣∣∣∣

i j k
xu yu zu

xθ yθ zθ

∣∣∣∣∣∣ =
∣∣∣∣ yu zu

yθ zθ

∣∣∣∣ i +
∣∣∣∣ zu xu

zθ xθ

∣∣∣∣ j +
∣∣∣∣ xu yu

xθ yθ

∣∣∣∣k. (5.3.3)

The unit normal is represented by

n = N
|N| = Nx

|N| i + Ny

|N| j + Nz

|N|k (5.3.4)

provided |N| = (N2
x + N2

y + N2
z )1/2 �= 0. The surface point r(u0, θ0) is a singular one if

ru × rθ = 0. (5.3.5)

A singular point at a surface appears if at least one of the vectors in the cross product
(5.3.5) is equal to zero or if the vectors are collinear.
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5.4 REPRESENTATION OF A SURFACE BY IMPLICIT FUNCTION

The equation

F (x, y, z) = 0 (5.4.1)

may represent a surface or just a set of points. To represent a surface, Eq. (5.4.1) must
be complemented with the following additional requirements:

F ∈ C1, |Fx| + |Fy| + |Fz| �= 0 (5.4.2)

or

F ∈ C1, F 2
x + F 2

y + F 2
z �= 0. (5.4.3)

Equation (5.4.1) with requirements (5.4.2) or (5.4.3) represents a simple and regular
surface locally, in the neighborhood of point Mo(xo, yo, zo), whose coordinates satisfy
Eq. (5.4.1). A surface point is singular if

Fx = Fy = Fz = 0. (5.4.4)

A tangent plane at a regular surface point is represented by the equation

Fx(x0, y0, z0)(X − x0) + Fy(x0, y0, z0)(Y − y0) + Fz(x0, y0, z0)(Z − z0) = 0. (5.4.5)

Here, X, Y, and Z are the coordinates of a point in the tangent plane P (point M∗ in
Fig. 5.3.2); x0, y0, and z0 are the coordinates of the surface point M; the derivatives Fx,
Fy, and Fz are taken at M.

The surface normal N at the point (x0, y0, z0) is

N = Fx(x0, y0, z0) i + Fy(x0, y0, z0) j + Fz(x0, y0, z0) k. (5.4.6)

The surface unit normal n is

n = Fxi + Fyj + Fzk
m

(5.4.7)

where m = (F 2
x + F 2

y + F 2
z )1/2.

5.5 EXAMPLES OF SURFACES

A ruled surface represents a family of straight lines. Such a surface may be gener-
ated by a certain motion of the generating straight line (Fig. 5.5.1). The simplest cases
of ruled surfaces are: a cone surface and a cylinder surface (they are generated by a
straight line that rotates about a fixed axis), the surface of a screw (the Archimedes
screw surface), and the surface of a helical involute gear (the involute screw sur-
face). The last two surfaces are generated by the screw motion of a straight line (see
below).

Generally, the direction of a unit normal to a ruled surface changes its orienta-
tion while the surface point moves along the straight line L (Fig. 5.5.1). An excep-
tion to this rule is a developable ruled surface that may be developed on a plane.
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Figure 5.5.1: Ruled surface.

The direction of the surface unit normal for a developable ruled surface is the same
for all points of a surface straight line. Typical examples of ruled developable sur-
faces are the cone surface, the cylinder surface, and the involute screw surface (see
below).

Surface of Revolution
This surface (Fig. 5.5.2) may be generated by rotation of a planar curve L about the
z axis; curve L is located in a plane drawn through the z axis. Consider that the pla-
nar curve L, which generates the surface of revolution, is represented in the auxiliary
coordinate system Sa [Fig. 5.5.3(a)] by the equations

xa = f (θ ), ya = 0, za = g(θ ). (5.5.1)

The auxiliary coordinate system rotates about the z axis and the coordinate trans-
formation from Sa (xa , ya , za ) to S(x, y, z) [Fig. 5.5.3(b)] is represented by the matrix
equation 

x
y
z
1

 =


cos ψ − sin ψ 0 0
sin ψ cos ψ 0 0

0 0 1 0
0 0 0 1




xa

ya

za

1

 . (5.5.2)

Equations (5.5.1) and (5.5.2) yield

x = f (θ) cos ψ, y = f (θ ) sin ψ, z = g(θ ) (5.5.3)

where θ1 < θ < θ2 and 0 ≤ ψ ≤ 2π .
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Figure 5.5.2: Surface of revolution.

Problem 5.5.1
Consider the surface of revolution represented by Eqs. (5.5.3). Determine (1) equations
of the θ lines and ψ lines and explain their geometric essence, and (2) equations of the
surface normal N and the surface unit normal n.

Solution
(1) The θ line is represented by the equations

x = f (θ ) cos ψ0, y = f (θ ) sin ψ0, z = g(θ ) (5.5.4)

(here, ψo = constant) and is located in the plane that passes through the z axis and
makes an angle ψ = ψ0 with the x axis (Fig. 5.5.2). The ψ line is represented by
the equations

x = f (θ0) cos ψ, y = f (θ0) sin ψ, z = g(θ0). (5.5.5)

Equations (5.5.5) represent a circle of radius

ρ = (x2 + y2)1/2 = f (θ0)

which is located in the plane z = g(θ0) and centered on the z axis.
(2) Using the cross product rθ × rψ , the surface normal may be represented as

follows:

Nx = − f (θ )g ′(θ ) cos ψ, Ny = − f (θ )g ′(θ ) sin ψ, Nz = f (θ) f ′(θ ). (5.5.6)
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Figure 5.5.3: Generation of surface of revolution:
(a) representation of planar curve L; (b) coordinate
systems Sa and S .

The unit normal is (provided f (θ ) �= 0)

nx = −g ′(θ ) cos ψ

A
, ny = −g ′(θ ) sin ψ

A
, nz = f ′(θ )

A
(5.5.7)

where

A2 = [ f ′(θ )]2 + [g ′(θ)]2, f ′(θ ) = d
dθ

f (θ ), g ′(θ ) = d
dθ

g(θ ).

Spherical Surface
This surface (Fig. 5.5.4) is a particular case of the surface of revolution. The generating
planar curve L is a circle of radius ρ centered at the origin O of the coordinate system
S(x, y, z). The spherical surface is generated by the circle in rotational motion about
the z axis; LI and LII are two positions of the generating circle, and ψ is the angle of
rotation about the z axis.

Consider again an auxiliary coordinate system Sa , rigidly connected to the generating
circle (Fig. 5.5.5). The generating circle is represented in the coordinate system Sa by
the equations

xa = ρ cos θ, ya = 0, za = ρ sin θ. (5.5.8)
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Figure 5.5.4: Spherical surface.

Using matrix equation (5.5.2) and Eq. (5.5.8), we represent the equations of the spherical
surface as

xa = ρ cos θ cos ψ, ya = ρ cos θ sin ψ, za = ρ sin θ (5.5.9)

where 0 < θ < 2π and 0 < ψ < 2π . The surface normal vector N = rθ × rψ is given by

Nx = −ρ2 cos2 θ cos ψ, Ny = −ρ2 cos2 θ sin ψ, Nz = −ρ2 cos θ sin θ. (5.5.10)

The normal N is equal to zero with cos θ = 0. Thus, points M1 and M2 (Fig. 5.5.4) are
singular.

We must differentiate between singular and pseudosingular points of a surface. Pseu-
dosingular points appear only as a result of the chosen parametric representation, and
they become regular by changing the parameters of representation. To prove this, let us
consider that the spherical surface is generated by circle L∗ in rotational motion about

Figure 5.5.5: Generating circle.
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Figure 5.5.6: Generation of spherical sur-
face: (a) representation of circle of radius ρ

in Sa ; (b) coordinate systems Sa and S .

the x axis (Fig. 5.5.4). Circle L∗ is represented in the coordinate system Sa [Fig. 5.5.6(a)]
by the equations

xa = ρ cos u, ya = ρ sin u, za = 0. (5.5.11)

The coordinate transformation in transition from Sa to S [Fig. 5.5.6(b)] is represented
by the matrix 

x
y
z
1

 =


1 0 0 0
0 cos φ − sin φ 0
0 sin φ cos φ 0
0 0 0 1




xa

ya

za

1

 . (5.5.12)

Equations (5.5.11) and (5.5.12) yield

x = ρ cos u, y = ρ sin u cos φ, z = ρ sin u sin φ. (5.5.13)

The surface normal N∗ is given by

N∗ = ru × rφ = ρ2 sin u(cos ui + sin u cos φj + sin u sin φk). (5.5.14)
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Surface points D1 and D2 (Fig. 5.5.4), which correspond to sin u = 0, are singular
because at these points N∗ = 0. All other surface points, including points M1 and M2

(Fig. 5.5.4), are regular. We may see that the singularity of surface points M1 and M2,
which results from the parametric representation (Eq. 5.5.9), disappears when the new
parametric representation (Eq. 5.5.14) is employed. But, at the same time, the singularity
of surface points D1 and D2 occurs.

Actually, a spherical surface does not have singular points; that is, the normal to the
surface has a definite direction at all surface points. This direction of the normal at
pseudosingular points such as M1 and M2 and D1 and D2 may be determined by using
a new parametric representation.

Considering the parametric representation (Eq. 5.5.13) and the equation of the surface
normal (Eq. 5.5.14), we find that the surface unit normal is (provided sin u �= 0)

n∗ = N∗

|N∗| = cos ui + sin u cos φj + sin u sin φk. (5.5.15)

Cone Surface
This surface may be generated by a straight line L in rotation about an axis with which
line L forms an angle ψc (the x axis in Fig. 5.5.7). Curvilinear coordinates of the cone
surface are θ and u = |AM|, where A is the cone apex. Equations of the cone surface are

x = ρ cot ψc − u cos ψc , y = u sin ψc sin θ, z = u sin ψc cos θ (5.5.16)

where 0 ≤ u ≤ u1 and 0 ≤ θ ≤ 2π .

Figure 5.5.7: Cone surface.
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Figure 5.5.8: Cone generation: (a) rep-
resentation of generating straight line L
in Sa ; (b) coordinate systems Sa and S .

Equations (5.5.16) may also be derived using the following considerations:

(1) The generating straight line L is represented in the auxiliary coordinate system Sa

[Fig. 5.5.8(a)] by the equations

xa = ρ cot ψc − u cos ψc , ya = 0, za = u sin ψc . (5.5.17)

(2) The coordinate transformation in transition from Sa to S [Fig. 5.5.8(b)] is
x
y
z
1

 =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1




xa

ya

za

1

 . (5.5.18)

Equations (5.5.17) and (5.5.18) yield Eqs. (5.5.16).

A cone surface is an example of a developable ruled surface. The cone normal and its
unit normal may be represented by

N = ru × rθ = −u sin ψc (sin ψc i + cos ψc sin θ j + cos ψc cos θk) (5.5.19)

n = N
|N| = −(sin ψc i + cos ψc sin θ j + cos ψc cos θk) (by u sin ψc �= 0). (5.5.20)
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Equations (5.5.20) yield that the surface unit normal n is a function of only one
curvilinear coordinate, θ . Consequently, the surface unit normals are the same for
all points of the straight line L (Fig. 5.5.7). The cone apex, which corresponds to
u = 0, is the singular surface point. This result comes from Eq. (5.5.19), where N = 0
when u = 0.

Helicoid
A helicoid is a surface that is generated by a line in a screw motion. The generating line
may be a curve or a straight line. Helicoids are widespread in the field of gears. Surfaces
of helical gears and cylindrical worms of worm-gear drives are helicoids.

General Equations of a Helicoid
Consider a screw motion of a planar curve L such that the axis of screw motion is
perpendicular to the plane of L. In this motion, curve L generates a helicoid. Let us
represent curve L in an auxiliary coordinate system Sa by the equations [Fig. 5.5.9(a)]

xa = ra (θ ) cos θ, ya = ra (θ ) sin θ, za = 0 (5.5.21)

where ra = |Oa M| and θ1 < θ < θ2. The axis of screw motion is the z axis [Fig. 5.5.9(b)],
and the screw parameter is h. The screw parameter h represents the displacement along

Figure 5.5.9: Generation of helicoid: (a)
representation of planar curve L in Sa ; (b)
coordinate systems Sa and S .
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the z axis, which corresponds to the rotation about z through an angle of one radian.
The sign of h is positive for a right-hand screw motion.

Coordinate transformation in transition from Sa to S is represented by the matrix
equation 

x
y
z
1

 =


cos ψ − sin ψ 0 0
sin ψ cos ψ 0 0

0 0 1 hψ

0 0 0 1




xa

ya

za

1

 . (5.5.22)

Equations (5.5.21) and (5.5.22) yield

x = ra (θ ) cos(θ + ψ), y = ra (θ ) sin(θ + ψ), z = hψ (5.5.23)

where θ1 < θ < θ2 and 0 < ψ < 2π .
The helicoid normal is

N = ∂r
∂θ

× ∂r
∂ψ

= ra (θ )
sin u

[h sin(θ + ψc + µ)i − h cos(θ + ψc + µ)j + ra (θ ) cos µk]

(5.5.24)

where

µ = arctan
(

ra (θ )
dra (θ )/dθ

)
.

The helicoid unit normal is [provided ra (θ ) �= 0]

n = N
|N| = 1√

h2 + r 2
a cos2 µ

[h sin(θ + ψ + µ)i − h cos(θ + ψ + µ)j + ra (θ) cos µk].

(5.5.25)

Helicoid with Ruled Surface
A helicoid with a ruled surface is generated by a screw motion of a straight line L.
The axis of screw motion and the generating line may form a crossed angle or they
may intersect each other. Two coordinate systems Sa and Sb rigidly connected to the
generating line L [Fig. 5.5.10(a)] and a coordinate system S in which the helicoid is
represented [Figs. 5.5.10(b) and 5.5.10(c)] are given. The coordinate system Sa performs
a screw motion with respect to S , and z is the axis of the screw motion. Each point
of coordinate system Sa generates in the screw motion a helix on a cylinder. Point M
generates a helix on the cylinder of radius Oa M = ρ, and MT is the tangent to the helix
at point M [Figs. 5.5.10(a) and 5.5.10(b)]. We consider two lines MT and MN rigidly
connected with each other. Line MN is the generating line which, while performing a
screw motion, generates the helicoid.

We may derive the helicoid equations by using the rules of coordinate transforma-
tion. Consider that the generating line is represented in coordinate system Sb by the
equations

xb = 0, yb = u cos δ, zb = −u sin δ (5.5.26)
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Figure 5.5.10: Generation of ruled helicoid: (a) representation of generating line L in Sa and Sb;
(b) representation of helix on cylinder of radius ρ and tangent MT to helix and generating line MN ;
(c) coordinate systems Sa and S .

where u = MN . The coordinate transformation from Sb to S is represented by the
matrix equation

r = M0a Mabrb
x
y
z
1

 =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 hθ

0 0 0 1




1 0 0 ρ

0 1 0 0
0 0 1 0
0 0 0 1




xb

yb

zb

1

 . (5.5.27)

Equations (5.5.26) and (5.5.27) represent the equations of the helicoid surface as fol-
lows:

r = (ρ cos θ − u cos δ sin θ)i + (ρ sin θ + u cos δ cos θ )j + (hθ − u sin δ)k. (5.5.28)

Vector equation (5.5.28) represents a ruled surface. The u line (surface parameter θ

is considered fixed) represents a straight line, and the θ line represents a helix. Vector
equation (5.5.28) is a general equation of a helicoid. In a particular case, Eq. (5.5.28)
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may represent a helicoid with a ruled surface if the generating plane curve L is given as
a cross section of a helicoid with a ruled surface.

The normal to the helicoid with the ruled surface (Eq. 5.5.28) is

N = ∂r
∂u

× ∂r
∂θ

= [(h cos δ + ρ sin δ) cos θ − u cos δ sin δ sin θ ]i

+ [(h cos δ + ρ sin δ) sin θ + u cos δ sin δ cos θ]j + u cos2 δ k. (5.5.29)

The unit normal is

n = N
|N| = N

m
(5.5.30)

where

m2 = (h cos δ + ρ sin δ)2 + u2 cos2 δ. (5.5.31)

There are two particular but important cases of helicoids with ruled surfaces. In
the first case, the generating line L coincides with the tangent T to the helix on the
cylinder surface. The straight line L generates a helicoid, an involute screw surface.
We may obtain equations of such a surface from Eq. (5.5.28) by setting δ = −λρ

[Fig. 5.5.10(a)]. This yields

r = (ρ cos θ − u cos λρ sin θ) i + (ρ sin θ + u cos λρ cos θ ) j + (hθ + u sin λρ) k.

(5.5.32)

Equations of the normal N and unit normal n to this surface may be derived from
Eqs. (5.5.29), (5.5.30), and (5.5.31) by making δ = −λρ where tan λρ = h/ρ. We then
obtain

h cos δ + ρ sin δ = h cos λρ − ρ sin λρ = 0 (5.5.33)

m2 = (h cos δ + ρ sin δ)2 + u2 cos2 δ = u2 cos2 λρ (5.5.34)

and

N = u cos λρ(sin λρ sin θ i − sin λρ cos θ j + cos λρk). (5.5.35)

With u cos λρ �= 0, all points of the screw involute surface are regular, and the equation
of the unit normal at these points is

n = sin λρ(sin θ i − cos θ j) + cos λρk. (5.5.36)

The direction of the unit normal n does not depend on the surface parameter u. This
means that the unit normals have the same direction for all points of the generating
straight line L, and the involute screw surface is a ruled developable surface.

The second particular case of a helicoid with a ruled surface is the Archimedes screw
surface. This surface is generated by a straight line that does not cross but does in-
tersect the axis of screw motion. The Archimedes screw surface is applied not only
for worms but also for screws that are cut by straight-edged blades. The equation of
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the Archimedes screw surface may be derived from Eq. (5.5.28) by setting ρ = 0. This
yields

r = u cos δ(− sin θ i + cos θ j) + (hθ − u sin δ) k. (5.5.37)

Equations of the normal N may be derived from Eq. (5.5.29) by setting ρ = 0 and
dividing all three normal projections by a common factor cos δ (with the assumption
that δ �= 90◦). This yields

N = (h cos θ − u sin δ sin θ ) i + (h sin θ + u sin δ cos θ ) j + u cos δ k. (5.5.38)

The unit normal n is

n = N
m

(5.5.39)

where

m = (h2 + u2)1/2. (5.5.40)

The orientation of normal N to the Archimedes screw surface depends on the location of
the point on the generating straight line (depends on u). The Archimedes screw surface
is not a developed surface but a ruled surface.

Relationship Between Helicoid Coordinates and the Surface
Normal Projections
This relationship proposed by Litvin [1968, 1989] may be represented as follows:

yNx − xNy − hNz = 0 (5.5.41)

ynx − xny − hnz = 0. (5.5.42)

This statement may be confirmed by substituting in Eqs. (5.5.41) and (5.5.42) the heli-
coid coordinates and projections of the surface normal N and the surface unit normal
n with the previously derived expressions of helicoids.

The kinematic interpretation of Eqs. (5.5.41) and (5.5.42) is based on the following
suggestions. Consider the screw motion of a helicoid. The screw parameter h in this
motion is the same as the screw parameter of the helicoid. A fixed point of the helicoid
traces out a helix, and the velocity vector in screw motion v is a tangent to the helix.
The helix belongs to the helicoid, and the velocity vector v is a tangent to the helicoid.
Consequently, the following equation must be observed:

n · v = N · v = 0. (5.5.43)

The velocity vector in screw motion may be determined by the equation

v = (ω × r) + hω =
∣∣∣∣∣∣

i j k
0 0 ω

x y z

∣∣∣∣∣∣+ hωk = ω(−y i + x j + h k). (5.5.44)

The surface normal and the surface unit normal are represented as

N = Nx i + Ny j + Nz k, n = nx i + ny j + nz k. (5.5.45)
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Equations (5.5.43), (5.5.44), and (5.5.45) yield relations (5.5.41) and (5.5.42). In the
case of a surface of revolution with the z axis as an axis of rotation, we have to use in
Eqs. (5.5.41) and (5.5.42) the screw parameter h = 0.

Cross Section of a Helicoid
The cross section of a helicoid is formed by cutting the surface with a plane perpen-
dicular to the z axis, the axis of screw motion. This section may be represented by the
equations of the helicoid and the equation z = c, where c is a constant. To simplify
transformations, we may set z = 0. The cross sections of a helicoid corresponding to
z = 0 and z = c represent the same plane curve in two positions. One cross section will
coincide with the other after rotation about the z axis through the angle

ψ = c
h

. (5.5.46)

Let us determine the cross section of the helicoid (Eq. 5.5.28) that is cut by the plane
z = 0. Using the relation

u = h
sin δ

θ (5.5.47)

we get

x = ρ cos θ − θ sin θh cot δ, y = ρ sin θ + θ cos θh cot δ, z = 0. (5.5.48)

In polar form the cross section may be represented as

r (θ ) = (x2 + y2)1/2 = [ρ2 + (θh cot δ)2]1/2

tan q = y
x

= ρ tan θ + θh cot δ

ρ − θ tan θh cot δ
. (5.5.49)

Here, q is the angle that is formed by the position vector r(θ ) and axis x.
The cross section is an extended involute. The generation of such a curve is shown

in Fig. 5.5.11. Consider that a straight line S rolls over a circle of radius O A = h cot δ.
Point B, whose location is determined by

|AB| = |AO| + |OB| = h cot δ + ρ

is rigidly connected to the straight line S (Fig. 5.5.11). The instantaneous position of
the rolling straight line S is IA∗; B∗ is a point of the extended involute that is traced
out by point B considered above.

Problem 5.5.2
Consider the cross section of an involute screw surface (Eq. 5.5.32) formed by cutting
the surface with plane z = 0. Prove that the cross section represents an involute curve
corresponding to the base circle of radius ρ, and express the polar radius r (θ ) in terms
of θ and ρ.

Solution

r (θ) = ρ(1 + θ2)1/2 (ρ tan λρ = h).
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Figure 5.5.11: Generation of extended involute.

Problem 5.5.3
Consider the cross section of an Archimedes screw surface (Eq. 5.5.37) cut by the plane
z = 0. Prove that the cross section represents Archimedes spiral, and express the polar
radius r (θ ) in terms of θ , h, and δ.

Solution

r (θ ) = θh cot δ.
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6 Conjugated Surfaces and Curves

6.1 ENVELOPE TO A FAMILY OF SURFACES: NECESSARY CONDITIONS
OF EXISTENCE

Introduction
Consider coordinate systems S1, S2, and S f that are rigidly connected to gears 1, 2, and
frame f (gear housing), respectively. Gear 1 is provided with a regular surface �1 that
is represented in S1 as follows:

r1(u, θ ),
∂r1

∂u
× ∂r1

∂θ
�= 0, (u, θ ) ∈ E . (6.1.1)

The gears must transform prescribed motions (say, rotations about crossed axes)
and stay in line contact at every instant. The location and orientation of gear axes
and function φ2(φ1) are given. Here, φ2 and φ1 are the angles of rotation of the
driven and driving gears. The required type of contact of gear tooth surfaces (at a
line at every instant) can be provided if the tooth surface of gear 2 is determined
as the envelope to the family of surfaces, �φ , that is generated in S2 by surface
�1.

The theory of enveloping is represented in differential geometry by Favard [1957]
and Zalgaller [1975], and in the theory of gearing by Litvin [1968, 1989, 1994] and
Sheveleva [1999].

Henceforth, we consider the necessary and sufficient conditions of existence of �2.
The necessary conditions of existence of �2 provide that �2 (if it exists) is in tan-
gency with �1. The sufficient conditions of existence of �2 provide that �2 is indeed
in tangency with �1 and that �2 is a regular surface. We have to emphasize that an
instantaneous line contact is also typical for the case where �1 is the tool surface and
generates �2.

In this section, only the necessary conditions of existence of �2 are discussed. The
sufficient conditions are discussed in Section 6.4. Two approaches to the solution of
the discussed problem are presented: (i) the classical approach that has been developed
in differential geometry, and (ii) the simpler approach that has been developed in the
theory of gearing.

97
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Parametric Representation of Family of Surfaces Σφ

The determination of �φ is based on the following matrix equation:

r2 = M21r1 = M2 f M f 1r1. (6.1.2)

Here, elements of matrices M2 f and M f 1 are functions of related parameters φ2 and
φ1, and coordinates of r1 are functions of u and θ . Matrix equation (6.1.2) yields that
�2 is represented by the vector equation

r2 = r2(u, θ, φ) (6.1.3)

where φ1 ≡ φ is the generalized parameter of motion and φ2 = φ2(φ1) = φ2(φ). Equation
(6.1.3) with a given value of φ represents a surface of the family �φ .

Partial derivatives ∂r2/∂u and ∂r2/∂θ represent in coordinate system S2 the tangents
to coordinate lines on surface �1 that belongs to the family of surfaces �φ . The location
and orientation of �1 in S2 depend on the chosen parameter φ.

The normal N(1)
2 to surface �1 is represented in S2 as follows:

N(1)
2 = ∂r2

∂u
× ∂r2

∂θ
. (6.1.4)

The subscript “2” in N(1)
2 indicates that the normal is represented in S2 and the super-

script “1” designates that the normal to �1 is considered. The direction of the normal
can be changed to the opposite one by inverting the order of cofactors in the cross
product.

Approach Used in Differential Geometry
The approach developed in differential geometry provides the necessary conditions of
existence of �2 by the following equation

f (u, θ, φ) =
(

∂r2

∂u
× ∂r2

∂θ

)
· ∂r2

∂φ
= 0. (6.1.5)

Equation (6.1.5) relates the curvilinear coordinates (u, θ ) of �1 with the generalized
parameter of motion, φ. This is the reason why this equation may be called the equation
of meshing. Equation (6.1.5) is the necessary condition of existence of the envelope to the
family of surfaces (6.1.3). If this equation is satisfied and the envelope indeed exists, the
envelope can be represented in S2 by Eqs. (6.1.3) and (6.1.5) considered simultaneously.
These equations represent the envelope by three related surface parameters (u, θ, φ).

Engineering Approach
It is easy to verify that vector ∂r2/∂φ has the same direction as vector v(12)

2 which
represents the velocity of point M1 on surface �1 with respect to point M2 on surface
�2. (Points M1 and M2 coincide with each other and form the point of tangency of
surfaces �1 and �2.)

It is obvious that equations(
∂r2

∂u
× ∂r2

∂θ

)
· v(12)

2 =
(

∂r2

∂u
× ∂r2

∂θ

)
· v(21)

2 = 0 (6.1.6)



P1: JYT

CB672-06 CB672/Litvin CB672/Litvin-v2.cls February 26, 2004 23:52

6.1 Envelope to a Family of Surfaces: Necessary Conditions of Existence 99

can be applied instead of Eq. (6.1.5). Using new designations, we may represent
Eqs. (6.1.6) as follows:

f (u, θ, φ) = N(1)
2 · v(12)

2 = N(1)
2 · v(21)

2 = 0. (6.1.7)

The scalar product in Eqs. (6.1.7) does not depend on the chosen coordinate system
and we may represent the equation of meshing as

N(12)
i · v(12)

i = Ni · v(21)
i = f (u, θ, φ) = 0, (i = 1, 2, f ). (6.1.8)

Vector v(12)
i (similarly, v(21)

i = −v(12)
i ) may be determined kinematically or by matrix

operations (see Chapter 2). The normal to surface �1 is represented in S1 by

N(1)
1 = ∂r1

∂u
× ∂r1

∂θ
. (6.1.9)

To represent the normal in coordinate system S j ( j = f, 2), we use the matrix equa-
tion

N(1)
j = L j 1N(1)

1 . (6.1.10)

To simplify the derivations of the equation of meshing (6.1.8), it is preferable to use
coordinate system S1 or S f over S2.

The discussed approach for the derivation of the equation of meshing is a substantial
simplification in comparison with the derivation based on Eq. (6.1.5).

NOTE: The equation of meshing (6.1.8) becomes an identity in the case when a helicoid
performs a screw motion about the axis of the helicoid. In such a screw motion, the
helicoid does not generate a family of surfaces but rather a single surface that is identical
to the generating helicoid.

Particular Cases
For the case where gears 1 and 2 perform rotation about parallel or intersected axes,
the sliding velocity v(12) (or v(21)) may be represented as the velocity in rotation about
the instantaneous axis of rotation. Equation (6.1.8) yields that the common normal to
surfaces �1 and �2 at their point of tangency passes through the instantaneous axis of
rotation. Then, the equation of meshing may be derived as follows:

X1 − x1(u, θ )
Nx1(u, θ )

= Y1 − y1(u, θ )
Ny1(u, θ )

= Z1 − z1(u, θ )
Nz1(u, θ )

. (6.1.11)

Here, X1, Y1, and Z1 are the Cartesian coordinates of a point that lies on the instanta-
neous axis of rotation. The instantaneous axis of rotation lies in the plane that is drawn
through the axes of gear rotation, designated by z1 and z2, respectively. Knowing the
orientation of the instantaneous axis of rotation, we may relate X1, Y1, and Z1 and then
derive the equation of meshing.
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Representation of Σ1 by an Implicit Function
Consider that the generating surface �1 is represented by implicit function

F (x1, y1, z1) = 0, F ∈ C1,(
∂F
∂x1

)2

+
(

∂F
∂y1

)2

+
(

∂F
∂z1

)2

�= 0.
(6.1.12)

To derive the family of surfaces �φ , which is generated in S2, it is necessary to substitute
x1, y1, and z1 in Eq. (6.1.12) by

x1 = x1(x2, y2, z2, φ),

y1 = y1(x2, y2, z2, φ),

z1 = z1(x2, y2, z2, φ)

(6.1.13)

where φ is the generalized parameter of motion. Equations (6.1.13) may be derived by
using the matrix equation

r1 = M12r2. (6.1.14)

Using Eqs. (6.1.12) and (6.1.13), we may represent the equation of family of surfaces
�φ as follows:

G(x2, y2, z2, φ) = F (x1(x2, y2, z2, φ), y1(x2, y2, z2, φ), z1(x2, y2, z2, φ)) = 0

G ∈ C1,

(
∂G
∂x2

)2

+
(

∂G
∂y2

)2

+
(

∂G
∂z2

)2

�= 0.

(6.1.15)

The necessary conditions of existence of the envelope to the family of surfaces are
[Zalgaller, 1975; Litvin, 1968, 1989]

∂G
∂φ

= 0. (6.1.16)

Planar Gearing
The discussed approach for derivation of the equation of meshing also works for pla-
nar gears. In the case of parametric representation, the tooth profile �1 for gear 1 is
represented by

r1(θ ),
∂r1

∂θ
�= 0. (6.1.17)

The normal N(1)
1 to �1 is

N(1)
1 = ∂r1

∂θ
× k1 (6.1.18)

where k1 is the unit vector of gear axis z1.
We consider that the tooth profile is represented in plane z1 = 0, and the equation of

meshing may be derived as follows:

f (θ, φ) =
(

∂r1

∂θ
× k1

)
· v(12)

1 =
(

∂r1

∂θ
× k1

)
· v(21)

1 = 0. (6.1.19)
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Figure 6.1.1: Visualization of Lewis theorem.

The alternative method of derivation of the equation of meshing is based on the
equation

X1 − x1

Nx1
= Y1 − y1

Ny1
(6.1.20)

where (X1, Y1) are the Cartesian coordinates of the instantaneous center of rotation in
S1. The kinematic interpretation of Eq. (6.1.20) is based on the Lewis theorem which
states:
Conjugate tooth shapes must be such that their common normal at point of tangency
intersects the line O1O2 of rotation centers (Fig. 6.1.1) and divides O1O2 into two
segments O1I and O2I that are related as follows:

O2I

O1I
= ω(1)

ω(2)
= m12, (O1I + O2I = E). (6.1.21)

Here, m12 = m12(φ) is (i) the prescribed function of gear ratio for the case of noncircular
gears, and (ii) constant for circular gears.

Figure 6.1.2 shows shapes of gear teeth that transform rotation with inconstant gear
ratio m12. Point I of intersection of normal N with center distance O1O2 moves along
O1O2 in the process of motion.

Equation (6.1.19) or (6.1.20) provides the equation of meshing as

f (θ, φ) = 0. (6.1.22)

Shape �2 of the tooth profile of the driven gear is represented in S2 by equations

r2 = M21r1, f (θ, φ) = 0. (6.1.23)
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Figure 6.1.2: Transformation of rotation with in-
constant gear ratio.

Considering the case where the planar curve �1 is located in plane z1 = 0 and is rep-
resented by an implicit function, we can determine �2 using Eqs. (6.1.12) and (6.1.16)
and assuming that z1 = z2 = 0.

6.2 BASIC KINEMATIC RELATIONS

Basic kinematic relations proposed by Litvin [1968, 1969, 1989] relate the velocities
(displacements) of the contact point and contact normal for a pair of gears that are in
mesh.

We consider again coordinate systems S1, S2, and S f that are rigidly connected to
gear 1, gear 2, and frame f . Henceforth, we consider that the velocity of a contact point
may be represented in two components: (i) in transfer motion, with the gear, designating
this component by v(i )

tr ; and (ii) in relative motion, over the tooth surface �1, designating
it by v(i )

r (i = 1, 2). Due to the continuity of contact of gear tooth surfaces, the resulting
velocity of the contact point must be the same for both gears. Thus

v(abs ) = v(1)
tr + v(1)

r = v(2)
tr + v(2)

r . (6.2.1)

Equations (6.2.1) yield

v(2)
r = v(1)

r + v(1)
tr − v(2)

tr = v(1)
r + v(12) (6.2.2)

where v(12) is the sliding velocity (see Section 2.1).
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Using similar considerations, we obtain the following relation between the velocities
of the tip of the contact normal

ṅ(2)
r = ṅ(1)

r + (ω(12) × n
)
. (6.2.3)

Here, ṅ(i )
r is the velocity of the tip of the contact normal in relative motion (over the tooth

surface), in addition to the translational velocity of the normal; ω(12) = ω(1) − ω(2); n is
the surface unit normal.

The advantage of Eqs. (6.2.2) and (6.2.3) is that they allow us to determine v(2)
r and

ṅ(2)
r even though the equations of surfaces �2 are not yet known or are too complicated

for direct application. It is shown below that using Eqs. (6.2.2) and (6.2.3) we are able
to (i) develop a simple solution to the problem of gear undercutting and (ii) relate the
curvatures of surfaces of mating gears.

6.3 CONDITIONS OF NONUNDERCUTTING

The general conditions of nonundercutting have been determined in the literature
[Litvin, 1968, 1975, 1989]. Two cases are considered: (i) the generating surface �1

is represented in two-parameter form directly, and (ii) surface �1 is the envelope to a
family of surfaces and therefore it is represented by three related parameters.

Case 1: Consider that �1 is the tool surface represented in two-parameter form.
Surface �1 generates the gear tooth surface �2. Appearance of singular points on �2

is the warning that the surface may be undercut in the process of generation. The
mathematical definition of singularity of �2, which occurs in the process of generation,
may be represented by equation v(2)

r = 0 which yields [see Eq. (6.2.2)]

v(1)
r + v(12) = 0. (6.3.1)

Equation (6.3.1) and differentiated equation of meshing

d
dt

[ f (u, θ, φ)] = 0 (6.3.2)

allow us to determine a line (L) on surface �1 that generates singular points on �2.
Limiting �1 with line L, we may avoid the appearance of singular points on �2. The
derivation of this line is based on the following considerations:

(i) Equation (6.3.1) yields

∂r1

∂u
du
dt

+ ∂r1

∂θ

dθ

dt
= −v(12)

1 . (6.3.3)

Here, ∂r1/∂u, ∂r1/∂θ , and v(12)
1 are three- or two-dimensional vectors for spatial

and planar gearing, respectively. These vectors are represented in coordinate system
S1.

(ii) Equation (6.3.2) yields

∂ f
∂u

du
dt

+ ∂ f
∂θ

dθ

dt
= −∂ f

∂φ

dφ

dt
. (6.3.4)
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(iii) Equations (6.3.3) and (6.3.4) represent a system of four linear equations in two
unknowns: du/dt and dθ/dt ; dφ/dt is considered as given. This system has a
certain solution for the unknowns if the matrix

A =


∂r1

∂u
∂r1

∂θ
−v(12)

1

∂ f
∂u

∂ f
∂θ

−∂ f
∂φ

dφ

dt

 (6.3.5)

has the rank r = 2. This yields

�1 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂u
∂x1

∂θ
−v (12)

x1

∂y1

∂u
∂y1

∂θ
−v (12)

y1

fu fθ − fφ

dφ

dt

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (6.3.6)

�2 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂u
∂x1

∂θ
−v (12)

x1

∂z1

∂u
∂z1

∂θ
−v (12)

z1

fu fθ − fφ

dφ

dt

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (6.3.7)

�3 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂y1

∂u
∂y1

∂θ
−v (12)

y1

∂z1

∂u
∂z1

∂θ
−v (12)

z1

fu fθ − fφ

dφ

dt

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (6.3.8)

�4 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂u
∂x1

∂θ
−v (12)

x1

∂y1

∂u
∂y1

∂θ
−v (12)

y1

∂z1

∂u
∂z1

∂θ
−v (12)

z1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (6.3.9)

Equation (6.3.9) yields that(
∂r1

∂u
× ∂r1

∂θ

)
· v(12)

1 = N(1)
1 · v(1)

1 = f (u, θ, φ) = 0. (6.3.10)

Equation (6.3.10) is just the equation of meshing [see Eq. (6.1.8)] and it is satisfied
because points of tangency of surfaces �1 and �2 are considered. Thus, only Eqs. (6.3.6)
to (6.3.8) should be applied for determination of conditions of singularity for surface
�2.
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Figure 6.3.1: Profiles of rack-cutter tooth.

The requirement of simultaneous satisfaction of the system of Eqs. (6.3.6) to (6.3.8)
may be represented as

m = fu

[
∂r1

∂θ
× v(12)

]
− fθ

[
∂r1

∂u
× v(12)

]
+ fφ

dφ

dt

[
∂r1

∂u
× ∂r1

∂θ

]
= 0. (6.3.11)

The satisfaction of vector Eq. (6.3.11) is guaranteed if (i) at least one equation from
(6.3.6) to (6.3.8) is observed, and (ii) vector m is not perpendicular to any of the S1

coordinate axes.
A sufficient condition for singularity of �2 can be represented by

�2
1 + �2

2 + �2
3 = F (u, θ, φ) = 0. (6.3.12)

There is a simple way to avoid singularity and undercutting of a generated surface (�2).
The equations

r1 = r1(u, θ ), f (u, θ, φ) = 0, F (u, θ, φ) = 0 (6.3.13)

determine a line (L) which has to limit the generating surface �1. In many cases this
can be achieved by choosing appropriate settings for surface �1 that generates �2.

Figures 6.3.1 and 6.3.2 illustrate the phenomenon of undercutting with the example
of generation of a spur involute gear by a rack-cutter. The shape of the rack-cutter
(Fig. 6.3.1) consists of a straight line 1 that generates the involute curve of the gear, a
straight line 2 that generates the dedendum circle of the gear, and the rack fillet that
generates the gear fillet.

Figure 6.3.2(a) shows the family of shapes of the rack-cutter and the tooth profiles
of the generated gear. The involute part of the gear tooth profile is free from a singular
point; the gear fillet and the involute curve are in tangency; and the gear tooth is not
undercut. Figure 6.3.2(b) shows that the fillet of the rack-cutter has undercut the gear
involute shape: the gear fillet and involute shape are no longer in tangency but intersect
each other. The undercutting was caused by settings of the rack-cutter that did not
exclude the appearance of a singular point on the gear involute profile. Examples of
how Eq. (6.3.13) can be applied to avoid undercutting are presented in Section 6.13.

Case 2: We consider that the generating surface �1 is represented as the envelope to
the family of surfaces as

r1(u, θ, ψ), f (u, θ, ψ) = 0 (6.3.14)
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Figure 6.3.2: Generation of involute curve by rack-cutter.

where ψ is the generalized parameter of motion in the process of generation of �1 and
f (u, θ, ψ) = 0 is the equation of meshing of �1 with the surface that generates �1.

Surface �1 generates surface �2 and our goal is determination of singularities of �2.
The computational procedure is based on the following considerations.

Step 1: We consider that (see Section 6.4)

| fu| + | fθ | �= 0, (6.3.15)

and this inequality is observed, let us say, because fθ = 0. Then, as follows from the theo-
rem of implicit function system existence [Korn & Korn, 1968], equation f (u, θ, ψ) = 0
may be solved by function

θ = θ (u, ψ), (6.3.16)

and surface �1 may be represented as

r1(u, θ (u, ψ), ψ) = R1(u, ψ). (6.3.17)

Step 2: Surface �2 is the envelope to the family of surfaces R1(u, ψ). Surface �2 is
represented as

r2(u, ψ, µ) = M21(µ) R1(u, ψ) (6.3.18)(
∂r2

∂u
× ∂r2

∂ψ

)
· ∂r2

∂µ
= q(u, ψ, µ) = 0. (6.3.19)

Partial derivative ∂r2/∂µ is equivalent to the sliding velocity v(12).
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Step 3: Considerations similar to those applied in Case 1 yield the following con-
clusion.

Singularities of �2 occur at points where matrix

B =


∂R1

∂u
∂R1

∂ψ
−v(12)

1

∂q
∂u

∂q
∂ψ

− ∂q
∂µ

dµ

dt

 (6.3.20)

has the rank r = 2. Here,

∂R1

∂u
= ∂r1

∂u
+ ∂r1

∂θ

∂θ

∂u
= ∂r1

∂u
− ∂r1

∂θ

fu

fθ

(6.3.21)

∂R1

∂ψ
= ∂r1

∂ψ
+ ∂r1

∂θ

∂θ

∂ψ
= ∂r1

∂ψ
− ∂r1

∂θ

fψ

fθ

(6.3.22)

where fu, fθ , and fψ are the derivatives of f (u, θ, ψ) = 0 [see Eq. (6.3.14)]. Relations

∂θ

∂u
= − fu

fθ

,
∂θ

∂ψ
= − fψ

fθ

(6.3.23)

are determined by derivations similar to those applied in Section 6.4.
Step 4: The requirement that matrix B have rank r = 2 enables us to determine a

function

p(u, θ, µ) = 0. (6.3.24)

Equations (6.3.24), (6.3.18), and (6.3.19) enable us to determine on surface �1 a line
L of regular points that generate singular points on surface �2. Limitations of surface
�1 by line L enables undercutting of �2 to be avoided. Singular points on generated
surface �2 may be determined by transformation of coordinates of line L from S1 to S2.

6.4 SUFFICIENT CONDITIONS FOR EXISTENCE OF AN ENVELOPE
TO A FAMILY OF SURFACES

Classical Approach
The sufficient conditions of existence of an envelope of a family of surfaces (represented
parametrically) guarantee that the envelope indeed exists, that it is in tangency with the
surfaces of the family, and that the envelope is a regular surface. These conditions are set
forth in the following theorem proposed by Zalgaller [1975]; see also the publication
of this theorem in English [Litvin, 1989].

THEOREM. Given a regular generating surface �1 that is represented in S1 by

r1(u, θ ) ∈ C2,
∂r1

∂u
× ∂r1

∂θ
�= 0, (u, θ ) ∈ E . (6.4.1)

Let the family �φ of surfaces �1 that is generated in S2 be represented by r2(u, θ, φ).
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Suppose that at a point M(uo, θo, φo) the following conditions hold:

(ru × rθ ) · rφ = f (u, θ, φ) = 0, f ∈ C1 (6.4.2)

f 2
u + f 2

θ �= 0 (6.4.3)

and

N = fu(rθ × rφ) − fθ (ru × rφ) + fφ(ru × rθ ) �= 0 (6.4.4)

where

ru = ∂r2

∂u
, rθ = ∂r2

∂θ
, rφ = ∂r2

∂φ

fu = ∂ f
∂u

, fθ = ∂ f
∂θ

, fφ = ∂ f
∂φ

.

Then, the envelope to the family of surfaces exists in the neighborhood of point M and
may be represented by

r2(u, θ, φ), f (u, θ, φ) = 0. (6.4.5)

NOTE: Vector N is the normal to the envelope and the inequality (6.4.4) provides that
the envelope is a regular surface. The theorem provides the sufficient conditions of the
local existence of the envelope, in the neighborhood of a point. The whole envelope
may be determined as the set of pieces of the envelope that have been found locally.

The derivation of N is based on the following considerations.

Step 1: Assume that inequality (6.4.3) is observed because fθ �= 0. Then, as follows
from the theorem of implicit function system existence [Korn & Korn, 1968], equation
of meshing f (u, θ, φ) = 0 may be solved in the neighborhood of M by function

θ = θ (u, φ) ∈ C ′. (6.4.6)

Step 2: Vector function r2(u, θ, φ) and equation f (u, θ, φ) = 0, if considered simulta-
neously, represent the envelope by three related parameters (u, θ, φ). Using Eq. (6.4.6),
we may represent the envelope as

r(u, θ (u, φ), φ) = R(u, φ). (6.4.7)

Step 3: The normal to the envelope may be represented as

N = Ru × Rφ = (ru × rφ

)+ (rθ × rφ

) ∂θ

∂u
+ (ru × rθ )

∂θ

∂φ
. (6.4.8)

Step 4: Differentiating equation of meshing f (u, θ, φ) = 0 and Eq. (6.4.6), we obtain

fudu + fθdθ + fφdφ = 0 (6.4.9)

∂θ

∂u
du − dθ + ∂θ

∂φ
dφ = 0, (6.4.10)
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which yield

fu

∂θ

∂u

= − fθ

1
= fφ

∂θ

∂φ

. (6.4.11)

Equations (6.4.8) and (6.4.11), while taking into account that fθ �= 0, yield the
inequality of Eq. (6.4.4).

Engineering Approach (proposed by Litvin [1968, 1989])
The generating surface �1 is represented by two independent parameters. Sufficient
conditions for the existence of an envelope to the family of surfaces �1 are formulated
as follows.

THEOREM. A regular generating surface �1 is represented by

r1(u, θ ) ∈ C2,
∂r1

∂u
× ∂r1

∂θ
�= 0, (u, θ ) ∈ E . (6.4.12)

The family of surfaces �1 that is generated in coordinate system S2 is represented as

r2(u, θ, φ) = M21(φ)r1(u, θ ) (6.4.13)

where matrix M21 describes the coordinate transformation from S1 to S2 and φ is the
generalized parameter of motion.

Assume that at a point M(u0, θ0, φ0), the following conditions are observed:

N1 · v(12)
1 =

(
∂r1

∂u
× ∂r1

∂θ

)
· v(12)

1 = f (u, θ, φ) = 0 (6.4.14)

f 2
u + f 2

θ �= 0 (6.4.15)

where fu = ∂ f/∂u, ∂ f/∂θ , and v(12)
1 is the relative velocity determined by differentiation

of matrix M21 and respective transformations (see Section 2.2).
The rank of 4 × 3 matrix

A =

 ∂r1

∂u
∂r1

∂θ
v(12)

1

fu fθ fφ

 (6.4.16)

is r = 3. This means that determinants �i (i = 1, 2, 3) of the third order of matrix A dif-
fer from zero (�2

1 + �2
2 + �2

3 �= 0) and envelope �2 is a regular surface (see Eqs. (6.3.6)
to (6.3.8) of �1, �2, and �3 in Section 6.3.)

When the conditions of the theorem are observed, the envelope �2 indeed exists in the
neighborhood of M; it is a regular surface and may be represented in S2 by expressions
(6.4.5).

NOTE: Avoidance of singularities and observation of inequality (6.4.16) are based on
the following procedure.
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Figure 6.4.1: Determination of sub-area free of
singularities of envelope �2.

Step 1: Singularities of envelope �2 occur if (see Section 6.3)

�2
1 + �2

2 + �2
3 = F (u, θ, φ) = 0. (6.4.17)

Step 2: We consider now in the space of surface parameters (u, θ ) lines of tangency
L12(φ) of �1 and �2 obtained by taking in equation of meshing φ = const. (Fig. 6.4.1).

Step 3: Equation F (u, θ, φ) = 0 enables us to obtain a line Q (u, θ, φ) (Fig. 6.4.1).
Step 4: There is a sub-area B ∈ (u, θ ) where line Q (u, θ, φ) does not intersect lines

L12(u, θ, φ) of tangency of �1 and �2, and �2 has regular points. This is illustrated by
Fig. 6.4.1, which is based on generation of face-gears by a shaper (see Section 18.6).
Singularities of face-gears are avoided in the area θ > θ∗, u < u∗.

Sufficient Condition of Existence of Envelope Represented
in Implicit Form
The family of generating surfaces is represented in S2 as follows:

G(x, y, z, φ) = 0, G ∈ C2, (Gx)2 + (Gy)2 + (Gz)2 �= 0

(x, y, z) ∈ A, a < φ < b. (6.4.18)

The theorem of sufficient condition of envelope existence states [Zalgaller, 1975]:
Consider that at point M(u0, θ0, φ0), the following requirements are observed:

G(x0, y0, z0, φ0) = 0, Gφ = 0, Gφφ �= 0

� =
∣∣∣∣D(G, Gφ)

D(x, y)

∣∣∣∣+ ∣∣∣∣D(G, Gφ)
D(x, z)

∣∣∣∣+ ∣∣∣∣D(G, Gφ)
D(y, z)

∣∣∣∣ �= 0. (6.4.19)

Then, the envelope exists locally, in the neighborhood of point M; the envelope is a
regular surface that can be represented by the equation

G(x, y, z, φ) = 0, Gφ(x, y, z, φ) = 0. (6.4.20)

6.5 CONTACT LINES; SURFACE OF ACTION

The mating surfaces �1 and �2 contact each other at every instant along a line called
contact line or characteristic. The location of the instantaneous contact line on the gear
tooth surface depends on the parameter of motion φ.
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Figure 6.5.1: Contact lines on tooth sur-
face.

Contact lines on surface �1 may be represented by the expressions

r1(u, θ ) = x1(u, θ )i1 + y1(u, θ )j1 + z1(u, θ )k1, f
(
u, θ, φ(i )) = 0 (6.5.1)

where φ(i ) is the parameter of motion (i = 1, 2, . . . ). To determine a current point M of
the instantaneous line of contact (Fig. 6.5.1), the following procedure must be applied.

Step 1: Fix the parameter of motion φ; for instance, take φ = φ(1).
Step 2: Choose one of the surface parameters, for instance θ , and determine u from

the equation

f
(
u, θ, φ(1)) = 0.

Step 3: Determine in S1 coordinates (x1, y1, z1) of point M using the vector-function

r1(u, θ ) = x1(u, θ )i1 + y1(u, θ )j1 + z1(u, θ )k1.

Step 4: To determine another point M� on the same contact line, keep the same
magnitude φ = φ(1) but change the surface parameter θ , determine u, and apply the
procedure described previously.

A similar procedure can be applied for determination of other instantaneous contact
lines on surface �2.

Instantaneous contact lines on surface �2 are represented by the equations

r2 = r2
(
u, θ, φ(i )), f

(
u, θ, φ(i )) = 0 (6.5.2)

where

r2 = M21r1.
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Here, φ(i ) is the chosen value of parameter of motion φ; M21 is the 4 × 4 matrix that
represents the coordinate transformation from S1 to S2. The method for computation
of points of the contact lines is similar to that discussed above.

The surface of action is the family of contact lines that are represented in the fixed
coordinate system S f that is rigidly connected to the frame. The surface of action is
represented by the equations

r f = r f (u, θ, φ), f (u, θ, φ) = 0 (6.5.3)

where

r f = M f 1r1.

Here, 4 × 4 matrix M f 1 describes the coordinate transformation in transition from S1

to S f .

6.6 ENVELOPE TO FAMILY OF CONTACT LINES ON GENERATING
SURFACE �1

Usually contact lines on generating surface �ρ cover the entire working part of the sur-
face. However, there are cases (they are not so rare) when contact lines on the generating
surface have an envelope and therefore cover only a part of the generating surface. Fig-
ure 6.6.1 shows a family of contact lines, Lφ , on the generating surface �ρ . Line Eρ is
the envelope to contact lines that divides �ρ into two parts: (1) part A, which contains
the contact lines and their envelope Eρ , and (2) part B, which is free of contact lines.
Line G is the edge of surface �ρ that generates the fillet of the generated gear tooth
surface �r . The conditions of lubrication and heat transfer become unfavorable near
the envelope Eρ . This is why the envelope should be excluded from meshing. This can
be achieved by choosing appropriate gear design parameters.

The existence of envelope Eρ is accompanied by formation of generated surface
�r by two branches (see Section 6.7), where �r is the envelope to the family of
generating surfaces �ρ . The necessary and sufficient conditions of existence of Eρ

on generating surface �ρ are formulated by the following theorem (proposed by
Litvin et al. [2001b]).

Figure 6.6.1: Envelope to contact lines.
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THEOREM. The generating surface �ρ is represented as

ρ(u, θ ) ∈ C3, ρu × ρθ = 0, (u, θ ) ∈ G, a < φ < b. (6.6.1)

The following conditions are observed at a point (u0, θ0, φ0)(designated as M):

f (u, θ, φ) = (ρu × ρθ ) · v (ρr ) = 0 (6.6.2)

fφ(u, θ, φ) = 0 (6.6.3)

fφφ �= 0 (6.6.4)∣∣∣∣ fu fθ

fφu fφθ

∣∣∣∣ �= 0. (6.6.5)

If the conditions above are observed, the envelope Eρ exists, it is a regular curve, and
it is determined by

ρ(u, θ ), f (u, θ, φ) = 0, fφ(u, θ, φ) = 0. (6.6.6)

The proof of the theorem is based on the following considerations.
Step 1: Assuming that inequality (6.6.5) is observed and | fu| + | fθ | �= 0, we may

determine on surface �ρ a curve represented as

R(φ) = ρ[u(φ), θ (φ)]. (6.6.7)

The tangent to the curve is represented as

Rφ = fφφ∣∣∣∣ fu fθ

fφu fφθ

∣∣∣∣ (ρu fθ − ρθ fu). (6.6.8)

Here,

ρu fθ − ρθ fu = Tρ (6.6.9)

where Tρ is the tangent to the contact line on generating surface �ρ .
Step 2: The observation of inequalities (6.6.4) and (6.6.5) provides that Rφ �= 0 and

is collinear to the tangent to the contact line. Thus, R(φ) is a regular curve and is an
envelope to the contact lines on �ρ .

We illustrate the existence of an envelope to contact lines in the case of a conven-
tional worm-gear drive with an involute worm. The performed investigation shows that
envelope Eρ does exist. Figure 6.6.2 shows Eρ on the surface of an involute worm.

The envelope to the family of contact lines can be easily represented in the plane of
surface parameters, u and θ , as well. The sufficient conditions of envelope existence in
such a plane are represented by the equation

f (u, θ, φ) = 0, fφ = q(u, θ, φ) = 0

D( f, q)
D(u, θ )

�= 0, fφφ �= 0. (6.6.10)

Figure 6.6.3 shows in the plane of parameters (u, θ ) the contact lines and their envelope
for an involute worm. The drawings are based on the investigation performed in Litvin
& Kin [1992].
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Figure 6.6.2: Envelope to contact lines on worm
surface.

6.7 FORMATION OF BRANCHES OF ENVELOPE TO PARAMETRIC FAMILIES
OF SURFACES AND CURVES

Formation of a generated surface (curve) by branches means that computerized simula-
tion of meshing has to be performed for both branches separately. Detailed solutions to
this problem are presented in Litvin et al. [2001b]. We limit the discussion to conceptual
considerations.

Figure 6.6.3: Contact lines in the space
of surface parameters.
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Figure 6.7.1: Envelope Eρ to contact lines
in the space of parameters (θ, u): (a) contact
lines and envelope Eρ ; (b) illustration of two
branches, A and B, of each contact line.

Branches of Worm-Gear Tooth Surface
A conventional worm-gear drive with an involute worm is considered. It is proven
in Section 6.6 that the contact lines on the worm surface have an envelope Eρ . Fig-
ure 6.7.1(a) shows the envelope Eρ in the plane of worm surface parameters (θ, u)
that is a straight line. Point D is the point of tangency of a current line of contact
with the envelope Eρ [Fig. 6.7.1(b)]. The derivative fφ of the equation of meshing
f (u, θ, φ) = 0 becomes equal to zero at D. Parameter φ is the generalized parameter
of motion in the equation f = 0. We may consider that each current contact line has
two branches that are recognized by the sign of derivative fφ [Fig. 6.7.1(b)]. The worm-
gear tooth surface �2 (it is the envelope to the family of worm tooth surfaces �1) is
formed by two branches designated by �

(1)
2 and �

(2)
2 (Fig. 6.7.2). The common line of

the branches is E∗
ρ , which is represented on the worm-gear tooth surface �2 as the image

of Eρ .

Branches of Tooth Profiles in a Cycloidal Pump
The schematic of the cycloidal gearing pump is shown in Fig. 6.7.3. Figure 6.7.4 shows
the centrodes of rotors 1 and 2 as circles of radii r1 and r2 in internal tangency. The
generating profile is a circle of radius ρ. Figure 6.7.5 shows that the generating profile
of rotor 1 (it is the circle of radius ρ) forms on rotor 2 the generated profile by two
branches designated σ

(1)
2 and σ

(2)
2 . The common point of the two branches is designated

as M. We may represent the equation of meshing of rotors 1 and 2 by f (θ, φ) = 0 where
θ is the parameter of the generating profile of rotor 1 (Fig. 6.7.4) and φ is the generalized
parameter of motion.

The performed investigation has led to the following results [Vecchiato et al., 2001;
Demenego et al., 2002]:
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Figure 6.7.2: Branches of envelope �2.

Figure 6.7.3: Schematic of a cycloidal pump.
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Figure 6.7.4: Generating profile �
(1)
1 of gear 1

and applied coordinate systems.

(i) Partial derivative fφ of the equation of meshing is equal to zero at the common
point M of the two branches σ

(1)
2 and σ

(2)
2 (Fig. 6.7.5).

(ii) The point of tangency of profiles of rotors 1 and 2 performs a reciprocative motion
over the generating profile �

(1)
1 (Fig. 6.7.6). The velocity of motion of the point

of tangency in its motion over �
(1)
1 becomes equal to zero at the beginning of

reciprocation.

We have to emphasize that rotor 1 is provided by two profiles designated as �
(1)
1

(it is a circle of radius ρ) and profile �
(2)
1 (Fig. 6.7.6). We may consider profiles �

(1)
1

and �
(2)
1 as two branches of an envelope. This envelope is obtained by considering

an imaginary generating process wherein profile σ
(2)
2 of rotor 2 is a generating profile.

Then, the envelope to the family of profiles σ
(2)
2 will be formed as a combination of

two branches, by profile �
(1)
1 and �

(2)
1 (Fig. 6.7.6). Profile �

(2)
1 has to be applied in real

design as a connection of circular arc profiles �
(1)
1 .

Figure 6.7.5: Illustration of formation of enve-
lope σ2 by branches σ

(1)
2 and σ

(2)
2 .
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Figure 6.7.6: Profiles �
(1)
1 and �

(2)
1 of addendum and

dedendum of gear 1.

6.8 WILDHABER’S CONCEPT OF LIMIT CONTACT NORMAL

The theory developed in this book allows us to build a bridge between the concepts
of undercutting and the envelope to the family of contact lines, “on one side of the
river,” and Wildhaber’s concept of the limit contact normal, “on the other side of the
river.” Wildhaber’s concept of the limit contact normal (limit pressure angle) has been
developed on the basis of specific conditions of force transmission by gear tooth surfaces
[Wildhaber, 1956]. However, Wildhaber’s equation may be and should be interpreted
geometrically, and this can be done on the basis of the concept of the envelope to the
family of contact lines on �1 and the concept of singularity of �2. Here, �1 and �2 are
the generating and the generated surfaces, respectively.

Generally, the limiting line L on �1, which generates the singular point on �2, and the
envelope E of contact lines on �1 do not intersect each other, that is, they do not have
a common point. We have proven that Wildhaber’s approach yields such a specific and
rare case when both lines, L and E , have a common point, M, that is a point of contact
of surfaces �1 and �2 as well. The determination of point M in our interpretation is
based on the following considerations. Because M is a point of contact, the equation of
meshing is satisfied at point M and within the neighborhood of M. Thus

n(i ) · v(12) = n(i ) · {[(ω(1) − ω(2)
)× r(i )

]− (R × ω(2)
)} = 0 (6.8.1)

d
dt

(
n(i ) · v(12)) = 0 (6.8.2)

where i = 1, 2. The derivation of v(12) was discussed in Chapter 2.
While deriving Eq. (6.8.2), we consider two cases: (a) v(1)

r = 0 and ṅ(1)
r = 0 on any

direction that differs from the tangent to the envelope, and (b) v(2)
r = 0 and ṅ(2)

r = 0 for
a singular point of �2. Requirements (a) and (b) considered simultaneously provide that
M is the point of the envelope to the family of contact lines and a singular point on �2

as well. Equation (6.8.2) considered with these requirements yields the equation

n · [(ω(1) × v(2)
tr ) − (ω(2) × v(1)

tr )
] = 0 (6.8.3)
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where v(i )
tr (i = 1, 2) is the velocity of the contact point in transfer motion with the

surface (see Section 6.2).
Equations (6.8.1) and (6.8.3) determine the orientation of the limit contact normal.

This normal is perpendicular to the plane that is formed by vectors a and b where

a = v(12) = v(1)
tr − v(2)

tr (6.8.4)

b = (ω(1) × v(2)
tr
)− (ω(2) × v(1)

tr
)
. (6.8.5)

Wildhaber’s concept of limit contact normal has been successfully applied for the design
of face-milled hypoid gears with tapered teeth. These gears are designed with unequal
pressure angles for the driving and coast tooth sides because equal deviations from
the limit pressure angle are provided. The disadvantage of Wildhaber’s approach is the
impossibility of separately determining the envelope to the family of contact lines on
�1 and the singularities of �2.

6.9 FILLET GENERATION

Planar Gearing
The fillet of the gear is a curve that interconnects the working part of the tooth profile
of the gear with the dedendum circle.

Figure 6.9.1 shows the tooth of a rack-cutter for generation of involute spur gears.
Part 1 of the tool profile generates the involute profile of the gear; part 3 of the tool
profile is a straight line and generates the dedendum circle of the gear; and part 2 of the

Figure 6.9.1: Rack-cutter and its fillet: (a) rack-cutter
tooth and coordinate axes x f and y f ; (b) representation
of fillet circle of radius ρ.
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Figure 6.9.2: Centrodes of rack-cutter and
gear.

tool profile is an arc of radius ρ that generates the fillet of the gear. The gear fillet is the
envelope to the family of circular arcs that is generated in coordinate system S2 rigidly
connected to the gear (Fig. 6.9.2).

To determine the positions of the rack-cutter where the limiting arc points M1 and
M2 (Fig. 6.9.1) generate the respective points of the gear fillet, we have to derive the
equation of meshing of the rack-cutter and the gear. The derivation of this equation
may be based on the theorem that a point of the rack-cutter generates the respective
point of the gear at a position where the normal to the shape of the rack-cutter passes
through the instantaneous center of rotation, I (Fig. 6.9.2). The equation of meshing
may be represented by

f (φ, θ) = 0 (6.9.1)

where θ is the arc parameter [Fig. 6.9.1(b)] and φ is the angle of gear rotation (Fig.
6.9.2). Taking θ = 0 and θ = 90◦ − α in Eq. (6.9.1), we may determine the respective
values of φ and the respective positions of the rack-cutter where points M1 and M2

generate the limiting points of the gear fillet. It is evident from Fig. 6.9.1(a) that points
M1 and M2 generate the gear fillet at the rack-cutter positions where points I1 and I2

[see Fig. 6.9.1(a)] will coincide with the instantaneous center of rotation I that is shown
in Fig. 6.9.2.

Let us now consider the case where the gear fillet is generated by point M – the edge
of the rack-cutter (Fig. 6.9.3). The equation of the gear fillet may be derived as the
trajectory of edge M that is traced out in coordinate system S2. This trajectory may be
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Figure 6.9.3: Generation of gear fillet by edge point
M: (a) initial position of coordinate system S1 and
generating point M; (b) second position of S1 and
generating point M with respect to S f ; (c) third po-
sition of S1 and point M with respect to S f .

represented by the matrix equation

r2 = M21r(M)
1 . (6.9.2)

Here, r(M)
1 is the column matrix that represents in S1 the coordinates of edge M.

Figure 6.9.3 shows three positions of the rack-cutter in coordinate system S f that is
rigidly connected to the frame. At the initial position [Fig. 6.9.3(a)], the origin O1 of the
movable coordinate system S1 coincides with the instantaneous center of rotation, I .
Figure 6.9.3(b) shows the position of the rack-cutter where the gear fillet is in tangency
with the dedendum circle that is generated by the straight-line a . At the position that
is shown in Fig. 6.9.3(c) the gear fillet is in tangency with the involute curve that is
generated by straight-line b.

Spatial Gearing
We have to differentiate between two cases where the gear fillet is generated by (i)
a surface of a tool, or (ii) a line – the edge of the tool. For instance, in the case of
generation of a worm-gear, the gear fillet surface is generated by a helix – the edge of
the hob. Respectively, in the case of generation of spiral bevel gears and hypoid gears,
the tool is a cone (Fig. 6.9.4), and the gear fillet surface is generated by the tool circle of
radius rc . The generation of the gear fillet surface that is generated by a tool surface may
be investigated as the generation of an envelope to a family of surfaces (see Section 6.1).
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Figure 6.9.4: Generating cone.

Let us consider the generation of the gear fillet surface by the edge of the tool. The
surface of the gear fillet may be represented in coordinate system Sg , which is rigidly
connected to the gear, by the following matrix equation:

rg (θ, φ) = Mgt (φ)rt (θ ). (6.9.3)

Here, rt (θ ) represents in coordinate system St the edge of the tool; matrix Mgt (φ) de-
scribes the coordinate transformation in transition from St to Sg (elements of the matrix
depend on the generalized parameter of motion, φ); rg (θ, φ) represents in coordinate
system Sg the gear fillet surface with θ and φ as surface coordinates.

There are two alternative approaches for the determination of the normal to the gear
fillet surface. The first approach is based on the equation

N(g)
g = ∂rg

∂θ
× ∂rg

∂φ
. (6.9.4)

The second approach allows us to represent in coordinate system St the normal to the
gear fillet surface by the equation

N(g)
t = ∂rt

∂θ
× v(tg)

t . (6.9.5)

Here,

v(tg)
t = v(t)

t − v(g)
t



P1: JYT

CB672-06 CB672/Litvin CB672/Litvin-v2.cls February 26, 2004 23:52

6.9 Fillet Generation 123

Figure 6.9.5: Three subsurfaces of gear tooth.

is the sliding vector at a point of tangency of surfaces �t and �g . The subscript t indicates
that the vectors are represented in St . The superscripts t and g designate surfaces �t

and �g , respectively.
To represent the normal to the gear fillet surface in coordinate system Sg , it is necessary

to use the following matrix equation:

N(g)
g = LgtN

(g)
t . (6.9.6)

Here, Lgt is the 3 × 3 matrix that describes the transformation of vectors in transition
from St to Sg .

The generating line of the tool is the line of intersection of two tool surfaces, �
(a)
t

and �
(b)
t . For instance, in the case of generation of hypoid and spiral bevel gears, the

generating line, which is a circle of radius rc , is the line of intersection of the cone surface
�

(a)
t and the plane �

(b)
t that is perpendicular to the cone axis; this plane is limited by

the circle of radius rc (Fig. 6.9.4). The gear tooth surface (Fig. 6.9.5) consists of three
parts: (i) �

(a)
g which is generated by �

(a)
t , (ii) �

(b)
g which is generated by the tool surface

�
(b)
t , and (iii) the fillet surface �

( f )
g . Lines L1 and L2 represent the lines of tangency of

the gear fillet with surfaces �
(a)
g and �

(b)
g , respectively. (It is assumed that undercutting

has been avoided.) At the line of tangency Li (i = 1, 2) of the gear fillet surface with
surfaces �

(a)
g and �

(b)
g the normals to the gear fillet surface and the neighboring surface

are collinear. Thus

ṙt (θ ) × v(tg)
t = λN(i )

t , (i = a, b). (6.9.7)

Figure 6.9.6: Fillet and surface section: hypoid pinion convex side.
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Figure 6.9.7: Fillet and surface section: hypoid pinion
concave side.

Equations (6.9.7) and (6.9.3) determine the lines of tangency L1 and L2 on the gear
surface.

Using the described method, the fillet surface for a hypoid pinion has been determined
[Litvin, 1989]. The mean cross sections for both sides of the pinion tooth are represented
in Figs. 6.9.6 and 6.9.7. Figure 6.9.8 shows the cross sections of the pinion tooth surface
�

(a)
g for both sides of the tooth. The shapes are asymmetrical because the tooth sides

are generated by blades with different blade angles.

6.10 TWO-PARAMETER ENVELOPING

Introduction
The generating surface �1 is represented in S1 as

r1(u, θ ),
∂r1

∂u
× ∂r1

∂θ
�= 0, (u, θ ) ∈ E . (6.10.1)

The motion of �1 with respect to coordinate system S2 is determined with two indepen-
dent parameters φ and ψ . The family of surfaces �1 that is generated in S2 is represented
as

r2(u, θ, φ, ψ) = M21(φ, ψ) r1(u, θ ). (6.10.2)

Figure 6.9.8: Cross section of hypoid pinion.
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Figure 6.10.1: Surface deviations.

Matrix M21 describes the coordinate transformation from S1 to S2. The goal is to
determine surface �2 as the envelope to the two-parameter family of surfaces (6.10.2).

The case of two-parameter enveloping had been considered in differential geometry
and was of theoretical interest only. We may visualize the two-parameter enveloping
considering the simplest case when �1 is a spherical surface whose center performs
independent translational motions ψ and φ along the x2 and y2 axes. The envelope to
the two-parameter family generated by �1 in S2 is the set of two planes z2 = ±ρ where
ρ is the radius of spherical surface �1.

There is a certain advantage in applying the method of two-parameter enveloping
to generation of surfaces with the feed motion of the tool, for instance, in the milling
(grinding) of spur and helical gears by a hob (grinding worm) or the generation of
face-hobbed spiral bevel and hypoid pinions. We have to emphasize that in reality the
generation of surfaces with feed motion is a one-parameter enveloping process because
the two parameters of motion, ψ and φ, are not independent but related. This results
from the fact that the kinematic chains of the machine that execute the motions of ψ

and φ are run from one source. Therefore, there is a function ψ(φ) that relates the input
parameters.

We may imagine two types of generated surface: (i) �∗
2, the envelope to the one-

parameter family of surfaces that is generated when the parameters of motion are de-
pendent and related by function ψ(φ); and (ii) �2, the envelope to the two-parameter
family of surfaces generated when the parameters of motion, ψ and φ, are independent.
Surface �2 is an imaginary surface, the result of an abstraction, and the real surface �∗

2
deviates from �2 as shown in Fig. 6.10.1. The deviation �h depends on the applied
feed motion ψ with respect to φ, where φ is the generalized parameter of the main
generating motion. Thus, �h depends on the slope of function ψ(φ). Usually, ψ(φ) is a
linear function with a very small slope.

Equation of Meshing
Consider as given the generating surface �1 and the normal N1 to �1, which is repre-
sented as

N1 = ∂r1

∂u
× ∂r1

∂θ
. (6.10.3)

We designate with v(12,φ) and v(12,ψ) the sliding velocity v(12,q) where q = φ, ψ is the
varied parameter. While deriving v(12,φ) we will consider that φ is the varied parameter
and ψ is fixed. The designation v(12,ψ) has to be interpreted similarly.
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Two-parameter enveloping has been the subject of research by Litvin et al. [1975]
and Litvin & Seol [1996]. It was proven that the necessary conditions of existence of
the two-parameter envelope �2 are as follows:

N1 · v(12,φ)
1 = 0, N1 · v(12,ψ)

1 = 0. (6.10.4)

The subscript “1” in (6.10.4) indicates that the vectors are represented in S1. Equations
(6.10.4) and vector function r1(u, θ ) represent on �1 the current point of tangency of
�1 with the sought-for envelope �2.

Not losing the generality, we assume that v(12,φ)
1 is determined with dφ/dt = 1, and

v(12,ψ)
1 with dψ/dt = 1. For purposes of simplification, we designate v(12,φ)

1 and v(12,ψ)
1

as v(φ)
1 and v(ψ)

1 , respectively. Equations

N1 · v(φ)
1 = 0, N1 · v(ψ)

1 = 0 (6.10.5)

considered simultaneously with (6.10.1) and (6.10.3) yield two equations of meshing:

f (u, θ, φ, ψ) = 0, g(u, θ, φ, ψ) = 0. (6.10.6)

Equations of Envelope Σ2

Envelope �2 to the family of surfaces (6.10.2) is represented by the equations

r2(u, θ, φ, ψ) = M21(φ, ψ) r1(u, θ )

f (u, θ, φ, ψ) = 0, g(u, θ, φ, ψ) = 0.
(6.10.7)

Line of Action
The line of action is the locus of points of contact between �1 and �2 that are represented
in the fixed coordinate system S f . The line of action is represented by the equations

r f (u, θ, φ, ψ) = M f 1(φ, ψ) r1(u, θ )

f (u, θ, φ, ψ) = 0, g(u, θ, φ, ψ) = 0.
(6.10.8)

Here, matrix M f 1 describes the coordinate transformation from S1 to S f .

Conditions of Nonundercutting
The velocity v(2)

r of a contact point in its motion over �2 is represented by an equation
similar to Eq. (6.2.2):

v(2)
r 1 = v(1)

r 1 + v(φ)
1

dφ

dt
+ v(ψ)

1
dψ

dt
(6.10.9)

where

v(1)
r 1 = ∂r1

∂u
du
dt

+ ∂r1

∂θ

dθ

dt
.

Singularity of �2 occurs if v(2)
r 1 = 0. The equation

∂r1

∂u
du
dt

+ ∂r1

∂θ

dθ

dt
+ v(φ)

1
dφ

dt
+ v(ψ)

1
dψ

dt
= 0 (6.10.10)
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represents such a regular point on �1 that will generate a singular point on �2. Equa-
tions of meshing (6.10.6) are satisfied at the previously mentioned point and within its
neighborhood. Therefore, we may differentiate (6.10.6) and obtain

fu
du
dt

+ fθ

dθ

dt
+ fφ

dφ

dt
+ fψ

dψ

dt
= 0 (6.10.11)

gu
du
dt

+ gθ

dθ

dt
+ gφ

dφ

dt
+ gψ

dψ

dt
= 0. (6.10.12)

Equations (6.10.10) to (6.10.12) represent a system of five dependent homogeneous
equations in four unknowns: du/dt , dθ/dt , dφ/dt , and dψ/dt . The matrix of coef-
ficients for these equations is of the order of 5 × 4. The previously mentioned system
of equations exists and provides nontrivial solutions for the unknowns if all five de-
terminants of order four for the coefficient matrix are equal to zero simultaneously. It
can be proven that two of five determinants are equal to zero simultaneously, and the
additional requirement is

�2
1 + �2

2 + �2
3 = 0. (6.10.13)

Here,

�1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂u
∂x1

∂θ
v (φ)

x1 v (ψ)
x1

∂y1

∂u
∂y1

∂θ
v (φ)

y1 v (ψ)
y1

fu fθ fφ fψ

gu gθ gφ gψ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(6.10.14)

�2 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂u
∂x1

∂θ
v (φ)

x1 v (ψ)
x1

∂z1

∂u
∂z1

∂θ
v (φ)

z1 v (ψ)
z1

fu fθ fφ fψ

gu gθ gφ gψ

∣∣∣∣∣∣∣∣∣∣∣∣
(6.10.15)

�3 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂y1

∂u
∂y1

∂θ
v (φ)

y1 v (ψ)
y1

∂z1

∂u
∂z1

∂θ
v (φ)

z1 v (ψ)
z1

fu fθ fφ fψ

gu gθ gφ gψ

∣∣∣∣∣∣∣∣∣∣∣∣
. (6.10.16)

Equation (6.10.13) provides the relation

F (u, θ, φ, ψ) = 0. (6.10.17)

Equations (6.10.17) and (6.10.6) and vector function r1(u, θ ) considered simultane-
ously determine on �1 line L that generates singular points on surface �2. Undercutting
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Figure 6.11.1: For derivation of axes of
meshing.

of �2 can be avoided by limitations of �1 in order to exclude the limiting line L from
the working part of �1.

6.11 AXES OF MESHING

Basic Concept
The application of axes of meshing is useful for illustration of some cases of tangency of
mating surfaces that are in line contact (see below). The definition of axes of meshing is
based on the following considerations [Litvin, 1968; Litvin, 1969; Argyris et al., 1998].

Step 1: Assume that rotation is provided for crossed axes z1 and z2 that form a cross-
ing angle γ and shortest distance E (Fig. 6.11.1). The instantaneous angular velocities
are ω(1) and ω(2). The generating gear tooth surface �1 is given. Using the approach
represented in Section 6.1, we may determine the equation of meshing f (u, θ, φ) = 0
and instantaneous lines of tangency L12(φ) for any position determined by general pa-
rameter of motion φ. Point M belongs to line of tangency L12(φ(1)).

Step 2: The relative velocity of gear 1 with respect to gear 2 may be determined by
sliding vector ω(12) and vector moment m as follows:

ω(12) = ω(1) − ω(2). (6.11.1)
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Figure 6.11.2: Intersection of axes of meshing by
the normal to the contacting surfaces.

Vector ω(12) passes through origin O f of coordinate system S1.

m
(−m(2)) = O f O2 × ω(1). (6.11.2)

Step 3: It is known from kinematics that there is a manifold of vectors ω(I ) and ω(II )

(Figs. 6.11.1 and 6.11.2) that may provide the same relative motion if ω(I ) and ω(II )

satisfy the following equations:

ω(I ) − ω(II ) = ω(12) (6.11.3)

O f O(I ) × ω(I ) + O f O(II ) × (−ω(II )
) = O f O2 × (−ω(2)

)
. (6.11.4)

Step 4: We now consider a sub-manifold of vectors ω(I ) and ω(II ) that in addition
satisfies the following requirement: common normal N at a point of tangency M0 of
contacting surfaces intersects lines L(I ) and L(II ), the lines of action of angular velocities
ω(I ) and ω(II ). This requirement is represented by the equations

X(i ) − x
Nx

= Y (i ) − y
Ny

= Z(i ) − z
Nz

(i = I, II ). (6.11.5)

Here (see Figs. 6.11.1 and 6.11.2),

O f P (i ) = (X(i ), Y (i ), Z(i )
)

(6.11.6)

O f M = r (x, y, z) (6.11.7)

N = (Nx, Ny, Nz). (6.11.8)

It is proven [Litvin, 1968; Litvin, 1989] that if normal N at contact point M0 intersects
the axes of meshing, then the necessary condition of envelope existence is satisfied and
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Figure 6.11.3: Axes of meshing for orthogonal
drive.

N · (v(I ) − v(II )) = 0. (6.11.9)

However, the equations represented above are observed at a sole point M0 of tangency
of surfaces �1 and �2.

Step 5: Lines of action L(I ) and L(II ) are called axes of meshing if Eqs. (6.11.4) to
(6.11.8) are observed at any point of tangency of �1 and �2, not only at a point M0.
However, axes of meshing exist only in particular cases represented in this section: (i)
worm-gear drives with cylindrical and conical worms when the worm is a helicoid, and
(ii) generation of a helicoid by a peripheral tool.

Worm-Gear Drive with Cylindrical Worm
Figures 6.11.3 and 6.11.4 show in coordinate system S f the location and orientation
of axes of meshing I–I and II–II for the cases when the crossing angle is γ = π/2 and
γ �= π/2, respectively. Axis z f is the axis of the worm rotation, and x f coincides with
the line of the shortest distance E between the worm and gear axes. Coordinates of axes
of meshing for a standard worm-gear drive are given in Table 6.11.1.

Designations K (i ) and X(i ) in Table 6.11.1 indicate the orientation of the axis of
meshing and the location of the point of intersection with the x f axis. Here, K (i ) =
Z(i )/Y (i ), where Z(i ) and Y (i ) (i = I, II ) are coordinates of a current point of the axis
of meshing. Axes of meshing lie in parallel planes that are perpendicular to the shortest
distance between the axes of the worm and the worm-gear. Figure 6.11.5 shows the
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tan

tancot

cot

Figure 6.11.4: Axes of meshing for non-
orthogonal drive.

location and orientation of axes of meshing in the 3D-space when the worm is right-
handed.

We limit this discussion to the conventional worm-gear drive with a cylindrical worm.
However, the axes of meshing exist as well in face-worm gear drives with conical and
cylindrical worms. The concept of axes of meshing should be applied for the cases of
generation of worm-gears and face-worm gears by a hob when the hob is a helicoid. The
new tendency in design of face-gear drives (including worm gear drives and face-worm
gear drives) is to modify the worm surface by double crowning, and the worm surface
deviates from a helicoid surface. Therefore, the concept of axes of meshing cannot be

Table 6.11.1: Coordinates of axes of meshing for a standard worm-gear drive

γ Worm thread K (I ) X(I ) K (II ) X(II )

γ �= π

2
Right-handed cot λp −E cot γ tan λp

E cot γ

r p
−r p

Left-handed − cot λp E cot γ tan λp
E cot γ

r p
−r p

γ = π

2
Right-handed cot λp 0 0 −r p

Left-handed − cot λp 0 0 −r p
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cot

cot

tan

tan

Figure 6.11.5: Axes of meshing in 3D-space:
(a) representation of axes of meshing I–I and
II–II in orthogonal worm-gear drive (γ =
π/2); (b) representation of axes of meshing I–I
and II–II in nonorthogonal worm-gear drive
(γ �= π/2).

applied for meshing of the worm and the worm-gear (face-worm gear) but only for
generation of the worm-gear (face-worm gear) by a hob-helicoid.

Generation of Worm by Peripheral Tool
The installment of the tool is shown in Fig. 6.11.6. Coordinate system Sc is rigidly
connected to the tool. Coordinate system So is rigidly connected to the frame. The
worm in the process of generation performs a screw motion about the zo axis with
the screw parameter p. The rotation of the tool about its zc axis provides the desired
velocity of cutting but is not related to the process of generation. Thus, we may neglect
the tool rotation and consider that systems Sc and So are rigidly connected. The crossing
angle between the zc axis and the zo axis is γc ; usually, γc = λp. The shortest distance
is Ec .

There are two axes of meshing in this case: one, I–I , coincides with the zc axis;
the other one, II–II , lies in the plane that is perpendicular to the shortest distance
(Fig. 6.11.7). The shortest distance between the worm axis and the axis of meshing
II–II is

a = X(II )
o = p cot γc . (6.11.10)
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Figure 6.11.6: Generation of worm by pe-
ripheral tool.

Figure 6.11.7: Axes of meshing in the
case of worm generation.
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Angle δ that is formed by the axis of meshing II–II and the worm axis is represented
by

δ = arctan
(

p
Ec

)
. (6.11.11)

6.12 KNOTS OF MESHING

The surface of action may be represented as a locus of lines of contact of gear tooth
surfaces in the fixed coordinate system rigidly connected to the frame. Generally a section
of the surface of action cut by a plane represents a plane curve. There are special cases
where such a section of the surface of action represents a straight line if the following
conditions are satisfied (proven by Litvin [1968, 1989]).

(1) The gears transform rotation between crossed axes with a constant angular velocity
ratio.

(2) The tooth surface of one of the mating gears is a helicoid.
(3) The surface of action is cut by a plane that is parallel to the shortest distance E

between the axes of gear rotation and is located at a definite distance from E.

When the preceding conditions are observed, there are straight lines on the surface of
action, and the contact lines of gear tooth surfaces intersect these straight lines. These
points of intersection are called the knots of meshing, because we may imagine that the
lines of contact are attached to the straight lines, which are obtained as sections of the
surface of action.

Figures 6.12.1 and 6.12.2 show projections of contact lines of the worm and the
worm-gear surfaces on plane (x f , y f ). These contact lines are determined for the worm-
gear drives with the concave–convex surfaces of FI and FII worms (see Chapter 19)
generated by the methods proposed by Niemann & Heyer [1953] (Fig. 6.12.1) and
by Litvin [1968, 1989] (Fig. 6.12.2), respectively. Points ε, f , ε′, and f ′ represent

Figure 6.12.1: Worm FI: contact lines.
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Figure 6.12.2: Worm FII: contact lines.

projections of the lines of knots of meshing. Changing the location of the lines of knots,
we can improve the shape of contact lines to obtain better conditions of lubrication.

The evidence of the existence of lines of knots is based on the following considera-
tions:

(1) Because the worm surface is a helicoid, two axes of meshing exist. The normal at
any point of contact of the worm and the worm-gear surfaces intersects both axes
of meshing (see Section 6.11).

(2) There might be a limiting case when the common surface normal intersects one of
the two axes of meshing and is parallel to the other one. (The normal intersects the
other axis of meshing at infinity.)

Figure 6.12.3 shows a cross section of the worm surface at two positions for a worm
of a worm-gear drive with a crossing angle of 90◦. The normal n–n to the worm surface
intersects the I–I axis of meshing and is parallel to the II–II axis of meshing. The upper
lines of knots of meshing are f ′– f ′ and ε′–ε′, respectively.

Figure 6.12.4 shows a cross section of the worm surface at two other positions. The
normal n–n to the worm surface intersects the II–II axis of meshing. The bottom lines
of the knots are f – f and ε–ε, respectively.

Considering the general case of the crossing angle γ �= 90◦, we represent the lines of
knots by the following equations (see Table 6.11.1).

(1) The upper lines of knots of meshing are determined by

x f = X(I )
f = ∓E cot γ tan λp (6.12.1)

nxf = 0 (6.12.2)

nz f

ny f
= K (II ) = E cot γ

r p
. (6.12.3)
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Figure 6.12.3: Knots of meshing: case 1.

Figure 6.12.4: Knots of meshing: case 2.

136
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Here, (x f , y f , z f ) are the coordinates of the point of contact of the worm and the
worm-gear surfaces; (nxf , ny f , nz f ) are the projections of the common normal to the
surfaces; (x f , y f , z f ) and (nxf , ny f , nz f ) are determined for an angle of the worm
rotation when one point of the instantaneous line of contact of mating surfaces is
the point of the upper line of knots simultaneously.
The result of equation (6.12.1) is that the upper line of knots intersects the I–I
axis of meshing. Equations (6.12.2) and (6.12.3) yield that the common normal to
the mating surfaces is parallel to the II–II axis of meshing.

(2) The bottom lines of knots are represented by

x f = X(II )
f = −r p (6.12.4)

nxf = 0 (6.12.5)
nz f

ny f
= K (I ) = ± cot λP . (6.12.6)

Equations (6.12.4) to (6.12.6) are based on the same considerations. The upper
and lower signs in Eqs. (6.12.1) and (6.12.6) correspond to the right-handed and
left-handed worm thread, respectively.

6.13 PROBLEMS

The problems presented in this section are directed at study of the derivation of the
equation of meshing, the line of action (meshing), the envelope (the generated shape),
and the conditions of undercutting. We limit the discussion in most cases to examples
of planar gears, for the purpose of simplification.

Problem 6.13.1
Coordinate systems S1, S2, and S f are rigidly connected to the rack-cutter, the spur

gear being generated, and the frame, respectively (Fig. 6.13.1). The shape of the rack-
cutter is a straight line that is represented in S1 by the equations

x1 = u sin α, y1 = u cos α, − u1 < u < u2. (6.13.1)

Here, α is the shape angle (pressure angle); u is the variable parameter that determines
the location of a current point on the shape of the rack-cutter (u > 0 for point M,
and u < 0 for M∗). The instantaneous center of rotation is I . The gear centrode is the
circle of radius r and the rack-cutter centrode coincides with the x1 axis (Fig. 6.13.1).
The displacement s of the rack-cutter and the angle φ of gear rotation are related
by

s = rφ. (6.13.2)

The problem is to derive the equation of meshing

f (u, φ) = 0 (6.13.3)
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Figure 6.13.1: Applied coordinate systems for spur gear
generation: (a) coordinate systems S1 and S2; (b) illustra-
tion of u > 0 for point M and u < 0 for point M∗.

using two approaches, considering that:

(i) The normal to the generating shape at the point of contact must pass through the
instantaneous center of rotation I .

(ii) The current point of contact is determined with the equation

N1 · v(12)
1 = 0. (6.13.4)

Here, N1 is the normal to the generating shape and v(12)
1 is the sliding velocity; both

vectors are represented in S1.

Solution

APPROACH 1. We consider the equation

X1 − x1

Nx1
− Y1 − y1

Ny1
= 0. (6.13.5)

Here,

X1 = rφ, Y1 = 0 (6.13.6)
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are the coordinates of I that are represented in S1.

N1 = T1 × k1 = [cos α −sin α 0]T (6.13.7)

where T1 and N1 are the tangent and the normal to the generating shape, and k1 is the
unit vector of the z1 axis. Equations (6.13.5) to (6.13.7) yield the following expression
for the equation of meshing:

f (u, φ) = u − rφ sin α = 0. (6.13.8)

APPROACH 2. The sliding vector v(12)
1 is represented by the equation

v(12)
1 = v(1)

1 − v(2)
1 = −rωi1 − [(ω1 × r1) + (R1 × ω1)]

=
−rω

0
0

−
−ωu cos α

ωu sin α

0

−
 −ωr

−ωrφ

0

 =
 ωu cos α

ω(−u sin α + rφ)
0

 (6.13.9)

where

R1 = [rφ −r 0]T

represents in S1 coordinates of point O2. Equations (6.13.4), (6.13.7), and (6.13.9)
yield the same expression for the equation of meshing represented by (6.13.8).

Problem 6.13.2
With the conditions of Problem 6.13.1 derive equations of the line of action in meshing

of the rack-cutter and the gear being generated.

Solution
The line of action is represented by the equations

r f = M f 1r1, f (u, φ) = u − rφ sin α = 0. (6.13.10)

Then we obtain

x f = u sin α − rφ, y f = u cos α + r, u − rφ sin α = 0. (6.13.11)

Equations (6.13.11) yield

x f = −rφ cos2 α, y f = r + rφ sin α cos α. (6.13.12)

Line of action LK (Fig. 6.13.2) is a straight line that passes through I and forms the
angle (π − α) with the x axis. Points of segment I K correspond to φ ≥ 0; points of
segment I L correspond to φ ≤ 0.

Problem 6.13.3
With the conditions of Problem 6.13.1, derive the equations of the tooth shape for the
generated gear.
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Figure 6.13.2: Line of action.

Solution
The tooth shape of the generated gear is represented by the equations

r2 = M21r1 = M2 f M f 1r1 (6.13.13)

f (u, φ) = u − rφ sin α = 0 (6.13.14)

where

M21 =

 cos φ sin φ r (−φ cos φ + sin φ)

− sin φ cos φ r (φ sin φ + cos φ)

0 0 1

 . (6.13.15)

Here, matrix equation (6.13.13) describes the coordinate transformation from S1 to S2;
Eq. (6.13.14) is the equation of meshing.

Equations (6.13.13) to (6.13.15) yield the following expressions for the generated
shape of the gear tooth:

x2 = u sin(φ + α) + r (sin φ − φ cos φ)

y2 = u cos(φ + α) + r (cos φ + φ sin φ)

u − rφ sin α = 0.

(6.13.16)

Equations (6.13.16) represent the generated shape (it is a planar curve) in two-
parameter form by related parameters u and φ. However, in this particular case, be-
cause the equation of meshing is linear for parameter u, it is possible to eliminate
u from Eqs. (6.13.16) and represent the generated shape in one-parameter form as
follows:

x2 = r sin φ − rφ cos α cos(φ + α)

y2 = r cos φ + rφ cos α sin(φ + α).
(6.13.17)
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Figure 6.13.3: Representation of generated
involute curve.

We may verify that Eqs. (6.13.17) represent an involute curve that corresponds to the
base circle rb = r cos α. To prove it, let us set up a coordinate system Se (xe , ye ) whose
axis xe (Fig. 6.13.3) forms with the x2 axis the constant angle

q = inv(α) = tan α − α.

The matrix representation of coordinate transformation is

re = Me2r2 (6.13.18)

where

Me2 =
 cos q sin q 0

− sin q cos q 0
0 0 1

 . (6.13.19)

Equations (6.13.17) to (6.13.19) yield

xe = r sin(φ + q) − rφ cos α cos(φ + α + q)

ye = r cos(φ + q) + rφ cos α sin(φ + α + q).

Using substitutions

φ + α + q = φ + α + inv(α) = φ + tan α = θ, φ = θ − tan α

φ + q = θ − α, rb = r cos α,

we obtain

xe = rb(sin θ − θ cos θ ), ye = rb(cos θ + θ sin θ ). (6.13.20)

Equations (6.13.20) represent an involute curve (Fig. 6.13.3). This result – that the
rack-cutter that is shown in Fig. 6.13.1 generates an involute curve – can be interpreted
with the following considerations:
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Figure 6.13.4: Contact normals in co-
ordinate system S2.

(i) The line of action by meshing of the rack-cutter with the gear is a straight line
(Fig. 6.13.2).

(ii) The current contact normal has a constant orientation in the fixed coordinate S f

and coincides with the line of action.
(iii) The contact normals being represented in the coordinate system S2 form a fam-

ily of straight lines (Fig. 6.13.4); the envelope to the family of those straight
lines is the circle of radius rb, and the contact normals are tangent to their
envelope.

(iv) The family of straight lines that is shown in Fig. 6.13.4 is also the family of contact
normals to the tooth shape of the generated gear; the envelope of those straight
lines is the evolute for the generated shape, and the generated shape is the involute
with respect to the circle of radius rb.

Problem 6.13.4
With the conditions of Problem 6.13.1, derive equations of the generated shape using

the approach developed in differential geometry (see Section 6.1).

Solution
Step 1: Represent in S2 equations of the family of the generating shapes using matrix

equation

r2 = M21r1. (6.13.21)

Equations (6.13.21) and (6.13.1) yield

x2 = u sin(φ + α) + r (sin φ − φ cos φ)

y2 = u cos(φ + α) + r (cos φ + φ sin φ).
(6.13.22)
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Step 2: Derive the equation of meshing as(
∂r2

∂u
× k2

)
· ∂r2

∂φ
= 0. (6.13.23)

The cross product ∂r2/∂u × k2 represents in S2 the normal to the generating shape, and
∂r2/∂φ is collinear to v(12)

2 .
Equations (6.13.22) and (6.13.23) after transformations will provide the equation of

meshing as

f (u, φ) = u − rφ sin α = 0.

The generated shape is represented with the equations

x2 = u sin(φ + α) + r (sin φ − φ cos φ)

y2 = u cos(φ + α) + r (cos φ + φ sin φ)

f (u, φ) = u − rφ sin α = 0,

(6.13.24)

which coincide with previously derived Eqs. (6.13.16) (see Problem 6.13.3).

Problem 6.13.5
With the conditions of Problem 6.13.1, determine the limiting setting of the rack-cutter
that will allow undercutting of the generated shape of the gear tooth to be avoided.

Solution
The limiting point of the shape of the rack-cutter is the point that generates the singular
point on the gear tooth shape. The rack-cutter limiting point is determined with the
equation of meshing,

f (u, φ) = u − rφ sin α = 0, (6.13.25)

and the equation of undercutting,

F (u, φ) = 0, (6.13.26)

which can be obtained by using equations (see Section 6.3)∣∣∣∣∣∣∣
∂x1

∂u
v (12)

x1

fu fφ

dφ

dt

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
∂y1

∂u
v (12)

y1

fu fφ

dφ

dt

∣∣∣∣∣∣∣ = 0. (6.13.27)

Equations (6.13.1), (6.13.9), (6.13.25), and (6.13.27) yield∣∣∣∣∣∣∣
∂x1

∂u
v (12)

x1

fu fφ

dφ

dt

∣∣∣∣∣∣∣ =
∣∣∣∣ sin α ωu cos α

1 −ωr sin α

∣∣∣∣ = 0. (6.13.28)

Then, we obtain that the limiting value for u is

u = −r tan α sin α. (6.13.29)
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Figure 6.13.5: Limiting setting of rack-cutter.

Similarly, using Eqs. (6.13.1), (6.13.9), (6.13.25), and (6.13.27), we obtain∣∣∣∣∣∣∣
∂y1

∂u
v (12)

y1

fu fφ

dφ

dt

∣∣∣∣∣∣∣ =
∣∣∣∣ cos α ω(−u sin α + rφ)

1 −ωr sin α

∣∣∣∣ = 0.

Then, taking into account Eq. (6.13.25), we obtain the same limiting value for u as
given by Eq. (6.13.29).

Figure 6.13.5 illustrates the limiting setting of the rack-cutter when point F generates
the singular point of the gear shape. Parameter u for point F is negative (recall the rule
of signs for M and M� in Fig. 6.13.1) and is determined with Eq. (6.13.29).

Problem 6.13.6
The fillet of the gear is generated by the circular arc of the rack-cutter centered at

C1 (Fig. 6.9.1). Coordinate systems S1, S2, and S f are rigidly connected to the rack-
cutter, the gear, and the frame, respectively (Fig. 6.13.1). Derive the equations of the
gear fillet using the following procedure: (i) represent the circular arc of the rack-cutter
(�1) in coordinate system S1; (ii) derive the equation of meshing using the rule that the
contact normal passes through the instantaneous center of rotation, I ; and (iii) represent
equations of gear fillet (�2) in coordinate system S2.
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Solution
Step 1: (Derivation of equations of shape �1). The position vector of a current point

M of the circular arc (Fig. 6.9.1) is represented by

O1M = O1C1 + C1M (6.13.30)

which yields

x1 = a + ρ sin θ, y1 = −b − ρ cos θ. (6.13.31)

Here,

a = π − 5 tan α

4P
− ρ(1 − sin α)

cos α
, b = 1.25

P
− ρ

where P is the diametral pitch and 1.25/P is the addendum of the rack-cutter.
The normal to the generating shape �1 is

N1 = ∂r1

∂θ
× k1 = ρ(sin θ i1 − cos θ j1) (6.13.32)

where i1, j1, and k1 are the unit vectors of the coordinate axes of S1.
Step 2: The equation of meshing is represented as

f (θ, φ) = X1(φ) − x1(θ )
Nx1

− Y1(φ) − y1(θ )
Ny1

= 0 (6.13.33)

where (Fig. 6.13.1)

X1(φ) = rφ, Y1(φ) = 0.

Equations (6.13.31), (6.13.32), and (6.13.33) yield

f (θ, φ) = rφ − a + b tan θ = 0. (6.13.34)

Step 3: (Equations of gear fillet). The generated gear fillet is represented by

r2 = M21r1 = M2 f M f 1r1, f (θ, φ) = 0. (6.13.35)

These equations yield

x2 = ρ sin(θ − φ) + a cos φ − b sin φ + r (sin φ − φ cos φ)

y2 = −ρ cos(θ − φ) − a sin φ − b cos φ + r (cos φ + φ sin φ)

rφ − a + b tan θ = 0.

(6.13.36)

The gear fillet for the case when the number of gear teeth is 10 and the profile angle of the
rack-cutter is 20◦ is shown in Fig. 6.13.6. The gear is undercut, but undercutting can be
avoided with special setting of the rack-cutter with respect to the gear (see Chapter 10).

Problem 6.13.7
Consider the same coordinate systems as in Problem 6.13.1 (Fig. 6.13.1). Shape �1

of the rack-cutter is a circular arc (Fig. 6.13.7) represented by equation

r1(θ ) = (a + ρ cos θ )i1 + (b + ρ sin θ )j1 (6.13.37)
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Figure 6.13.6: Involute profiles and gear fillets.

where a and b are the coordinates of point K – the center of the circular arc. Depending
on the location of point K , parameters a and b may be positive or negative. Shape �1

generates gear tooth shape �2. Determine the limiting point of �1 that generates the
singular point of �2.

Figure 6.13.7: Rack-cutter with circular arc profile.
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Figure 6.13.8: Generation of multi-spline shaft.

DIRECTIONS. (a) Derive the equation of meshing. (b) Develop the relative velocity
v(12)

1 . (c) Determine the limiting point using the equation of nonundercutting (see
Problem 6.13.5) and the equation of meshing.

Solution

(sin θ )3 − b sin θ

r
− b2

ρr
= 0. (6.13.38)

Problem 6.13.8
A multi-spline shaft is generated by a shaper. The shaft shape �1 is represented by

the equation (Fig. 6.13.8)

r1(θ ) = hi1 + θ j1, θmi n ≤ θ ≤ θmax. (6.13.39)

The angular velocity ratio by cutting is

m21 = ω(2)

ω(1)
= r1

r2
= N1

N2
.

Here, r1 and r2 are the radii of the centrodes; N1 and N2 are the numbers of “teeth” of
the shaft and the tool, respectively. The “undercutting” of the tool shape �2 by shape
�1 (the interference of �1 and �2) does not occur if the tool shape is a regular curve
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(it does not have singular points). Develop an equation that relates the limiting value
of θ , the radius r1 of the shaft centrode, and the angular velocity ratio m21.

DIRECTIONS. (a) Develop the equation of meshing. (b) Derive the equation of relative
velocity v(12)

1 . (c) Determine the limiting point of �1 using the equations of meshing and
nonundercutting (see Problem 6.13.5).

Solution

r 2
1 − θ2 −

(
1 + m21

2 + m21

)2

h2 = 0.

Consider m21 as given. To avoid undercutting, observe the following inequality:

r 2
1 ≥ θ2

max +
(

1 + m21

2 + m21

)2

h2.

Here,

θ2
max = r 2

a − h2

where ra is the radius of the shaft addendum circle.

Problem 6.13.9
Interaction of a screw surface with a surface of revolution is the subject of this prob-

lem. The screw surface can be identified as the envelope to the family of surfaces of
revolution that is generated in a relative screw motion that is performed with a con-
stant or varied screw parameter. The surface of revolution might be a cylinder, a cone,
a spherical surface, a toroid, or another surface.

The discussed problem is related to the interaction of a spatial cam and a follower, in
the generation of a screw by a tool. The follower (the tool) is provided with a surface
of revolution and performs the prescribed screw motion with respect to the cam (the
screw).

Figure 6.13.9(a) shows coordinate systems S1, Sc , and S f that are rigidly connected
to the blank, the tool, and the frame, respectively; axis z1 is the axis of the screw. While
the blank rotates through angle φ, the tool translates along the z f axis on the distance
s (φ), where s (φ) is a prescribed function. The derivative ds/dt is represented as

ds
dt

= p(φ)ω

where p(φ) is the varied screw parameter; φ is the angle of rotation. In a particular case,
p(φ) is a constant and represents the ordinary screw parameter p = H/2π , where H is
the lead – the axial displacement in a screw motion that corresponds to one revolution.

The solution to this problem is represented in a general form and covers the derivation
of: (a) equations of tool surface, �c ; (b) the equation of meshing; (c) equations of the
generated screw surface, �1; and (d) equations of nonundercutting of �1.
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Figure 6.13.9: Generation of screw surface by
finger-shaped cutter: (a) illustration of coordinate
system S f , S1, and Sc ; (b) illustration of genera-
tion of tool surface �c by planar curve L, and il-
lustration of coordinate system Sc of the tool and
auxiliary coordinate system Sa .

Solution

EQUATIONS OF TOOL SURFACE. We can imagine that the tool surface �c is generated by
a planar curve L that is rotated about the xc axis. Curve L is represented in auxiliary
coordinate system Sa [Fig. 6.13.9(b)] by equations

xa = f1(u), ya = 0, za = f2(u)

where u is the varied parameter that determines the current point on L.
Using equations of coordinate transformation from Sa to Sc , we obtain the following

equations of �c :

xc = f1(u), yc = f2(u) sin θ, zc = f2(u) cos θ. (6.13.40)

The normal to �c is

Nc = ∂rc

∂u
× ∂rc

∂θ
=



−∂ f2

∂u

∂ f1

∂u
sin θ

∂ f1

∂u
cos θ


. (6.13.41)



P1: JYT

CB672-06 CB672/Litvin CB672/Litvin-v2.cls February 26, 2004 23:52

150 Conjugated Surfaces and Curves

NOTE. The common factor f2(u) has been eliminated from the final expression for Nc .

RELATIVE VELOCITY. The relative velocity v(c1) is represented in Sc by the equation

v(c1)
c = v(c)

c − v(1)
c = p(φ)ωkc − ωc × rc = ω

− f2(u) sin θ

f1(u)

p(φ)

 . (6.13.42)

EQUATION OF MESHING. Using the equation

Nc · v(c1)
c = 0

we obtain [
f2(u)

∂ f2

∂u
+ f1(u)

∂ f1

∂u

]
sin θ + p(φ)

∂ f1

∂u
cos θ = f (u, θ, φ) = 0. (6.13.43)

EQUATIONS OF GENERATED SCREW SURFACE �1. Using the coordinate transformation
from Sc to S1 and the equation of meshing, we obtain

x1 = f1(u) cos φ − f2(u) sin φ sin θ

y1 = f1(u) sin φ + f2(u) cos φ sin θ

z1 = f2(u) cos θ + s (φ)

f (u, θ, φ) = 0.

(6.13.44)

CONDITIONS OF NONUNDERCUTTING. Using equations∣∣∣∣∣∣∣∣∣∣∣

∂xc

∂u
∂xc

∂θ
v(c1)

xc

∂yc

∂u
∂yc

∂θ
v(c1)

yc

fu fθ fφ

dφ

dt

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

∂xc

∂u
∂xc

∂θ
v(c1)

xc

∂zc

∂u
∂zc

∂θ
v(c1)

zc

fu fθ fφ

dφ

dt

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

∂yc

∂u
∂yc

∂θ
v(c1)

yc

∂zc

∂u
∂zc

∂θ
v(c1)

zc

fu fθ fφ

dφ

dt

∣∣∣∣∣∣∣∣∣∣∣
= 0 (6.13.45)

we obtain the equation

F (u, θ, φ) = 0. (6.13.46)

To avoid undercutting of �1, the generating surface �c must be limited with the line
determined as

rc (u, θ ), f (u, θ, φ) = 0, F (u, θ, φ) = 0. (6.13.47)

Problem 6.13.10
Using the general approach represented in Problem 6.13.9, consider the generation
of a screw surface by a cylinder. Function s (φ) is a linear function and ds/dφ = p
where p is a constant (the screw parameter). Derive equations of generating surface
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�c , the equation of meshing, and equations of generated surface �1, and determine
conditions of nonundercutting.

DIRECTIONS. Consider that the tool surface is generated by a straight line that is repre-
sented in Sa by equations

xa = f1(u) = u, ya = 0, za = f2(u) = ρ (6.13.48)

where ρ is the radius of the cylinder.

Solution
Equations of generating surface �c are

xc = u, yc = ρ sin θ, zc = ρ cos θ. (6.13.49)

The normal to �c is

Nc = [0 sin θ cos θ ]T. (6.13.50)

The relative velocity is

v(c1)
c = ω[−ρ sin θ u p]T. (6.13.51)

The equation of meshing is

nc · v(c1)
c = ω(u sin θ + p cos θ ) = f (u, θ ) = 0. (6.13.52)

In this particular case, the equation of meshing does not contain the parameter of motion
φ. The equation of meshing provides two solutions, one for each side of the surface being
generated.

The generated surface can be represented in this particular case in two-parameter
form because the equation of meshing is linear with respect to u. Thus, we obtain

x1 = −p cot θ cos φ − ρ sin φ sin θ

y1 = −p cot θ sin φ + ρ cos φ sin θ

z1 = ρ cos θ + pφ.

(6.13.53)

Equations (6.13.45) result in

p2 − ρ2 sin4 θ = 0, (6.13.54)

Figure 6.13.10: Design parameters of screw gen-
erated by cylindrical cutter.
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which yields

cos 2θ = 1 − 2p
ρ

. (6.13.55)

Equation (6.13.54) and equation of meshing (6.13.52) considered together enable us to
determine the limiting value of u from the equation

u = ±ρ

2
sin 2θ. (6.13.56)

Only the positive value of u should be taken into account.
We may transform Eqs. (6.13.54) and (6.13.56) taking into account the following

relations (Fig. 6.13.10): (a) the screw parameter p = H/2π where H is the lead; (b)
the axial distance t = H/N where N is the number of threads of the screw; and (c) (we
may choose) ρ = t/4 = H/4N . Then we obtain the following limiting value for θ :

cos 2θ = 1 − 4N
π

. (6.13.57)

A real solution for θ exists if cos 2θ ≥ −1 and yields 2N/π ≤ 1. This means that
undercutting can only occur for single-thread screws (N = 1).

Equations (6.13.57) and (6.13.56) with N = 1 and ρ = H/4 yield the following
limiting value for u:

u = H
2π

(
π − 2

2

)1/2

. (6.13.58)

Equation (6.13.58) determines the limiting value of the radius rd of the dedendum circle
(Fig. 6.13.10). Undercutting will not occur even for single-thread screws if

rd >
H
π

(
π − 2

2

)1/2

. (6.13.59)



P1: JsY

CB672-07 CB672/Litvin CB672/Litvin-v2.cls April 15, 2004 16:15

7 Curvatures of Surfaces and Curves

7.1 INTRODUCTION

The information on surface curvatures is required for computerized simulation of con-
tact of gear tooth surfaces (see Chapter 9), and grinding of ruled undeveloped surfaces
(see Chapter 26). The main ideas of surface curvatures have been developed in dif-
ferential geometry by many distinguished scientists. This chapter provides condensed
information about the basic equations of surface curvatures. For more details, we refer
the reader to Nutbourne & Martin [1988], Finikov [1961], Favard [1957], Rashevski
[1956], and Vigodsky [1949]. The chapter covers the following basic topics:

(1) Representation of a spatial curve in 3D-space and on a surface
(2) Geodesic and normal curvatures
(3) Curve and surface torsions
(4) First and second fundamental forms
(5) Principal curvatures and directions and three types of surface points.

7.2 SPATIAL CURVE IN 3D-SPACE

Osculating Plane
Figure 7.2.1 shows spatial curve L1ML2. The osculating plane is the limiting position of
such a plane that passes through curve points M1, M, and M2 as M1 and M2 approach
M. The osculating plane for a curve at its regular point M is formed by the tangent to
the curve and the acceleration vector for the same point.

The osculating plane and the curve are in tangency of second order. The osculating
plane is an exceptional tangent plane: the deviations of the curve from the osculating
plane are of different signs at two sides from the point of tangency, and the curve is
above and below the plane (see points L1 and L2 in Fig. 7.2.1). An exception is the case
when the point of tangency is a rectification point at which the second derivative rss of
a curve represented by r(s ) is equal to zero. Here, s is the arc length of the curve.

Space Curve Trihedron
We consider a coordinate system that is rigidly connected to the curve. Position vector
OC = r(s ) determines the current point C of the curve (Fig. 7.2.1); s =

�
MC is the length

153
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Figure 7.2.1: Osculating and normal
planes.

of the curve arc; M is the starting point. Consider that a small piece of curve L1ML2 is
located in the osculating plane �o (Fig. 7.2.1). Plane �N is perpendicular to plane �o

and passes through point M of the curve.
We define the normal N to the curve as a vector that is perpendicular to the tangent

to the curve. There is an infinite number of normals N to the curve at its point M. All of
the normals N belong to plane �N because the unit tangent t is perpendicular to �N .
For instance, vector Ni is one of the set of curve normals (Fig. 7.2.1). Two normals of
the set of normals must be specified:

(i) The principal normal with the unit vector m that lies in the osculating plane �o

and is the line of intersection of �o and �N (Fig. 7.2.1)
(ii) The binormal b that is perpendicular to t and m simultaneously.

We may identify at each current point of the curve three mutually orthogonal vectors
(Fig. 7.2.1): the tangent vector t, the principal normal m, and the binormal b. The
orientation of these vectors in a fixed coordinate system varies, depending on the location
of the point on the curve. We may consider now a trihedron Sc as a rigid body with three
mutually perpendicular vectors ec (ic , jc , kc ) that form a right trihedron (Fig. 7.2.2). The
origin of the trihedron moves along the curve, and the unit vectors ic , jc , and kc represent

Figure 7.2.2: Curve trihedron.
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t, m, and b, respectively. Unit vectors t, m, and b are taken at the current point of the
curve where the origin of trihedron Sc is located at this instant.

The representation of unit vectors t, m, and b in terms of derivatives of vector function
r(s ) is based on the following considerations:

(i) Unit vectors t, m, and b form a right-hand trihedron (Figs. 7.2.1 and 7.2.2). Thus

t = m × b, m = b × t, b = t × m. (7.2.1)

(ii) Unit vector t is directed along the tangent to the curve and therefore

t(s ) = dr
ds

= rs . (7.2.2)

Vector rs is a unit vector because |dr| = ds .
(iii) The principal normal to the curve is perpendicular to the curve tangent t = rs . The

derivative rss = (d/ds )(rs ) is perpendicular to rs and lies in the osculating plane.
Therefore, the unit vector m of the principal normal is represented as

m(s ) = rss

|rss | . (7.2.3)

(iv) Taking into account the expression for b in Eqs. (7.2.1), we obtain the following
equation for the binormal:

b(s ) = t × m = rs × rss

|rss | .

Because the direction of b is the same as that of vector (rs × rss ), and b is a unit
vector, we also obtain that

b(s ) = rs × rss

|rs × rss | .

The final expressions for b are

b(s ) = rs × rss

|rss | = rs × rss

|rs × rss | . (7.2.4)

Equations (7.2.4) yield

|rss | = |rs × rss |, (7.2.5)

and this relation is used in derivations below.

The designation of t(s ), m(s ), and b(s ) indicates that the unit vectors are functions of
s , the length of the curve arc. The change of direction of measurement for s causes the
directions of t and b to change to their opposites, but not the direction of m. At a point
of rectification the deviation of the curve from the tangent is not less than third order,
because rss = 0 at such a point. The orientation of m must be based on derivative rsss

or even rssss .
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Frenet–Serret Equations
These equations enable us to derive the matrix equation

esc = Lcec (7.2.6)

where

ec = [tc mc bc ]T, esc = d
ds

(ec ) = [tsc msc bsc ]T.

The designation “c” indicates that the vectors are represented in Sc . The designa-
tion “sc” for a vector, say tsc , means that the derivative (d/ds )(tc ) is considered and
represented in Sc . Matrix Lc is a 3 × 3 skew-symmetric matrix whose elements are
represented in terms of the curvature and the torsion of the spatial curve (see below).
The procedure for derivation of esc and Lc is as follows.

Step 1: [Determination of ts (the subscript “c” has been dropped)].
The curvature κo of a spatial curve is determined as

κo = lim
∣∣∣∣�φ

�s

∣∣∣∣
�s→0

(7.2.7)

where �φ is the angle formed by the tangents taken at the given and neighboring curve
points; �s is the arc length between the neighboring points; the subscript “o” in κo

indicates that the curvature is considered for a small piece of the curve located in the
osculating plane.

It is known from vector analysis that because t(s ) is a unit vector, the derivative ts is
perpendicular to t, and the magnitude of ts is represented by the equation

|ts | = lim
∣∣∣∣�φ

�s

∣∣∣∣
�s→0

(7.2.8)

where �φ is the angle formed by unit vectors t(s ) and t(s + �s ). We may illustrate
Eq. (7.2.8) with the following considerations:

(i) Figure 7.2.3(a) shows that unit vectors t(s ) and t(s + �s ) (the tangents to the curve
at neighboring points M1 and M2) form angle �φ.

(ii) Figure 7.2.3(b) shows vectors t(s ) and t(s + �s ) that are drawn from the same
origin O, where

t(s + �s ) = t(s ) + �t. (7.2.9)

(iii) It is obvious that
�

A1 A2 = �φ because |OA1| = |OA2| = 1, and |�t| ≈ �φ. Then,
we obtain

|ts | =
∣∣∣∣ dt
ds

∣∣∣∣ = lim
∣∣∣∣�φ

�s

∣∣∣∣
�s→0

. (7.2.10)

Equations (7.2.7), (7.2.8), and (7.2.10) yield

|ts | = κo. (7.2.11)

It was mentioned above that ts is perpendicular to t; it has the same direction as rss and
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Figure 7.2.3: For derivation of derivative
d
ds

(tc ).

m. Thus, the final expression for ts is

ts = κom. (7.2.12)

Step 2: (Determination of bs ).
Consider the cross product for b in Eq. (7.2.1). After differentiation, we obtain

bs = d
ds

(b) = (ts × m) + (t × ms ). (7.2.13)

Taking into account Eq. (7.2.12), and that ms · m = 0, we obtain

bs = t × ms = (m × b) × ms = −(ms · b)m. (7.2.14)

Equation (7.2.14) yields that the derivative bs is directed opposite to m and that |bs | =
|ms · b|.

We may interpret |bs | as the torsion τ of the curve using considerations that are similar
to those discussed in Step 1:
(i)

τ = lim
∣∣∣∣�θ

�s

∣∣∣∣
�s→0

(7.2.15)

where �θ is the angle formed between two osculating planes (or vectors b) deter-
mined at two neighboring points.

(ii) It is known from linear algebra (see Step 1 and drawings similar to Fig. 7.2.3) that

lim
∣∣∣∣�θ

�s

∣∣∣∣
�s→0

= |bs |. (7.2.16)

Equations (7.2.14) to (7.2.16) yield the following equation:

bs = −τm. (7.2.17)
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Step 3: We consider the cross product for m in Eq. (7.2.1). After differentiation, we
obtain

ms = d
ds

(m) = (bs × t) + (b × ts ) = bs × (m × b) + (t × m) × ts

= −(bs · m)b − (ts · m)t. (7.2.18)

Equations (7.2.12), (7.2.17), and (7.2.18) yield

ms = τb − κot. (7.2.19)

Step 4: Summary of obtained results:

es =
 ts

ms

bs

 =
 κom

τb − κot
−τm

 . (7.2.20)

Step 5: [Final expression for matrix equation (7.2.6)].
Equations (7.2.6) and (7.2.20) yield tsc

msc

bsc

 =
 κomc

τbc − κotc

−τmc

 =
 0 κo 0

−κo 0 τ

0 −τ 0

 tc

mc

bc

 . (7.2.21)

Determination of κo and τ for a Curve Represented by r(s)
Our goal is to represent κo and τ in terms of derivatives of vector function r(s ). Recall
that the unit vectors of trihedron ec have been represented by Eqs. (7.2.2), (7.2.3), and
(7.2.4), respectively. The determination of curve curvature κo is based on the following
considerations: Equation (7.2.11) yields

|ts | =
∣∣∣∣ d
ds

(t)
∣∣∣∣ = ∣∣∣∣ d

ds
(rs )
∣∣∣∣ = |rss | = κo.

Taking Eq. (7.2.5) into account as well, we obtain that

κo = |rss | = |rs × rss |. (7.2.22)

It is easy to verify that the curvature κo may also be represented by the equation

κo = |rss | = r2
ss

|rss | = rss · rss

|rss | = rss · m. (7.2.23)

Equation (7.2.23) will be used in further derivations.
The derivation of torsion τ in terms of derivatives of vector function r(s ) is based on

the following considerations:
Step 1: (Derivation of rss ).
Equation (7.2.23) yields

rss = κom. (7.2.24)

Step 2: (Derivation of rsss ).
Differentiation of Eq. (7.2.24) yields

rsss = κs m + κoms (7.2.25)
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where κs = (d/ds )(κo). Using Eqs. (7.2.19) and (7.2.25), we obtain

rsss = κs m + κo(τb − κot). (7.2.26)

Step 3: (Derivation of rs × rss ).
Using Eq. (7.2.24) and taking into account that

rs = t, t × m = b,

we obtain

rs × rss = t × κom = κob. (7.2.27)

Step 4: [Derivation of rsss · (rs × rss )].
Equations (7.2.26) and (7.2.27) yield

rsss · (rs × rss ) = κ2
o τ. (7.2.28)

Step 5: (Final expression of τ ).
Equations (7.2.22), (7.2.27), and (7.2.28) yield

τ = rsss · (rs × rss )
r2
ss

= rsss · b
κo

. (7.2.29)

Equations (7.2.22) and (7.2.29) enable us to determine the curvature κo and the
torsion τ for a curve represented by vector function r(s ).

Determination of κo and τ for a Curve Represented by
Vector Function r(θ)
Representation of a spatial curve by vector function r(s ) enables us to simplify the
derivation of Frenet–Serret equations. Usually, a spatial curve is represented by vec-
tor function r(θ ), where θ is the curve parameter. Our goal is to derive equations
for determination of the curve curvature κo and curve torsion τ for such curve rep-
resentation. We may use for this purpose the equations that have been derived for
the curve r(s ), considering that s and θ are related by function s (θ ). Then, the curve
to be discussed can be represented as r(s (θ )). Differentiation of this vector function
yields

rθ = rs
ds
dθ

. (7.2.30)

Here,

ds
dθ

= |rθ | because |rs | = 1 (7.2.31)

rθθ = rss

(
ds
dθ

)2

+ rs

(
d 2s
dθ2

)
(7.2.32)

rθθθ = rsss

(
ds
dθ

)3

+ 3rss

(
ds
dθ

)(
d 2s
dθ2

)
+ rs

(
d3s
dθ3

)
. (7.2.33)
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Equations (7.2.30) to (7.2.33) yield

rs × rss = rθ × rθθ(
ds
dθ

)3 = rθ × rθθ

|rθ |3 . (7.2.34)

Equations (7.2.33), (7.2.34), and (7.2.31) yield

rs · (rss × rsss ) = rθ · (rθθ × rθθθ )(
ds
dθ

)6 = rθ · (rθθ × rθθθ )
|rθ |6 . (7.2.35)

Equations (7.2.30), (7.2.34), and (7.2.35) are the basis for determination of unit
vectors t, m, and b and for the derivation of κo and τ for a curve given by r(θ ). The
representation of unit vectors t, m, and b in terms of derivatives of vector function r(θ )
is based on the following derivations.

Step 1: Unit vector t may be represented as

t = rθ

|rθ | . (7.2.36)

Step 2: For derivations of b we use equations (7.2.4) and (7.2.34) which yield

b = rθ × rθθ

|rθ × rθθ | . (7.2.37)

Step 3: Unit vector m is represented as

m = b × t. (7.2.38)

Equations (7.2.36), (7.2.37), and (7.2.38) yield

m = b × t = (rθ × rθθ ) × rθ

|rθ × rθθ ||rθ | . (7.2.39)

It is important to recognize for further discussions that vector m has the same direction
as rss and forms an acute angle with rθθ . The inequality

rθθ · m > 0 (rθθ �= 0) (7.2.40)

is based on Eq. (7.2.32) which yields

rθθ · rss = r2
ss

(
ds
dθ

)2

. (7.2.41)

Recall that we have designated by es (s ) the 3D vector represented as [see Eq. (7.2.20)]

es (s ) = [ts ms bs ]T.

A similar 3D vector eθ (θ ) can be represented as

eθ (θ ) = [tθ mθ bθ ]T = ds
dθ

es = |rθ | [ts ms bs ]T. (7.2.42)

Our final goal is to derive equations for determination of κo and τ for a spatial curve
represented by vector function r(θ ). The derivation of such equations is based on the
following procedure.



P1: JsY

CB672-07 CB672/Litvin CB672/Litvin-v2.cls April 15, 2004 16:15

7.2 Spatial Curve in 3D-Space 161

Determination of κo

Equations (7.2.22), (7.2.23), (7.2.31), (7.2.32), and (7.2.39) yield

κo = rθθ · m
r2
θ

= |rθ × rθθ |
|rθ |3

= [(xθ yθθ − xθθ yθ )2 + (xθ zθθ − xθθ zθ )2 + (yθ zθθ − yθθ zθ )2]1/2(
x2

θ + y2
θ + z2

θ

)3/2 . (7.2.43)

We may also represent κo in terms of m, vr , and ar . Here, vr and ar are the velocity and
acceleration of a point that moves along the spatial curve and are represented by the
equations

vr = rθ

dθ

dt
(7.2.44)

ar = rθθ

(
dθ

dt

)2

+ rθ

(
d2θ

dt2

)
. (7.2.45)

The subscript “r ” indicates that the relative point motion, along the curve, is considered
to differentiate it from the transfer point motion when the point moves together with
the curve.

Our goal is to prove that the curvature can be represented by the equation

κo = ar · m
v2

r
. (7.2.46)

Equations (7.2.44), (7.2.45), and (7.2.46) yield

κo = rθθ · m
r2
θ

,

which coincides with the expression in (7.2.43), and this is the proof of the correct-
ness of Eq. (7.2.46). Acceleration vector ar [see Eq. (7.2.45)] has two components:
a1 = rθ (d2θ/dt2) and a2 = rθθ (dθ/dt)2. Component a1 is collinear to the tangent vector
t, and its direction is the same as t or opposite to t depending on the sign of d2θ/dt2.
The second component lies in the osculating plane and forms an acute angle with m
(Fig. 7.2.4).

Figure 7.2.4: Representation of acceleration
vector for spatial curve.
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Derivation of τ
We have represented the curve torsion τ by [see Eq. (7.2.29)]

τ (s ) = rsss · b
κo

(7.2.47)

where [see Eq. (7.2.43)]

κo = |rθ × rθθ |
|rθ |3 .

Equations (7.2.4), (7.2.34), (7.2.35), (7.2.43), and (7.2.47) yield

τ (θ ) = (rθ × rθθ ) · rθθθ

(rθ × rθθ )2
. (7.2.48)

The sign of torsion can be positive or negative (see below).

Structure of Spatial Curve at the Curve Point
The osculating plane divides the space curve L1ML2 into two parts that are above
and below the osculating plane (Fig. 7.2.1); only curve point M lies in the oscu-
lating plane. Projections of the curve on the planes of the trihedron are shown in
Fig. 7.2.5. When the point moves along the curve counterclockwise, from M to C
(Fig. 7.2.1), and the torsion is positive, the part L1M of the curve is below the oscu-
lating plane, and ML2 is above the osculating plane. The terms “below” and “above”
are used for observation from b. In the case of a negative torsion, but with the same
direction of s , curve part L1M will be above the osculating plane, and ML2 will be

Figure 7.2.5: Representation of spatial curve in planes of
trihedron.
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below the osculating plane. It is obvious that the torsion is zero at any point of a pla-
nar curve. Positive and negative torsions are equivalent to the terms right-hand and
left-hand screws (see Problem 7.2.1 below).

Equation of Osculating Plane
Consider that the curve is represented by vector function r(θ) and that r(θo) is the
position vector of the starting point. Vectors rθ and rθθ form the osculating plane. Vector
R = r(θ ) − r(θo) lies in the osculating plane as well, and R, rθ , and rθθ are coplanar. Thus,
the equation

[r(θ ) − r(θo)] · (rθ × rθθ ) = 0 (7.2.49)

represents the osculating plane at curve point r(θo).

Problem 7.2.1
Consider a right-hand helix that is represented in coordinate system So by equations

xo = ρ cos θ, yo = ρ sin θ, zo = pθ

where p > 0. Here, p = ρ tan λ; λ is the lead angle. The starting curve point is deter-
mined with θ = 0.

Determine:

(i) The unit vectors to, mo, and bo [use Eqs. (7.2.36), (7.2.37), and (7.2.39), respec-
tively, and represent the vectors in coordinate system So].

(ii) Curvature κo and torsion τ [use Eqs. (7.2.43) and (7.2.48)].
(iii) Derive the matrix equation for coordinate transformation from So to Sc

(tc , mc , bc ), where Sc is the curve trihedron; the origin of Sc is placed into a point
determined by ro(θo).

Direction: use matrix equation

rc = McpMporo.

Matrix Mpo describes coordinate transformation from So to Sp; coordinate axes
of Sp are parallel to axes of So; the origin Op is located at the point determined by
ro(θo).

(iv) Derive equations of the helix in Sc , and plot projections of the helix on coordinate
planes of Sc . Verify that the structure of the helix in the neighborhood of Oc is
similar to the structure represented in Fig. 7.2.5.

Solution
(i)

to = [0 cos λ sin λ]T ; mo = [−1 0 0]T ; bo = [0 − sin λ cos λ]T .

(ii)

κo = ρ

ρ2 + p2
= cos2 λ

ρ
; τ = p

ρ2 + p2
= sin2 λ

p

(τ > 0 for a right-hand helix because p > 0; τ < 0 for a left-hand helix because
p < 0).
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(iii) Matrix Mco is

Mco =


0 cos λ sin λ 0

−1 0 0 ρ

0 − sin λ cos λ 0
0 0 0 1

 .

(iv)

xc = ρ sin θ cos λ + pθ sin λ

yc = ρ(1 − cos θ )
zc = −ρ sin θ sin λ + pθ cos λ.

Verify that within the neighborhood of θ = 0 the curve is similar to that shown in
Fig. 7.2.5.

7.3 SURFACE CURVES

We have to differentiate two cases of spatial curves: (a) the spatial curve that is deter-
mined in the 3D-space in one-parameter form (see Section (7.2)), and (b) the spatial
curve that is represented in the 3D-space belongs to the given surface (see below). In the
second case the spatial curve is determined in two-parameter form but the parameters
are related. Some of the curve features in this case depend on the properties of the given
surface (see below).

Surface Curve Trihedron
Consider a regular surface � that is represented by

r(u, θ ) ∈ C2, ru × rθ �= 0, (u, θ ) ∈ A. (7.3.1)

A curve on � is determined if in vector function r(u, θ ) surface parameters are related
with the equation

f (u, θ ) = 0, provided ( f 2
u + f 2

θ �= 0) (7.3.2)

Figure 7.3.1 shows two curves, Ln and Lo, that pass through the same surface point
M and have the same tangent. Curve Ln is a planar curve obtained by intersection
of the surface by the surface normal plane that is drawn through the unit tangent t
and the surface unit normal n. Curve Lo is a spatial curve identified locally with the
orientation of the osculating plane, the curvature, and the torsion of the curve (see
Section 7.2). Considering that a spatial curve belongs to a surface, we may determine
more parameters for the local identification of the curve.

We introduced in Section 7.2 the curve trihedron Sc (ic , jc , kc ) where ic = t is the
unit tangent, jc = m is the curve principal normal, and kc = b is the curve binormal
[Figs. 7.2.2 and 7.3.1(b)]. In addition, we set up the surface trihedron Sf (i f , j f , k f )
shown in Fig. 7.3.1(b). Here, i f = t is the unit tangent to the spatial curve; j f = d is
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Figure 7.3.1: Surface trihedron.

the unit vector that is perpendicular to t and lies in the plane tangent to the surface at
point M; k f = n is the surface unit normal. The subscript “ f ” indicates that the surface
(“fläche” in German) trihedron and its axes are considered.

The unit tangent i f = ic = t is determined as

t = T
|T| , T = ru + rθ

dθ

du
= ru − rθ

fu

fθ

, ( fθ �= 0) (7.3.3)

[see Eqs. (7.3.1) and (7.3.2)]. The surface unit normal is represented as

n = N
|N| , N = ru × rθ , (n = k f ). (7.3.4)

Changing the order in the cross product in Eq. (7.3.4), we can change the direction of
n for the opposite one and provide that δ < 90◦, where δ is formed by n and m. Recall
that the direction of m is the same as rss and cannot be chosen arbitrarily. Unit vectors
t, d, and n form the right trihedron Sf .

Determination of Derivatives ts , ds , ns

Consider that the common origin of the two trihedrons moves along the given surface
curve. The 3D vectors e f (t, d, n) and ec (t, m, b) are functions of the arc lengths of
the curve; angle δ is also a function of s . Our goal is to determine the derivatives ts , ds ,
and ns . The procedure of derivation is as follows.

Step 1: Coordinate transformation in transition from Sc to Sf is represented by
matrix equation

e f = L f cec . (7.3.5)
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Here [Fig. 7.3.1(b)],

L f c =
1 0 0

0 sin δ − cos δ

0 cos δ sin δ

 . (7.3.6)

Step 2: Differentiation of Eq. (7.3.5) yields

d
ds

(e f ) = d
ds

(L f c )ec + L f c
d
ds

(ec ). (7.3.7)

Here,

d
ds

(L f c ) =
0 0 0

0 δs cos δ δs sin δ

0 −δs sin δ δs cos δ

 (7.3.8)

where δs = (d/ds )(δ).
Step 3: We take into account [see Eq. (7.2.6)] that

d
ds

(ec ) = esc = Lcec (7.3.9)

and

ec = Lc f e f (7.3.10)

where

Lc f = (L f c )T. (7.3.11)

Equations (7.3.7), (7.3.9), and (7.3.10) yield

es f =
[

d
ds

(L f c ) + L f cLc

]
Lc f e f = L f e f . (7.3.12)

Here,

L f =
[

d
ds

(L f c ) + L f cLc

]
Lc f (7.3.13)

is the curvature matrix for the surface curve trihedron.
Step 4: Matrix L f is a skew-symmetric one and is represented as

L f =
 0 κo sin δ κo cos δ

−κo sin δ 0 τ + δs

−κo cos δ −(τ + δs ) 0

 =
 0 κg κn

−κg 0 t
−κn −t 0

 . (7.3.14)

Here, κg = κo sin δ is the geodesic curvature, κn = κo cos δ is the normal curvature, and
t = τ + δs is the surface torsion. The concepts of geodesic curvature and normal curva-
ture are discussed below.
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Step 5: Equations (7.3.12) and (7.3.14) yield the following final expressions for
(d/ds )(e f ):

ts = κgd + κnn = κg j f + κnk f

ds = −κg t + tn = −κg i f + tk f

ns = −κnt − td = −κni f − t j f .

(7.3.15)

Equations (7.3.15) are known as the Bonnet–Kovalevski relations (see Favard [1957]).
We have to emphasize that the normal curvature κn and the surface torsion t must

be considered as the properties of the surface where the spatial curve is located. Only
the geodesic curvature κg of the curve can be considered as the parameter that specifies
the spatial curve uniquely but in a local sense (within the neighborhood of a given
point).

Figure 7.3.3 shows a set of spatial curves Lo that are on the surface � and are in
tangency with each other at the surface point M. Surface � is considered as given. Vector
t is the unit vector of the common tangent to the set of curves Lo. All of these curves
have the same normal curvature κn as stated in Meusnier’s theorem (see curvature of
spatial curve below and Fig. 7.3.4) and the same surface torsion as stated in Bonnet’s
theorem [see Section 7.9, Eq. (7.9.17)]. Curves of the set of Lo differ from each other
only by the geodesic curvature. It is shown below that κn and t can be determined
for the given surface if the surface point M and the direction of the unit tangent t are
specified.

Equations for determination of κn and t are represented in Sections 7.4 and 7.9,
respectively. The information about κg and t is required when grinding with optimal
approximation is considered (Chapter 26). The information about t is required as well
when the meshing of misaligned surfaces that are initially in line contact is considered
(see Section 9.6). The visualization of geodesic curvature κg is discussed in this section
(see below). The visualization of surface torsion is based on the concept of geodesic line
and is discussed in Section 7.9.

Velocity and Acceleration
Consider that a point moves along a surface curve. Expressions of velocity and accel-
eration for the point motion are used in equations for determination of curve curva-
ture. The surface curve is determined with Eqs. (7.3.1) and (7.3.2); function θ(u) ∈ C2

that relates surface parameters is known at curve point M and within its neighbor-
hood.

The velocity vr is represented by the equation

vr = ru
du
dt

+ rθ

dθ

dt
=
(

ru + rθ

dθ

du

)
du
dt

= T
du
dt

(7.3.16)

where

T = ru + rθ

dθ

du
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is the curve tangent at M. The acceleration is represented by the equation

ar = d
dt

(vr )

=
[

ruu + 2ruθ

dθ

du
+ rθθ

(
dθ

du

)2
](

du
dt

)2

+ T
d2u
dt2

+ rθ

d2θ

du2

(
du
dt

)2

= (a + c)
(

du
dt

)2

+ T
d2u
dt2

. (7.3.17)

Here,

a = ruu + 2ruθ

dθ

du
+ rθθ

(
dθ

du

)2

(7.3.18)

c = rθ

d2θ

du2
. (7.3.19)

The direction of tangent T depends on the derivative dθ/du. Our goal is to determine
the derivative d2θ/du2 considering as given the direction of the tangent T to the spatial
curve and angle δ that is formed by the normal and the osculating plane (Fig. 7.3.1).

The requirement that the acceleration vector must lie in the osculating plane can be
represented by the equation (Fig. 7.3.2)

ar · (t × m) = ar · b = 0. (7.3.20)

Figure 7.3.2: Representation of acceleration vec-
tor for surface spatial curve.
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The component T(d2u/dt2) of the acceleration vector is perpendicular to b (Fig. 7.3.1).
Thus

(a + c) · b = 0. (7.3.21)

For further derivations, we use matrix equation (7.3.5), matrix (7.3.6), and the
inverse matrix equation that relates trihedrons ec = [t m b]T and e f = [t d n]T

[Fig. 7.3.1(b)]. Thus  t
d
n

 =
1 0 0

0 sin δ − cos δ

0 cos δ sin δ

 t
m
b

 (7.3.22)

 t
m
b

 =
1 0 0

0 sin δ cos δ

0 − cos δ sin δ

 t
d
n

 . (7.3.23)

Matrix equation (7.3.23) yields

b = − cos δd + sin δn = cos δ(t × n) + sin δn. (7.3.24)

Using Eqs. (7.3.21) and (7.3.24), and taking into account that

c = rθ

(
d2θ

du2

)
is perpendicular to n, we obtain

d2θ

du2
= −cos δa · (t × n) + sin δ(a · n)

cos δ[rθ · (t × n)]
. (7.3.25)

There is a particular case when the spatial curve is a geodesic line (see Section 7.9). In
this case δ = 0, the osculating plane coincides with the normal plane, the acceleration
vector lies in the normal plane, and the derivative (d2θ/du2) is determined as

d2θ

du2
= − a · (t × n)

rθ · (t × n)
= − a · (T × N)

rθ · (T × N)
. (7.3.26)

We emphasize that Eqs. (7.3.25) and (7.3.26) provide different values of (d2θ/du2).
Figures 7.3.2(a) and (b) illustrate the orientation and components of the vector of

acceleration for both cases discussed above. The change of orientation of the acceleration
vector is caused by the change of the derivative d2θ/du2 that affects the magnitude of
vector c [see Eq. (7.3.19)].

It is shown below that the determination of the normal curvature of a surface curve
is based on the scalar product ar · n. Equation (7.3.17) yields that

ar · n = a · n
(

du
dt

)2

(7.3.27)

because

c · n =
(

rθ

d2θ

du2

)
· n = 0, T · n = 0.
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This means that fortunately the derivative d2u/dθ2 is not involved in the process of
determination of the curve normal curvature.

Normal Curvature
Curve Ln is a planar curve (Fig. 7.3.1) and is obtained by the intersection of the surface
by a normal plane that is determined by the surface normal and the curve tangent. We
may consider curve Ln as a particular case of a spatial curve, taking into account that
the osculating plane for curve Ln coincides with the surface normal plane. The normal
curvature for curve Ln may be represented by an equation that is similar to (7.2.46):

κn = ar n · n
v2

r
. (7.3.28)

Taking into account that vectors T(d2u/dt2) and cn (the two of three components
of ar n) are perpendicular to n, we obtain

κn = a · n
T2

(7.3.29)

where a is represented by (7.3.18) and

T = ru + rθ

dθ

du
(7.3.30)

is the tangent to the curve surface. The positive (negative) sign of κn shows that the
curvature center lies on the positive (negative) direction of n.

Curvature of Spatial Curve
The curvature κo of a surface curve can be determined with Eq. (7.2.46) which was
derived for a curve represented in 3D-space. Thus

κo = ar · m
v2

r
. (7.3.31)

The component of acceleration represented as T(d2u/dt2) is perpendicular to m, and
we obtain that

κo = (a + co) · m
T2

. (7.3.32)

Our goal is to represent κo in terms of the normal curvature of curve Ln and angle δ that
is formed by vectors m and n (Fig. 7.3.1). Curves Ln and Lo have a common tangent at
point M. The procedure of derivations is as follows.

Step 1: Matrix equation (7.3.23) yields

m = sin δd + cos δn. (7.3.33)

Matrix equation (7.3.22) yields

d = sin δm − cos δb. (7.3.34)

Using Eqs. (7.3.33) and (7.3.34), we obtain

m = − sin δb + n
cos δ

. (7.3.35)
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Figure 7.3.3: Surface normal section and sur-
face spatial curves.

Step 2: We consider Eqs. (7.3.32) and (7.3.35) simultaneously and take into account
that vector (a + co) lies in the osculating plane and therefore

(a + co) · b = 0.

Then we obtain

(a + co) · m
T2

= (a + co) · n
cos δT2

= a · n
cos δT2

. (7.3.36)

Equations (7.3.29) and (7.3.36) yield

κo =
∣∣∣ κn

cos δ

∣∣∣ . (7.3.37)

We emphasize [see Eq. (7.3.37)] that the curvature κo is always positive whereas
the curvature κn can be positive or negative depending on the location of the curvature
center on the positive or negative side of the normal. Equation (7.3.37) enables us to
determine the curvature of spatial curve Lo through the normal curvature of Ln and the
angle δ that is formed by the osculating plane and the surface normal.

Figure 7.3.3 shows a set of surface spatial curves Lo and the plane curve Ln obtained
by intersection of the surface by normal plane �. All curves have the same tangent t at
point M. Meusnier’s theorem states that the product κo| cos δ| is the same for a set of
curves identified as follows: (i) all of the curves pass through the same surface point M
and have a common unit tangent t at M; (ii) the curves have different osculating planes
but all of the planes pass through t.

A spherical surface is the simplest example for illustration of Meusnier’s theorem.
Figure 7.3.4 shows the normal plane � and the osculating plane P that pass through
common point M. The intersections of the spherical surface by planes � and P are
circles Ln and Lo of radii R and ρ, respectively. Angle δ is formed by the surface normal
n and the principal normal m to curve Lo. Figure 7.3.4 shows that

cos δ = ρ

R
, sin δ = e

R
= (R2 − ρ2)1/2

R
(7.3.38)
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Figure 7.3.4: Application of Meusnier’s theorem to
a spherical surface.

where e = |CoCn| is the length of the perpendicular that is drawn from center Cn of the
spherical surface to plane P . Equation (7.3.38) confirms that

κo = κn

cos δ
.

Here,

κo = 1
ρ

, κn = 1
R

.

Geodesic Curvature
The first equation of system (7.3.15) yields that the curvature of a curve located in the
osculating plane can be represented by two components: κg and κn. We may represent
this equation in the form

rss = κgd + κnn, (7.3.39)

taking into account that ts = rss .
This equation may be interpreted using the following considerations:

(1) Figure 7.3.5 shows a spatial curve Lo on surface �. Unit vectors t, d, and n represent
the surface trihedron [Figs. 7.3.5(a) and 7.3.1(b)]. Here, t is the tangent to curve
Lo; d lies in the tangent plane and is perpendicular to t; n is the surface unit normal.
Unit vector m is the principal normal to Lo and lies in the osculating plane. Vector
rss = κom (see Section 7.2).

(2) Consider now that the spatial curve Lo is projected onto the tangent plane T
and the normal plane N , respectively. The projections are designated by LT and
LN . We emphasize that there is no difference between LN [Fig. 7.3.5(b)] and Ln

(Fig. 7.3.3) if they are considered locally. Both curves have the same normal cur-
vature at the point of tangency M.

(3) Vector κom is represented as the sum of two vectors: κgd and κnn. The scalar κg

represents the curvature of curve LT , and the scalar κn represents the curvature of
curve Ln.



P1: JsY

CB672-07 CB672/Litvin CB672/Litvin-v2.cls April 15, 2004 16:15

7.3 Surface Curves 173

Figure 7.3.5: Normal and geodesic curva-
tures.

(4) Equation (7.3.39) yields two relations:

κo(m · n) = κo cos δ = κn (7.3.40)

κg = rss · d = κo sin δ. (7.3.41)

Equation (7.3.40) relates the normal curvature κn and the curvature κo of the oscu-
lating plane. This equation was obtained above [see Eq. (7.3.37)]. Equation (7.3.41)
relates the geodesic curvature κg and the curve curvature κo in the osculating plane. The
direct computation of κg is based on the following equation:

(i) Using Eq. (7.3.41), we obtain

κg = rss · d = rss · (n × t) = rs · (rss × n) (7.3.42)

because t = rs .
This equation can be applied if curve Lo is represented by vector function r(s ),
where s is the arc length.

(ii) We consider now that the curve is represented by vector function r(t), where t is a
chosen parameter. We may consider function t(s ) and then obtain

rs = rt
dt
ds

. (7.3.43)
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Taking into account that |rs | = 1 (see Section 7.2), we get

rs = rt

|rt | . (7.3.44)

The derivative rss is represented as

rss = rtt

(
dt
ds

)2

+ rt
d2t
ds2

= rtt

|rt |2 + rt
d2t
ds2

. (7.3.45)

Using Eqs. (7.3.42), (7.3.44), and (7.3.45), we derive

κg = rt · (rtt × n)
|rt |3 . (7.3.46)

(iii) We consider now a curve that is represented on a surface r(u, θ ). The curve is
represented by the equation

r = r(u(t), θ (t)). (7.3.47)

We may use Eq. (7.3.46) for determination of geodesic curvature κg , considering
that

rt = ru
du
dt

+ rθ

dθ

dt
(7.3.48)

rtt = ruu

(
du
dt

)2

+ 2ruθ

(
dθ

dt

)(
du
dt

)
+ rθθ

(
dθ

dt

)2

+ ru
d2u
dt2

+ rθ

d2θ

dt2
. (7.3.49)

Equations (7.3.46), (7.3.48), and (7.3.49) yield

κg =
N
|N| · (T × a) + |N|

[(
du
dt

)(
d2θ

dt2

)
−
(

dθ

dt

)(
d2u
dt2

)]
|T|3 . (7.3.50)

Here,

T = ru
du
dt

+ rθ

dθ

dt
; a = ruu

(
du
dt

)2

+ 2ruθ

(
dθ

dt

)(
du
dt

)
+ rθθ

(
dθ

dt

)2

;

N = ru × rθ ; n = N
|N| .

Considering that parameter t represents time, we obtain from Eq. (7.3.46) that

κg = vr · (ar × n)
|vr |3 . (7.3.51)

Spatial curve Lo may represent in some cases the path of contact on the gear tooth
surface. Curve Lo will be a geodesic curve locally, at the main point of contact, if κg = 0
at this point.

Problem 7.3.1
A cylinder surface is represented by

x = ρ cos θ, y = ρ sin θ, z = u. (7.3.52)
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Consider a helix on the cylinder surface given by the equation

u = hθ (7.3.53)

where

h = ρ tan λ, (7.3.54)

with λ being the lead angle of the helix.

(i) Derive the equations for n, vr , and ar .
(ii) Determine the geodesic curvature κg [see Eq. (7.3.51)].

Solution
(i)

n = ru × rθ

|ru × rθ | = − cos θ i − sin θ j

vr = ρ
dθ

dt
(− sin θ i + cos θ j + tan λk)

ar = ρ

(
dθ

dt

)2

(− cos θ i − sin θ j) + ρ
d2θ

dt2
(− sin θ i + cos θ j + tan λk).

(ii) κg = 0.

7.4 FIRST AND SECOND FUNDAMENTAL FORMS

The concept of surface first and second fundamental forms (proposed by the famous
mathematician Gauss) is important for determination of surface normal curvature, prin-
cipal curvatures, and principal directions.

First Fundamental Form
Consider a regular surface given by vector function (7.3.1). The surface unit normal is
represented by

n(u, θ ) = ru × rθ

|ru × rθ | . (7.4.1)

The first fundamental form of a surface is defined as

I = dr2 = (rudu + rθdθ )2 = r2
udu2 + 2(ru · rθ )du dθ + r2

θ dθ2

= Edu2 + 2F du dθ + Gdθ2. (7.4.2)

Here,

dr = rudu + rθdθ (7.4.3)

E = r2
u, F = ru · rθ , G = r2

θ . (7.4.4)

The far right-hand side of Eq. (7.4.2) is a quadratic form in differentials du and dθ .
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Second Fundamental Form
The second fundamental form of a surface is defined by

II = d2r · n = −dr · dn. (7.4.5)

The equality of scalar products

d2r · n = −dr · dn (7.4.6)

results from differentiation of the equation

dr · n = 0 (7.4.7)

while taking into account that dr belongs to the tangent plane.
Let us develop the expression for the second fundamental form using the equation

II = d2r · n. (7.4.8)

The differentiation of Eq. (7.4.3) yields

d2r = d(rudu + rθdθ ) = ruudu2 + 2ruθdu dθ + rθθdθ2 + rud2u + rθd2θ

and

II = d2r · n

= (ruu · n)du2 + 2(ruθ · n)du dθ + (rθθ · n)dθ2 + (ru · n)d2u + (rθ · n)d2θ

= Ldu2 + 2Mdu dθ + Ndθ2, (ru · n = 0, rθ · n = 0) (7.4.9)

where

L = ruu · n, M = ruθ · n, N = rθθ · n. (7.4.10)

The right side of Eq. (7.4.9) is a quadratic form in differentials du and dθ . Expression
(7.4.9) can also be obtained by using the equation

II = −dr · dn. (7.4.11)

Interpretation of Fundamental Forms
The first fundamental form is always positive and is related with the velocity vr in the
motion along the curve as

v2
r = I

dt2
(7.4.12)

where t is the time. The second fundamental form represents the deviation of the curve
point M∗ from the tangent plane (Fig. 7.4.1). The deviation is represented by vector

−→
BM∗= ln.

Here, l is a signed value, and l is positive if vectors
−→

BM∗ and n are of the same direction.
It can be proven that

l = II
2

. (7.4.13)
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Figure 7.4.1: Deviation of surface point.

The second fundamental form, the acceleration in motion along the curve, and the
surface unit normal are related to the equation

ar · n = II
dt2

(7.4.14)

where t is the time.

Determination of Normal Curvature
The normal curvature is determined by the equation

κn = II
I
. (7.4.15)

The geometric interpretation of Eq. (7.4.15) may be based on the following derivations.
Step 1: The curvature of a planar curve [Fig. 7.4.2(a)] is initially considered. The curve

is represented by vector function r(s ) where s is the arc length. Points M and N are the
infinitesimally close curve points; OM = r(s ); ON = r(s + ds ); dr = r(s + ds ) − r(s );
ds =

�
MN . The curve unit normals at M and N are a(s ) and a(s + ds ), respectively. The

definition of curve curvature at M is

k = dα

ds
= 1

ρ
, (ρ = MC ). (7.4.16)

Step 2: While point M moves to N along the curve, normal a(s ) will take the position
of a(s + ds ) by translation and rotation through angle dα about b [Fig. 7.4.2.(b)]. The
vector of rotation of the tip of the unit normal a(s ) is

da = dα(b × a). (7.4.17)

Vector t, b, and a are mutually perpendicular and form a fixed right-hand trihedron
whose origin is M. Vector t is the curve unit tangent and is represented as

t = dr
ds

(ds = |dr|). (7.4.18)

Vector b can be represented as

b = t × a. (7.4.19)
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Figure 7.4.2: For derivation of curvature of planar curve.

Equations (7.4.17) and (7.4.19) yield

da = dα [(t × a) × a] = −dαt. (7.4.20)

Step 3: It is easy to verify that Eqs. (7.4.18) and (7.4.20) yield

da · dr = −(dα)(ds ), (7.4.21)

and the curve curvature can be represented as

k = −da · dr
dr2

= dα

ds
. (7.4.22)

Step 4: Consider now the normal section Ln of a surface (Fig. 7.4.3). Plane �t is
tangent to the surface at point M, and vector t is the unit tangent chosen in �t . Vector
n is the surface unit normal at M. Planar curve Ln is obtained by intersection of the
surface by the normal plane that is formed by vectors n and t.

�
MN is an infinitesimally

small piece of Ln.
Henceforth, we differentiate the unit normal a to the planar curve and the unit normal

n to the surface. N A is the normal to the planar curve at N ; N B is the surface normal at
N . It is obvious that a = n at point M. However, the surface normal N B and the curve
normal N A generally do not coincide with each other. We designate the surface unit
normals at points M and N by n(s ) and n(s + ds ), respectively. Because n(s ) is a unit
normal, the differential dn is perpendicular to n. Thus, dn lies in the tangent plane and
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Figure 7.4.3: For derivation of normal curvature.

may be represented as

dn = dnt + dnd .

Here, t and d are the orthogonal vectors that form the tangent plane.
The normal curvature κn of the surface is the curvature of normal section Ln and is

represented by an equation that is similar to (7.4.22). Thus

κn = −dnt · dr
dr2

(7.4.23)

where dr = ds t (ds =
�

MN). Taking into account that dnd is perpendicular to t, we
may represent κn by the equation

κn = −dn · dr
dr2

. (7.4.24)

Step 5: The transformation of Eq. (7.4.24) is based on the following considerations:
(i) The infinitesimal displacement dr of a surface point is performed in the tangent

plane. Thus,

dr · n = 0. (7.4.25)

(ii) Equation (7.4.25) is observed in the neighborhood of M and therefore we may
differentiate it. Then we obtain

dr · dn + d2r · n = 0. (7.4.26)

Equations (7.4.24) and (7.4.26) yield

κn = d2r · n
dr2

, (7.4.27)

and Eq. (7.4.15) is confirmed.
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7.5 PRINCIPAL DIRECTIONS AND CURVATURES

We recall that the determination of normal curvature of a tooth surface � is based on
the following considerations:

(i) The tooth surface � is determined by vector function r(u, θ ).
(ii) The normal to � at a point M is determined as

N = ru × rθ or as N = rθ × ru

where the derivatives are taken at M.
(iii) The tangent to surface � at point M is determined as

T = rudu + rθdθ.

The orientation of T depends on the ratio dθ/du.
(iv) The normal curvature of � is the curvature of a planar curve obtained by the

intersection of � by plane � that is formed by N and T. The orientation of plane
� at point M depends on the orientation of tangent T to surface �. Therefore, the
orientation of � depends on the ratio dθ/du.

(v) There is a set of planar curves Ln at point M of surface � obtained by the intersec-
tion of � by the set of normal planes �. The normal curvature κn of each curve Ln

may be determined by Eqs. (7.4.2), (7.4.9), and (7.4.15), which are based on the
application of first and second fundamental forms (see Section 7.4).

(vi) The extreme values of normal curvature κn are called the principal curvatures, and
the respective two directions of unit vector t (of tangent T) are called the principal
directions. It is proven that unit vectors t of principal directions are mutually per-
pendicular (see below). Another important property of the principal directions is
that vectors vr and ṅr (see below) are collinear on principal directions (Rodrigues’
formula).

Two approaches for determination of principal curvatures and directions are repre-
sented as follows.

Approach 1
Consider point M on a regular surface [Fig. 7.5.1(a)]. Vectors ru and rθ are tangents
to the coordinate lines on the surface, and T is the direction of an infinitesimally small
displacement of a point over the surface. Angle µ (or λ) is a varied parameter but
ν = µ + λ is constant for the chosen point M. Our goals are (i) to prove that the principal
directions are mutually perpendicular, and (ii) to derive equations for determination of
the principal curvatures and directions.

Step 1: (Expression for unit tangent t).
The tangent T can be represented by [Fig 7.5.1(b)]

T = aeu + beθ (7.5.1)

where

eu = ru

|ru| , eθ = rθ

|rθ | .
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Figure 7.5.1: For determination of principal direc-
tions: (a) representation of tangents rθ and ru to
surface coordinate lines at point M; (b) for deriva-
tion of relations between magnitudes a and b of
unit vectors eu and eθ .

Figure 7.5.1(b) yields

a
|T| = sin µ

sin ν
,

b
|T| = sin λ

sin ν
(7.5.2)

where ν = µ + λ. Using Eqs. (7.5.1) and (7.5.2), we obtain

t = eu sin µ + eθ sin(ν − µ)
sin ν

. (7.5.3)

Here,

t = T
|T| , cos ν = eu · eθ , sin ν = |eu × eθ | . (7.5.4)

Step 2: Expressions for v and t = v/|v| are as follows:

v = ru
du
dt

+ rθ

dθ

dt
(7.5.5)

t =
(

ru
du
dt

+ rθ

dθ

dt

)
1
|v| . (7.5.6)

Step 3: (Expressions for du/dt and dθ/dt).
Equations (7.5.3) and (7.5.6) yield

ru

[(
du
dt

)(
1
|v|
)

−
(

sin µ

sin ν

)(
1

|ru|
)]

+ rθ

[(
dθ

dt

)(
1
|v|
)

−
(

sin(ν − µ)
sin ν

)
1

|rθ |
]

= 0.

(7.5.7)

Equation (7.5.7) must be satisfied with any values of ru and rθ , and this results in

du
dt

= sin µ

sin ν

|v|
|ru| ,

dθ

dt
= sin(ν − µ)

sin ν

|v|
|rθ | . (7.5.8)
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Step 4: (Expression for acceleration ar).

ar = ruu

(
du
dt

)2

+ 2ruθ

(
du
dt

)(
dθ

dt

)
+ rθθ

(
dθ

dt

)2

+ ru
d2u
dt2

+ rθ

d2θ

dt2
. (7.5.9)

Step 5: (Equation for normal curvature).

κn = ar · n
v2

r
=
[

L
(

du
dt

)2

+ 2M
(

du
dt

)(
dθ

dt

)
+ N

(
dθ

dt

)2
]

1
v2

(7.5.10)

where

L = ruu · n, M = ruθ · n, N = rθθ · n.

Equations (7.5.8) and (7.5.10) yield

κn = A sin2 µ + 2B sin(ν − µ) sin µ + C sin2(ν − µ) (7.5.11)

where

A = L

r2
u sin2 ν

, B = M

|ru||rθ | sin2 ν
, C = N

r2
θ sin2 ν

. (7.5.12)

Step 6: (Determination of extreme values of κn).
Equation (7.5.11) and equation

dκn

dµ
= 0 (7.5.13)

yield

tan 2µ = C sin 2ν − 2B sin ν

A − 2B cos ν + C cos 2ν
. (7.5.14)

Equation (7.5.14) yields two solutions for µ: µI and µI I = µI + π/2. This means that
the principal directions are indeed perpendicular.

Step 7: (Determination of principal curvatures).
Using the solutions for µ and Eq. (7.5.11), we obtain the sought-for principal curva-

tures.
Step 8: (Representation of principal directions).
The previously mentioned two solutions for µ and Eq. (7.5.3) allow us to represent

analytically the unit vectors of principal directions. We emphasize that, in general, two
orthogonal principal directions exist at each point of the surface with different values of
principal curvatures. A spherical surface is an exception; each direction on the surface
may be considered as the principal direction and the normal curvature is the same for all
normal sections of the surface. Another exception is the case when the normal curvature
of the surface is equal to zero for all directions. This is true for a plane or for a surface
that turns into a plane at a certain point (called a flat point).

Rodrigues’ Formula
According to Rodrigues’ formula, vectors vr and ṅr are collinear for the principal di-
rections. The principal curvatures κI and κI I satisfy the equation

κI,I I vr = −ṅr . (7.5.15)
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Consider that a regular surface and its unit normal are represented by Eqs. (7.3.1) and
(7.4.1). Vectors vr and ṅr are represented as follows:

vr = ru
du
dt

+ rθ

dθ

dt
(7.5.16)

ṅr = nu
du
dt

+ nθ

dθ

dt
. (7.5.17)

We consider that the unit normal is determined as

n = n(u, θ ). (7.5.18)

Rodrigues’ formula yields

nxu
du
dt

+ nxθ

dθ

dt

xu
du
dt

+ xθ

dθ

dt

=
nyu

du
dt

+ nyθ

dθ

dt

yu
du
dt

+ yθ

dθ

dt

=
nzu

du
dt

+ nzθ

dθ

dt

zu
du
dt

+ zθ

dθ

dt

= −κI,I I . (7.5.19)

Approach 2
The direct application of Rodrigues’ formula needs the differentiation of the radical,

|N| = (N2
x + N2

y + N2
z

)0.5
,

for determination of ṅr . This can be avoided for rare cases when a developable surface
is considered (cone surface, involute helicoid, etc). In a general case there is the need for
simplification of derivations and this can be done by using the following procedure.

Step 1: In accordance with Rodrigues’ formula we have

nudu + nθdθ = −κI,I I (rudu + rθdθ ). (7.5.20)

Step 2: Vectors nu, nθ , ru, and rθ lie in the tangent plane, and vector Eq. (7.5.20) can
be substituted by the two following scalar equations:

(nu · ru)du + (nθ · ru)dθ = −κI,I I [(ru · ru)du + (rθ · ru)dθ ] (7.5.21)

(nu · rθ )du + (nθ · rθ )dθ = −κI,I I [(ru · rθ )du + (rθ · rθ )dθ]. (7.5.22)

Step 3: It is obvious that

ru · n = 0, rθ · n = 0, (7.5.23)

and

∂

∂u
(ru · n) = ruu · n + ru · nu = 0 (7.5.24)

∂

∂θ
(ru · n) = ruθ · n + ru · nθ = 0 (7.5.25)

∂

∂θ
(rθ · n) = rθθ · n + rθ · nθ = 0 (7.5.26)

∂

∂u
(rθ · n) = ruθ · n + rθ · nu = 0. (7.5.27)
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Then we obtain

ruu · n = −(ru · nu) (7.5.28)

ruθ · n = −(ru · nθ ) = −(rθ · nu) (7.5.29)

rθθ · n = −(rθ · nθ ). (7.5.30)

We recall also [see Eqs. (7.4.10)] that

ruu · n = L(u, θ ), ruθ · n = M(u, θ ), rθθ · n = N (u, θ ) (7.5.31)

and [see Eqs. (7.4.4)]

ru · ru = E, ru · rθ = F , rθ · rθ = G. (7.5.32)

Equations (7.5.21), (7.5.22), and (7.5.28) through (7.5.32) yield two basic equations:

Ldu + Mdθ = κI,I I (Edu + F dθ) (7.5.33)

Mdu + Ndθ = κI,I I (F du + Gdθ ). (7.5.34)

Step 4: Excluding κI,I I from Eqs. (7.5.33) and (7.5.34), we obtain

(LF − ME)
(

du
dθ

)2

+ (LG − N E)
du
dθ

+ (MG − N F ) = 0 (provided dθ �= 0)

(7.5.35)

or

(MG − N F )
(

dθ

du

)2

+ (LG − N E)
dθ

du
+ (LF − ME) = 0 (provided du �= 0).

(7.5.36)

Generally, Eq. (7.5.35) [Eq. (7.5.36)] provides two solutions for du/dθ (dθ/du) that
correspond to two principal directions at the surface point with the known values of
L, M, N , F , G, and E . Then, using Eqs. (7.5.33) and (7.5.34), we obtain the principal
curvatures. The unit vectors of principal directions can be obtained by using equations

ei =
ru

du
dθ

+ rθ∣∣∣∣ru
du
dθ

+ rθ

∣∣∣∣ (provided dθ �= 0) (i = I, II ) (7.5.37)

or

ei =
ru + rθ

dθ

du∣∣∣∣ru + rθ

dθ

du

∣∣∣∣ (provided du �= 0) (i = I, II ). (7.5.38)

There are some difficulties in application of this procedure in those particular cases
when at least one of the principal directions coincides with the tangent to the respective
coordinate line. The following two particular cases illustrate the determination of the
principal directions and curvatures in those particular cases previously mentioned.
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Particular Case 1
Consider a screw involute surface that is a ruled developed surface represented as r(u, θ );
r(u, θo) (θo is constant) is the generating line. The investigation shows that one of the
principal directions coincides with the generating line, and therefore dθ = 0. It may also
be proven that in this case L = 0, M = 0. Two principal directions can be determined
by application of Eq. (7.5.36), which yields the two following solutions for dθ/du:(

dθ

du

)
I

= 0,

(
dθ

du

)
I I

= − E
F

.

Using Eqs. (7.5.33) and (7.5.34), we obtain

κI = 0 for
dθ

du
= 0, κI I = N E

GE − F 2
for

dθ

du
= − E

F
.

Particular Case 2
A surface of revolution is represented by r(u, θ ); r(u, θo) (θo is constant) is the generating
line. The tangents to the coordinate lines are mutually perpendicular, and therefore
F = ru · rθ = 0. The investigation also shows that M = ruθ · n = 0.

In this particular case the principal directions coincide with the tangents to the coor-
dinate lines. This can be proven by application of Eq. (7.5.35), which yields du = 0. The
other principal direction corresponds to dθ = 0, and this result is based on the following
considerations: (i) it is known that the principal directions are mutually perpendicular;
(ii) the solution du = 0 for the principal direction means that the unit vector of the
principal direction is collinear to rθ ; (iii) the unit vector of the other principal direction
is collinear to ru, because F = ru · rθ = 0, and the principal directions are mutually per-
pendicular. The same results may be obtained by application of Eq. (7.5.36) and the
equation F = 0.

The principal curvatures of the surface of revolution can be obtained by application
of basic Eqs. (7.5.33) and (7.5.34), which yield

κI = N
G

(provided dθ �= 0)

κI I = L
E

(provided du �= 0).

Problem 7.5.1
Consider a cone surface that is represented by equations (Fig. 7.5.2)

x = u cos α, y = u sin α cos θ, z = u sin α sin θ (7.5.39)

where (u, θ ) are the surface coordinates, u = |OM|, and α is the apex angle. The surface
unit normal is determined with the equation

n = ru × rθ

|ru × rθ | = [sin α −cos α cos θ −cos α sin θ]T (7.5.40)

(provided u sin α �= 0).
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Figure 7.5.2: Cone surface.

(a) Determine auxiliary parameters (i) ν [use Eqs. (7.5.4)], and (ii) coefficients A, B,
and C [use Eqs. (7.5.12)].

(b) Determine solutions of µ for principal directions [use Eq. (7.5.14)], and unit vectors
for principal directions [use Eq. (7.5.37)].

(c) Determine principal curvatures κI and κII .

Solution
(a) ν = 90◦, A = 0, B = 0, C = 1

u tan α
.

(b) µI = 90◦, eI = eu = ru

|ru| = [cos α sin α cos θ sin α sin θ]T

µI I = 0, eI I = eθ = rθ

|rθ | = [0 − sin θ cos θ ]T.

(c) κI = 0, κI I = 1
u tan α

.

Problem 7.5.2
Consider a spherical surface that is represented by

r = [ρ cos θ cos u ρ cos θ sin u ρ sin θ]T. (7.5.41)

The surface unit normal is represented by

n = ru × rθ

|ru × rθ | = [cos u cos θ sin u cos θ sin θ]T (7.5.42)

(provided ρ cos u �= 0). The surface normal N is equal to zero at two points where
cos u = 0, but such points are just pseudosingular points [see Section (5.5)].

(a) Determine auxiliary expressions for (i) ν [use Eqs. (7.5.4)], and (ii) coefficients A,
B, and C [use Eqs. (7.5.12)].
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(b) Determine solutions of µ for principal directions if such exist [use Eq. (7.5.14)].
(c) Derive the equation for normal curvature [use Eq. (7.5.11)].

Solution
(a) ν = 90◦, A = −1

ρ
, B = 0, C = −1

ρ
.

(b) The values of µ for principal directions are undetermined.

(c) The normal curvature is κn = −1
ρ

and does not depend on µ.

Problem 7.5.3
Consider the surface of an Archimedes worm that is represented by the equations

x = u cos α cos θ, y = u cos α sin θ, z = pθ − u sin α (7.5.43)

where (u, θ ) are the surface coordinates, p is the screw parameter, and α is a constant
design parameter. The worm surface is a ruled one and is generated by a straight line
that performs a screw motion about the worm axis (the z axis). The surface unit normal
is represented by the equations

n = N
|N| = ru × rθ

|ru × rθ | = (u2 + p2)−0.5

u sin α cos θ + p sin θ

u sin α sin θ − p cos θ

u cos α

 (7.5.44)

(provided cos α �= 0).
Using approach 1, derive equations for:

(i) angle ν and ν/2 [use Eqs. (7.5.4)];
(ii) coefficients A, B, and C [use Eqs. (7.5.12)];

(iii) angle µ that determines the principal directions on the worm surface [use Eq.
(7.5.14)];

(iv) unit vector t of principal directions [use Eq. (7.5.3)];
(v) principal curvatures [use Eq. (7.5.11)].

Solution

(i) cos ν = − p sin α√
u2 cos2 α + p2

, sin ν = cos α
√

u2 + p2√
u2 cos2 α + p2

tan
ν

2
= p sin α +

√
u2 cos2 α + p2

cos α
√

u2 + p2
.

(ii) A = 0, B = − p(u2 cos2 α + p2)0.5

(u2 + p2)
3
2 cos α

C = − u2 tan α

(u2 + p2)
3
2

.
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(iii) tan 2µ = 2[p(u2 cos2 α + p2)0.5 − u2 sin α cos ν] sin ν

2[p(u2 cos2 α + p2)0.5 − u2 sin α cos ν] cos ν + u2 sin α

= 2p(u2 + p2)
3
2

tan α[u2(u2 cos2 α + p2) − 2p2(u2 + p2)]
.

These equations provide two solutions for µ: µI and µI I = µI + π/2.

(iv) ei = eu sin µi + eθ sin(ν − µi )
sin ν

(i = I, II ).

(v) κi = [2B sin µi + C sin(ν − µi )] sin(ν − µi ) (i = I, II ).

Problem 7.5.4
With the conditions of Problem (7.5.3), using approach 2, derive equations for:

(i) coefficients E , F , G, L, M, and N for the first and second fundamental form [use
Eqs. (7.4.4) and (7.4.10), respectively];

(ii) (du/dθ )i = hi (i = I , I I ) that correspond to principal directions [use Eq. (7.5.35)];
(iii) principal curvatures [use Eqs. (7.5.33) and (7.5.34)];
(iv) expressions for the unit vectors of principal directions [use Eqs. (7.5.37)].

Solution
(i) E = 1, F = −p sin α, G = u2 cos2 α + p2

L = 0, M = − p cos α

(u2 + p2)
1
2

, N = −u2 sin α cos α

(u2 + p2)
1
2

.

(ii) hi = −u2 sin α ± (u4 sin2 α + 4p2u2 + 4p4)0.5

2p
(i = I, II ).

The upper and lower signs correspond to i = I, II , respectively.

(iii) κi = Lhi + M
Ehi + F

(i = I, II ).

(iv) ei = ruhi + rθ

|ruhi + rθ | (i = I, II ).

7.6 EULER’S EQUATION

Euler’s equation relates the normal and principal curvatures of a surface and is repre-
sented as

κn = κI cos2 q + κI I sin2 q (7.6.1)

where q is formed by vector
−→

MN and the unit vector eI (Fig. 7.6.1). Vector
−→

MN rep-
resents the direction chosen in the tangent plane to the surface, and κn is the surface
normal curvature on this direction. Unit vectors eI and eI I are directed along the prin-
cipal directions, and κI and κI I are the principal curvatures.
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Figure 7.6.1: Decomposition of vec-
tors ṅr and vr .

The derivation of Eq. (7.6.1) is based on the following considerations:

(i) Directions of vectors vr and ṅr [see Eq. (7.5.15)] are not collinear at any direction
that differs from eI and eI I (Fig. 7.6.1).

(ii) Using Eq. (7.4.24) for normal curvature, after transformations, we obtain

κn = − ṅr · vr

(vr )2
= − ṅr I vr I + ṅr I I vr I I

(vr I )2 + (vr I I )2
. (7.6.2)

(iii) According to Rodrigues’ formula, vectors vr i and ṅr i (i = I, I I ) are collinear at
principal directions and

κi vr i = −ṅr i (i = I, I I ). (7.6.3)

(iv) Equations (7.6.2) and (7.6.3) yield

κn = κI (vr I )2 + κI I (vr I I )2

(vr I )2 + (vr I I )2
. (7.6.4)

(v) In accordance with Fig. 7.6.1, we have

cos q = vr I

[(vr I )2 + (vr I I )2]0.5
, sin q = vr I I

[(vr I )2 + (vr I I )2]0.5
. (7.6.5)

(vi) Considering Eqs. (7.6.4) and (7.6.5) simultaneously, we obtain Euler’s equation
(7.6.1).

7.7 GAUSSIAN CURVATURE; THREE TYPES OF SURFACE POINTS

The Gaussian curvature K at a point of a surface is represented by

K = κI κI I = LN − M2

EG − F 2
.
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Figure 7.7.1: Surface elliptic point.

The sign of K depends on the signs of principal curvatures κI and κI I . We can also
determine the sign of K through the sign of (LN − M2) because (EG − F 2) is always
positive.

There are three types of surface points:

(1) The elliptic point – when the principal curvatures are of the same sign and the
Gaussian curvature K > 0 (Fig. 7.7.1).

(2) The hyperbolic point – when the principal curvatures are of different signs and
the Gaussian curvature K < 0 (Fig. 7.7.2). The surface has the form of a saddle
near the considered point M. There are two such directions at M where the normal
curvature is zero. These directions are called asymptotic.

Figure 7.7.2: Surface hyperbolic point.
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Figure 7.7.3: Surface parabolic point.

(3) The parabolic point – when one of the principal curvatures is zero (direction I in
Fig. 7.7.3).

There are two approaches for determination of asymptotic directions. The first one
is based on Euler’s equation (7.6.1), which for the case when κn = 0 yields

tan q = ±
√

− κI

κI I
. (7.7.1)

Equation (7.7.1) provides two real solutions for the asymptotic directions. Solutions
for q that differ for π determine the same directions. The other approach is based on
application of Eq. (7.5.11), which for the case when κn = 0 yields

tan µ = sin ν

cos ν − B ∓ (B2 − AC)0.5

C

. (7.7.2)

Equation (7.7.2) provides two solutions of µ for asymptotic directions (solutions of µ

that differ for 180◦ are not taken into account).
There is a specific interest in determining curvatures of ruled surfaces. Such surfaces

are generated by a certain motion of a straight line. The surface parameter u in vector
equation r(u, θ ) for a ruled surface determines the location of a point on the generating
straight line. The second derivative ruu and coefficients L and A on this direction are
equal to zero.

There are two types of ruled surfaces: (i) those with a hyperbolic point, and (ii) those
with a parabolic point. It is evident from Eq. (7.7.2) that there are two asymptotic
directions for a ruled surface with a hyperbolic point that are determined with the
following values of µ:

µI = ν (7.7.3)

tan µI I = sin ν

cos ν − 2B
C

(7.7.4)

(provided B �= 0).
Let us now consider such ruled surfaces for which A = B = 0. The analysis of Eqs.

(7.5.11) and (7.5.12) yields the following results:
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(i) Two principal directions on the ruled surface are determined with the conditions

ν − µI = 0 |ν − µI I | = 90◦. (7.7.5)

(ii) The principal curvatures are

κI = 0 κI I = C. (7.7.6)

It can be proven that the condition B = 0 is satisfied for a developed ruled surface,
taking into account the following considerations:

(a) Equation B = 0 yields

M = ruθ · n = 0 (7.7.7)

and

ruθ = 0, (7.7.8)

or ruθ lies in the tangent plane; n �= 0 because a regular surface is considered.
(b) It is evident that

rθ · n = 0 (7.7.9)

and

∂

∂u
(rθ · n) = rθu · n + rθ · nu = 0. (7.7.10)

(c) Equations (7.7.8) and (7.7.10) yield that nu = 0 (rθ �= 0 for a regular surface). This
means that the unit normals to the surface along the generating line are equal. Such
a surface is a developable ruled surface.

A cone and an involute helicoid are examples of a developed ruled surface, and
the point of the surface is a parabolic one. The surface of an Archimedes worm is an
undeveloped ruled surface, the point of the surface is a hyperbolic one, and there are
two asymptotic directions on such a surface.

Problem 7.7.1
Consider a straight helicoid that represents the surface of a square screw. We may
obtain equations of a straight helicoid taking in Eqs. (7.5.43) α = 0. Verify that in this
particular case A = 0, C = 0, and ν = 90◦, and determine the asymptotic directions
[use Eq. (7.5.11)].

Solution

µI = 90◦ and µI I = 0◦.

The asymptotic directions coincide with the tangents to coordinate lines.
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Figure 7.8.1: For derivation of Dupin’s
indicatrix.

7.8 DUPIN’S INDICATRIX

Dupin’s indicatrix is a planar curve that illustrates the change of surface normal curva-
ture in the neighborhood of surface point M. The position vector of a point of such a
curve is designated with ρ where |ρ| = √|ρn| and |ρn| is the radius of normal curvature
(Fig. 7.8.1). Axes η and ξ lie in plane T that is tangent to the surface and are directed
along the unit vectors eI and eI I of principal directions. The normal curvature κn and the
principal curvatures κI and κI I are related by Euler’s equation (7.6.1) and |κn| = 1/ρ.
The Dupin’s indicatrix can be represented in coordinate system (η, ξ ) as follows:

η =
√

|ρ| cos q, ξ =
√

|ρ| sin q. (7.8.1)

We consider the Dupin’s indicatrix for elliptic, hyperbolic, and parabolic points of a
surface.

Elliptic Point
Equations (7.8.1) and (7.6.1) yield

η2

ρI
+ ξ2

ρI I
= 1 (7.8.2)

where ρI = 1/κI , ρI I = 1/κI I . The Gaussian curvature K = κI κI I is positive, and
choosing appropriately the direction of the surface normal, we may consider that ρI and
ρI I are positive. Equation (7.8.2) represents an ellipse with axes a = √

ρI and b = √
ρI I

(Fig. 7.8.2).

Hyperbolic Point
The Gaussian curvature K = κI κI I is negative. We may assume that the chosen direction
of the surface normal provides that κI is positive. Equations (7.8.1) and (7.6.1) yield
the following equation of the indicatrix:

η2

a2
− ξ2

b2
= ±1,

which is the equation of two conjugate hyperboles (Fig. 7.8.3). Here, a = √
ρI and



P1: JsY

CB672-07 CB672/Litvin CB672/Litvin-v2.cls April 15, 2004 16:15

194 Curvatures of Surfaces and Curves

Figure 7.8.2: Dupin’s indicatrix for a
surface elliptic point.

b = √
ρI I . The hyperboles have the same asymptotes whose directions are determined

with Eq. (7.7.1).

Parabolic Point
The Gaussian curvature is zero. Assuming that K = κI κI I = 0 because κI I = 0 we ob-
tain that the indicatrix is represented by the equation

η2

ρI
= 1,

and the indicatrix is a set of two straight lines (Fig. 7.8.4).

7.9 GEODESIC LINE; SURFACE TORSION

Geodesic Line
The geometric interpretation of surface torsion is based on the concept of the geodesic
lines on a surface. A line on a surface is a geodesic one if the principal normal to the

Figure 7.8.3: Dupin’s indicatrix for a sur-
face hyperbolic point.
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Figure 7.8.4: Dupin’s indicatrix for a sur-
face hyperbolic point.

curve at any curve point M coincides with the surface normal at M, or if the surface line
is a straight one. It follows from this definition that the geodesic curvature of a geodesic
line at any curve point is equal to zero.

When a set of curves on a surface is considered (Fig. 7.3.3) that pass through surface
point M and have a common unit tangent t at M, there is a single curve of such a set that
has the properties of a geodesic line. This line corresponds to the considered tangent
vector. This means that because there is an infinite number of vectors t at the surface
regular point M, there is an infinite number of geodesic lines that pass through M.

It has been proven in differential geometry that the geodesic line G that passes through
the surface points M and N is the shortest distance between M and N . However, if G
is a closed curve, the smaller arc

�
MN should be considered.

Figures (7.9.1) through (7.9.3) illustrate various examples of geodesic curves. In the
case of a spherical surface any line of its large circle that passes through surface point
M is a geodesic line. Figure 7.9.1 shows the infinite number of geodesic lines that pass
through surface point M.

In the case of a surface of revolution (Fig. 7.9.2) the geodesic lines with common
surface point M are the generatrix G that passes through M, and an infinite large
number of lines L. The current point Mi of L is determined with the following equation
based on Clariaut’s theorem [Favard, 1957]:

ρi sin βi = constant (7.9.1)

where ρi is the distance of point Mi from the axis of the surface of revolution. A
particular case of a surface of revolution is the surface of a circular cylinder (Fig. 7.9.3).
The geodesic lines at point M are the generatrix, the cylinder circle, and an infinitely
large number of helices with angles βi ; two of these helices are shown in Fig. 7.9.3. In
the case of a ruled surface (developed or undeveloped) one of the geodesic lines that
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Figure 7.9.1: Geodesic lines on a spher-
ical surface.

passes through surface point M is the generatrix (it is a straight line) that generates the
ruled surface.

Surface Torsion as the Curve Torsion of a Geodesic Line
In accordance with Bonnet’s theorem (see Favard [1957]) the surface torsion is the
same for the whole set of curves that are in tangency with each other at surface point M

Figure 7.9.2: Geodesic lines on a surface of revolution.
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Figure 7.9.3: Geodesic lines on a cylinder surface.

(Fig. 7.3.3). One of these curves is the geodesic line that is unique for the consid-
ered common unit tangent t. Thus, the curve torsion of the geodesic line is the same
as the surface torsion of any surface curve that is in tangency with the geodesic
line.

We have found above [see expressions (7.3.14)] that the surface torsion t is represented
as

t = τ + δs

(
δs = d

ds
(δ)
)

(7.9.2)

where δ is the angle that is formed by the principal normal to the curve and the
surface normal. In the case of a geodesic line, δ is equal to zero or 180◦ at any
point of the curve, and δs = 0. Thus, t = τg where τg is the torsion of the geodesic
line. This means that the surface torsion is equal to the torsion of the geodesic
line.

The surface torsion and the torsion of the geodesic line may be interpreted as well
as the measure of how the surface normal plane (it is drawn through the tangent to
the geodesic line) is twisting as a point moves along the geodesic line. (Recall that the
current osculating plane for a geodesic line coincides with the respective surface normal
plane.)

Analytically, this can be proven with the following considerations:

(i) Equations (7.2.17) and (7.2.14) yield that the torsion for a spatial curve may be
represented as

τ = −bs · m = ms · b. (7.9.3)
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Figure 7.9.4: For interpretation of surface torsion.

(ii) When the spatial curve is the geodesic line on the surface, b = −d because m and
n coincide for a geodesic line, and the torsion of the geodesic line is

τg = −ns · d. (7.9.4)

The derivative ns in accordance with Fig. 7.9.4 can be represented as follows:

ns = at + bd. (7.9.5)

Here, a and b are the projections of ns on the unit vectors t and d, determined as

a = ns · t, b = ns · d. (7.9.6)

Equations (7.9.5) and (7.9.4) yield

t = τg = −ns · d = −b (7.9.7)

where b is the measure of how the surface normal plane twists when a point moves
along the unit tangent t to the curve.

Relations Between Surface Torsion and Surface Principal Curvatures
We consider two cases:

(i) The principal curvatures and directions at surface point M are known. The unit
vector t is determined with angle q (Fig. 7.9.4). The goal is to determine the surface
torsion in the direction of t.

(ii) Two directions in the tangent plane determined by the unit vectors t(1) and t(2)

that form angle µ (Fig. 7.9.5) are given. The surface normal curvatures (κ (1)
n , κ

(2)
n )

and surface torsion t (1) are known. The goal is to determine the surface principal
curvatures (κI , κI I ) and angle q(1) (or q(2)).

Case 1
Figure 7.9.4 shows the surface trihedron e f (t, d, n), where t is the unit tangent to the
surface curve; n is the surface normal; unit vectors t and d form a tangent plane; the
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Figure 7.9.5: Surface principal directions and directions of
tangents to two surface curves.

origin of the trihedron is the current point M of the surface curve; unit vectors eI and
eI I represent the principal directions; the principal curvatures are κI and κI I ; and angle
q is formed by the unit vectors eI and t.

Our goal is to represent the surface torsion t in terms of κI , κI I , and q. The derivations
are based on the third equation of system (7.3.15).

Consider that the trihedron moves along the surface curve and vector ds represents the
displacement along t. The displacement of the trihedron is accompanied with the change
of orientation of the surface normal n that is represented by dn (Fig. 7.9.4). Generally,
dn and ds are not collinear. The third equation of system (7.3.15) is represented as

ns = dn
ds

= −κnt − td. (7.9.8)

The procedure for derivation of t in terms of principal curvatures is as follows:
Step 1: Multiplying both parts of Eq. (7.9.8) by eI and eI I , we obtain (Fig. 7.9.4)

dnI = (−κn cos q + t sin q)ds (7.9.9)

dnI I = (−κn sin q − t cos q)ds . (7.9.10)

Step 2: The displacement vector ds can be represented as

ds = (cos qeI + sin qeI I )ds = dsI eI + dsI I eI I (7.9.11)

where

dsI = ds cos q, dsI I = ds sin q. (7.9.12)

Step 3: In accordance with Rodrigues’ theorem, we have

dnI

dsI
= −κI ,

dnI I

dsI I
= −κI I . (7.9.13)

Thus

dnI = −κI cos qds, dnI I = −κI I sin qds . (7.9.14)
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Step 4: Equations (7.9.9), (7.9.10), and (7.9.14) represent the following system of
two linear equations in unknowns κn and t :

−κI cos q = −κn cos q + t sin q (7.9.15)

−κI I sin q = −κn sin q − t cos q. (7.9.16)

Step 5: The solution of these equations for the surface torsion t yields

t = 0.5(κI I − κI ) sin 2q. (7.9.17)

Equation (7.9.17) has been proposed by Sophia Germain (see Nutbourne & Martin
[1988]) and by O. Bonnet (see Favard [1957]). It is obvious that the surface torsion is
equal to zero when the tangent coincides with the principal direction (when q is zero or
90◦).

NOTE. The solution of the system of linear equations (7.9.15) and (7.9.16) for κn rep-
resents the Euler equation introduced as

κn = κI cos2 q + κI I sin2 q (7.9.18)

where κn is the surface normal curvature in the direction of t.

Case 2
The input data are the normal curvatures κ

(1)
n , κ

(2)
n given in directions of t(1) and

t(2), and surface torsion t (1) given for t(1); angle µ is formed by t(1) and t(2)

(Fig. 7.9.5). The goal is to determine the principal curvatures κI and κI I and angle
q(1) (or q(2)) (Fig. 7.9.5). The solution to this problem is based on the Euler equation for
normal curvatures κ

(1)
n and κ

(2)
n and Eq. (7.9.17). Then we obtain the following system

of three equations:

κI
(
1 + cos 2q(1)

)+ κI I
(
1 − cos 2q(1)

) = 2κ
(1)
n

κI
[
1 + cos 2

(
q(1) + µ

)]+ κI I
[
1 − cos 2

(
q(1) + µ

)] = 2κ
(2)
n

κI − κI I = − 2t (1)

sin 2q(1)
.

(7.9.19)

We may consider equation system (7.9.19) as a system of three dependent linear
equations in two unknowns κI and κI I . The rank of the augmented matrix must be
equal to two, and this yields

tan 2q(1) = t (1)(1 − cos 2µ)

κ
(2)
n − κ

(1)
n − t (1) sin 2µ

. (7.9.20)

The solution of equations (7.9.19) for κI and κI I is

κI = κ
(1)
n − t (1) tan q(1) (7.9.21)

κI I = κ
(1)
n + t (1) cot q(1). (7.9.22)

Equations (7.9.20) to (7.9.22) enable us to determine the principal curvatures of the
surface and the principal directions (Fig. 7.9.5).
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Relation Between Surface Normal Curvatures and Torsions in
Directions of t(1) and t(2) (Fig. 7.9.5)
Equation (7.9.17) yields that

t (2)

t (1)
= sin 2

(
q(1) + µ

)
sin 2q(1)

. (7.9.23)

Then, using equations (7.9.23) and (7.9.20), we obtain the sought-for relation

t (1) + t (2)

κ
(2)
n − κ

(1)
n

− cot µ = 0. (7.9.24)
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8 Mating Surfaces: Curvature Relations,
Contact Ellipse

8.1 INTRODUCTION

Consider that two solids (1 and 2) are provided with interacting surfaces �1 and �2, and
perform the prescribed transformation of motion. Surfaces �1 and �2 are in continuous
tangency. These conditions are typical for the case of generation of surfaces by a tool,
and for transformation of motion by gear tooth surfaces.

Henceforth, we differentiate two cases of tangency: (i) the interacting surfaces �1 and
�2 are in line contact at every instant, and �2 is the envelope to the family of surfaces
that is generated by �1 in coordinate system S2; and (ii) surfaces �1 and �2 are in point
contact at every instant (the contact of �1 and �2 is localized).

We consider as given surface �1 and the location of point P of surface tangency
(P is the point of the characteristic on �1 in the case in which �2 is the envelope, or
the single point of tangency of �1 and �2); given as well are the value of transmission
function φ2(φ1) at point P and the derivative ∂/∂φ1(φ2(φ1)) at P . (The characteristic is
the instantaneous line of contact of enveloping surfaces). Our goals are to determine
(i) direct relations between the principal curvatures and directions of contacting surfaces
at P, (ii) relations between the normal curvatures of surfaces �1 and �2, and (iii) the
relative normal curvatures.

The solution to these problems is important for computerized simulation of bear-
ing contact of interacting surfaces. The solution is based on the following ideas: (i) the
velocity of a contact point in a fixed coordinate system (the reference frame for the mov-
able solids) is represented in two components: (a) transfer motion with surface �i , and
(b) relative motion over surface �i (i = 1, 2); and (ii) the displacement over the surface
may be decomposed and represented by two components in separate motions along the
principal directions of the respective surface; and (iii) a similar idea of decomposition
is applied for representation of motion in two perpendicular directions in the tangent
plane, particularly when one of these directions is the tangent to the contact line (for
enveloping surfaces).

Decomposition of motion along the principal directions for a single surface was ap-
plied by Sophia Germain (see Nutbourne & Martin [1988]) for presentation of the sur-
face torsion in terms of principal curvatures of the surface. Decomposition of motions
along principal directions for interacting surfaces has been applied by Litvin [1969].

202
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An extended approach, in a more general form, has been developed by Litvin & Hsiao
[1993] and is presented in this book.

8.2 BASIC EQUATIONS

Conditions of continuous tangency of interacting surfaces yield the following relations
between the velocities of the contact point (see Section 6.2):

v(1)
tr + v(1)

r = v(2)
tr + v(2)

r . (8.2.1)

Thus,

v(2)
r = v(1)

r + v(1)
tr − v(2)

tr = v(1)
r + v(12). (8.2.2)

The subscripts “r ” and “tr ” indicate the velocity of the contact point in relative motion
(over the surface) and in transfer motion (with the surface), respectively; v(12) is the
sliding velocity at the point of surface tangency, which is determined with the equation

v(12) = ω(12) × r(1) − R × ω(2). (8.2.3)

Here, r(1) is a position vector that is drawn from a point of the line of action of ω(1) to
the point of tangency, and R is a position vector that is drawn from a point of the line
of action of ω(1) to a point of the line of action of ω(2).

Similarly, we obtain

ṅ(2)
r = ṅ(1)

r + (ω(1) − ω(2))× n = ṅ(1)
r + (ω(12) × n

)
. (8.2.4)

Here, ṅ(i )
r is the velocity of the tip of the surface unit normal in its motion over the

surface (in addition to the translational motion), n is the surface unit normal, and ω(i ) is
the angular velocity of solid i (it is assumed that the solids with the interacting surfaces
perform rotational motions). The advantage of Eqs. (8.2.2) and (8.2.4) is the possibility
of determining v(2)

r and ṅ(2)
r for surface �2, although the equations of �2 are not known

yet.
For further derivations, in addition to Eqs. (8.2.2) and (8.2.4), we use the differenti-

ated equation of meshing

d
dt

(
n · v(12)) = 0. (8.2.5)

The equation of meshing

n · v(12) = 0 (8.2.6)

is the necessary condition of the existence of the envelope to the family of surfaces (see
Section 6.1). Using Eqs. (8.2.3) to (8.2.6), we obtain after transformations the following
differentiated equation of meshing:(

ṅ(i )
r · v(12))− [v(i )

r · (ω(12) × n
)]+ n · [(ω(1) × v(2)

tr
)− (ω(2) × v(1)

tr
)]

− (ω(1))2m′
21n · [k2 × (r(1) − R

)] = 0 (i = 1, 2). (8.2.7)
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Here,

m21(φ1) = ω(2)

ω(1)
, m′

21 = ∂

∂φ1
[m21(φ1)].

8.3 PLANAR GEARING: RELATION BETWEEN CURVATURES

The equations of the envelope to a family of planar curves are more complicated than the
equations of the curve that generates the curve family. Thus, it is an attractive prospect
to determine the curvature of the envelope having only the equations of the generating
curve and parameters of motion of the process for envelope generation. Such a method
was first proposed by Litvin [1969].

Planar gearing may be considered as a particular case of spatial gearing, which is
discussed below in Sections 8.4 to 8.6. For the purpose of simplification of study, the
case of planar gearing is considered first and independent of these sections.

Consider the following conditions:

(1) Three coordinate systems S1, S2, and Sf are applied. Coordinate systems S1 and
S2 are rigidly connected to the driving and driven gears 1 and 2; coordinate system
Sf is rigidly connected to the frame.

(2) The shape �1 is represented by

r1(θ1) ∈ C2, θ1 ∈ G,
dr1

dθ1
�= 0. (8.3.1)

(3) The angles of gear rotation φ1 and φ2 are related by the function

φ2(φ1) ∈ C2, a < φ1 < b. (8.3.2)

(4) The equation of meshing is determined by the equation

n(1)
f · v(12)

f = n(1)
f · [(ω(12)

f × r(1)
f

)− (O1O2 × ω
(2)
f

)] = f (θ1, φ1) = 0. (8.3.3)

(5) The curvature of shape �1 is represented by the equation

κ1v(1)
r = −ṅ(1)

r . (8.3.4)

The curvature of shape �2 is represented as

κ2v(2)
r = −ṅ(2)

r . (8.3.5)

The problem is to determine the curvature κ2 of shape �2 in terms of κ1 and the
parameters of motion. The solution to this problem is based on Eqs. (8.2.2), (8.2.4),
and (8.2.5), which we represent as follows:

v(2)
r = v(1)

r + v(12) (8.3.6)

ṅ(2)
r = ṅ(1)

r + (ω(12) × n(1)
)

(8.3.7)

d
dt

(
n(1) · v(12)) = 0. (8.3.8)
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Equation (8.3.8) is just the equation of meshing differentiated with respect to time. The
subscript f in Eq. (8.3.8) [see Eq. (8.3.3)] is dropped for simplification.

Let us transform Eq. (8.3.8) as follows:

d
dt

(
n(1) · v(12)) = (ṅ(1) · v(12))+

(
n(1) · d

dt

(
v(12))) = 0. (8.3.9)

Here,

ṅ(1) = ṅ(1)
tr + ṅ(1)

r = (ω(1) × n(1))+ ṅ(1)
r . (8.3.10)

We represent the derivative (d/dt) (v(12)) by

d
dt

(
v(12)) = d

dt

{[(
ω(1) − ω(2))× r(1)]− (E × ω(2))} (8.3.11)

where E = O f O2. Not losing generality in our solution, we assume that gear 1 rotates
counterclockwise with constant angular velocity ω(1). The angular velocity of gear 2 is

ω(2) = ∓ ω(2)k = ∓ ω(1)

m12(φ1)
k (8.3.12)

where

m12(φ1) = dφ1

dφ2
= 1

d
dφ1

(φ2(φ1))
.

The time derivative ω̇(2) is

ω̇(2) = ∓ d
dφ1

(
ω(1)

m12(φ1)

)
dφ1

dt
k = ± m′

12

(
ω(1)
)2

(m12)2
k

= ± m′
12ω

(1)ω(2)

m12
k = − m′

12ω
(1)

m12
ω(2). (8.3.13)

Here, the upper (lower) sign in Eqs. (8.3.12) and (8.3.13) corresponds to gear rota-
tions in opposite (same) directions; m′

12 = (d/dφ1)(m12(φ1)); and k is the unit vector of
axis z f .

Let us now transform Eq. (8.3.11):

d
dt

(
v(12)) = (−ω̇(2) × r(1))+ (ω(12) × ṙ(1))− (E × ω̇(2))

= (−ω̇(2) × r(1))+ (ω(12) × (v(1)
tr + v(1)

r

))− (E × ω̇(2)) . (8.3.14)

Note that ṙ(1) = v(1)
abs = v(1)

tr + v(1)
r . Substituting ω̇(2) from (8.3.13), we get

d
dt

(
v(12)) = m′

12

m12
ω(1) ((ω(2) × r(1))+ (E × ω(2)))

+ (ω(12) × v(1)
r

)+ (ω(12) × v(1)
tr
)

= m′
12

m12
ω(1)v(2)

tr + (ω(12) × v(1)
r

)+ (ω(12) × v(1)
tr
)
. (8.3.15)
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Equations (8.3.9), (8.3.10), and (8.3.15) yield

d
dt

(
n(1) · v(12)) = ṅ(1)

r · v(12) + ω(1) · (n(1) × v(12))
+ n(1) · (ω(12) × v(1)

r

)+ n(1) · (ω(12) × v(1)
tr
)

+ m′
12

m12
ω(1)(n(1) · v(2)

tr
) = 0. (8.3.16)

We may transform Eq. (8.3.16) further by taking into account the following relations:

ω(1) · (n(1) × v(12)) = −n(1) · (ω(1) × v(1)
tr
)+ n(1) · (ω(1) × v(2)

tr
)

(8.3.17)

n(1) · (ω(12) × v(1)
tr
) = n(1) · [(ω(1) × v(1)

tr
)− (ω(2) × v(1)

tr
)]

. (8.3.18)

Equations (8.3.17) and (8.3.18) yield

ω(1) · (n(1) × v(12))+ n(1) · (ω(12) × v(1)
tr
)

= n(1) · [(ω(1) × v(2)
tr
)− (ω(2) × v(1)

tr
)]

. (8.3.19)

Further transformation of Eq. (8.3.19) yields

ω(1) × v(2)
tr = (

ω(1) × (ω(2) × r(1)))+ (ω(1) × (E × ω(2)))
= ω(2) (ω(1) · r(1))− r(1) (ω(1) · ω(2))+ E

(
ω(1) · ω(2))

−ω(2) (ω(1) · E
)

= (
E − r(1)) (ω(1) · ω(2)) . (8.3.20)

Here, ω(1) · r(1) = 0 and ω(1) · E = 0 due to the perpendicularity of vectors in these scalar
products. Similarly,

ω(2) × v(1)
tr = ω(2) × (ω(1) × r(1))

= ω(1) (ω(2) · r(1))− r(1) (ω(1) · ω(2))
= − r(1) (ω(1) · ω(2)) . (8.3.21)

Equations (8.3.19) to (8.3.21) yield

n(1) · [(ω(1) × v(2)
tr
)− (ω(2) × v(1)

tr
)] = (n(1) · E

) (
ω(1) · ω(2)) . (8.3.22)

The final expression of Eq. (8.3.16) is as follows:

d
dt

(
n(1) · v(12)) = ṅ(1)

r · v(12) + n(1) · (ω(12) × v(1)
r

)
+ (

n(1) · E
) (
ω(1) · ω(2))+ m′

12

m12
ω(1)(n(1) · v(2)

tr
) = 0. (8.3.23)

To get the direct relation between curvatures of conjugate shapes κ1 and κ2, we apply
a system of equations formed by (8.3.23) and from (8.3.4) to (8.3.7). We may transform
this system and obtain a system of three equations in two unknowns, v (1)

r and v (2)
r . For
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these transformations, we represent that

v (1)
r = v(1)

r · it , v (2)
r = v(2)

r · it , v (12) = v(12) · it . (8.3.24)

Here, it is the unit vector of the common tangent to the conjugate shapes; vectors v(2)
r

and v(12) are collinear at the point of shape tangency; and v (1)
r , v (2)

r , and v (12) must be
considered as algebraic quantities (they may be positive or negative).

Next, we substitute vector ṅ(1)
r by using Eq. (8.3.24). Equations (8.3.23) and (8.3.24)

yield

−κ1v (1)
r

(
v(12) · it

)+ v (1)
r it · (n(1) × ω(12))

= − (n(1) · E
) (
ω(1) · ω(2))− m′

12

m12
ω(1)(n(1) · v(2)

tr
)
. (8.3.25)

We may represent the unit normal vector as

n(1) = it × k,

which yields

it · (n(1) × ω(12)) = − it · [ω(12) × (it × k
)]

= − it · [it (ω(12) · k
)− k

(
ω(12) · it

)]
= −ω(12) · k. (8.3.26)

Here, k is the unit vector of the z axis, and

ω(12) · it = 0

due to the perpendicularity of these vectors.
Equations (8.3.24) to (8.3.26) yield[

κ1
(
v(12) · it

)+ (ω(12) · k
)]

v (1)
r = b1 (8.3.27)

where

b1 = (n(1) · E
) (
ω(1) · ω(2))+ m′

12

m12
ω(1)(n(1) · v(2)

tr
)
.

Equation (8.3.6) yields

−v (1)
r + v (2)

r = v(12) · it . (8.3.28)

Equations (8.3.7), (8.3.4), (8.3.5), and (8.3.26) yield

κ1v (1)
r − κ2v (2)

r = ω(12) · k. (8.3.29)

Equations (8.3.27) to (8.3.29) represent a system of three linear equations in two
unknowns,

ai 1x1 + ai 2x2 = bi (i = 1, 2, 3) (8.3.30)
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where

a11 = κ1
(
v(12) · it

)+ (ω(12) · k
)
, a12 = 0

b1 = (
n(1) · E

) (
ω(1) · ω(2))+ m′

12

m12
ω(1)(n(1) · v(2)

tr
)

a21 = −1, a22 = 1, b2 = v(12) · it

a31 = κ1, a32 = −κ2, b3 = ω(12) · k

x1 = v (1)
r , x2 = v (2)

r .

It is known from linear algebra that the system of Eqs. (8.3.30) possesses a unique
solution if and only if the system matrixa11 a12

a21 a22

a31 a32


and the augmented matrix a11 a12 b1

a21 a22 b2

a31 a32 b3


are of the same rank. This results in the requirement that∣∣∣∣∣∣∣

a11 a12 b1

a21 a22 b2

a31 a32 b3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a11 0 b1

−1 1 b2

κ1 −κ2 b3

∣∣∣∣∣∣∣ = 0. (8.3.31)

Substituting coefficients of the determinant (8.3.31) with the above expressions, we get

κ2 = κ1
[
b1 − (v(12) · it

) (
ω(12) · k

)]− (ω(12)
)2

κ1
(
v (12)

)2 + (ω(12) · k
) (

v(12) · it
)+ b1

. (8.3.32)

The expression for the coefficient b1 was presented above. Equation (8.3.32) is the basic
equation that relates the curvatures of tooth shapes in planar gearings.

Consider a particular case when shapes �1 and �2 are in contact at the pitch point.
At this point v(12) = 0, and the curvature of shape �2 is

κ2 = κ1 −
(
ω(12)

)2
b1

. (8.3.33)

Transformation of Translation into Rotation and Rotation
into Translation
Consider that a rack-cutter 1 generates a gear 2. Shape �1 is given, and it is necessary
to determine relations between the curvatures of shapes �1 and �2. We set up three
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Figure 8.3.1: Transformation of translation into
rotation.

coordinate systems S1, S2, and Sf , as shown in Fig. 8.3.1(a). It is assumed that

v (1)
tr

ω
= r = constant.

Here, v (1)
tr is the velocity of the rack translation, ω is the angular velocity of gear rotation,

and r is the radius of the gear centrode. The relation between curvatures of shapes �1

and �2 is based on Eqs. (8.3.4) to (8.3.7) and (8.3.16). But for the considered case, new
equations must be developed instead of Eqs. (8.3.7) and (8.3.16) due to new conditions
of motion transformation. Taking into account that translation is transformed into
rotation, we have

ω(1) = 0, ω(2) = ω, ω(12) = ω(1) − ω(2) = −ω.

The equations we apply instead of Eqs. (8.3.7) and (8.3.16) are represented by

ṅ(2)
r = ṅ(1)

r − (ω × n(1)) . (8.3.34)
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Here, ṅ(1)
r �= 0 if the profile of the rack-cutter is not a straight line.

ṅ(1)
r · v(12) − n(1) · (ω × v(1)

r

)− n(1) · (ω × v(1)
tr
) = 0. (8.3.35)

Developing Eq. (8.3.35), we assume that v(1)
tr and ω are constant vectors. The triple

product n(1) · (ω × v(1)
tr ) may be represented as

n(1) · (ω × v(1)
tr
) = (

it × k
) · (ω × v(1)

tr
)

=
∣∣∣∣∣∣
(it · ω)

(
it · v(1)

tr
)

(k · ω)
(
k · v(1)

tr
)
∣∣∣∣∣∣

= −(it · v(1)
tr
)
(ω · k) (8.3.36)

because it · ω = 0 and k · v(1)
tr = 0 due to the perpendicularity of vectors. Thus,

ṅ(1)
r · v(12) − n(1) · (ω × v(1)

r

) = −(it · v(1)
tr
)
(k · ω). (8.3.37)

Equations (8.3.4) to (8.3.6), (8.3.34), and (8.3.37) yield a system of three linear
equations in two unknowns,

ai 1x1 + ai 2x2 = bi (i = 1, 2, 3). (8.3.38)

Here,

x1 = v (1)
r , x2 = v (2)

r

a11 = κ1
(
v(12) · it

)− (ω · k), a12 = 0, b1 = (v(1)
tr · it

)
(ω · k)

a21 = −1, a22 = 1, b2 = (v(12) · it
)

a31 = κ1, a32 = −κ2, b3 = −(ω · k).

Discussions regarding the system of linear equations (8.3.38), similar to those above,
result in ∣∣∣∣∣∣∣

a11 0 b1

−1 1 b2

κ1 −κ2 b3

∣∣∣∣∣∣∣ = 0.

This yields

κ2 = κ1b1 − a11b3

a11b2 + b1
= κ1

[
(ω · k)

(
v(1)

tr + v(12)
) · it

]− ω2

κ1
(
v (12)

)2 + (ω · k)
(
v(2)

tr · it
) . (8.3.39)

Consider a case when the contact point coincides with the pitch point I [Fig. 8.3.1(a)].
Then, v(12) = 0,

v(1)
tr = v(2)

tr ,

and Eq. (8.3.39) yields

κ2 = κ1 − ω2

(ω · k)
(
v(2)

tr · it
) . (8.3.40)
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If the rack-cutter is applied for cutting of involute gears, its shape �1 is a straight line
[Fig. 8.3.1(b)] and its curvature is κ1 = 0. Equation (8.3.40) yields [Fig. 8.3.1(b)]

κ2 = − ω2

(ω · k)
(
v(2)

tr · it
) = 1

r sin α
. (8.3.41)

The positive sign of the curvature κ2 means that the curvature center is located on the
positive direction of unit normal

n(1) = it × k.

A more complicated case dealing with the curvature of generated shape �2 is discussed
in Problem 8.3.3.

Problem 8.3.1
Consider that the shape of gear 1 is an involute curve corresponding to the base circle
of radius rb1. The centrode of gear 1 is the circle of radius r1. The ratio of these radii is

rb1

r1
= cos α.

We consider the particular case wherein the contact point coincides with the pitch
point I (Fig. 8.3.2). The angular velocity ratio m12 is constant and is represented as

m12 = ω(1)

ω(2)
= r2

r1
(8.3.42)

where r1 and r2 are the gear centrode radii. Determine the curvature of gear shape �2

at the contact point, assuming that the curvature κ1 of the shape �1 is given.

Solution
At the pitch point I , we have that the velocity of sliding vector v(12) = 0, and the shape
curvatures are related by Eq. (8.3.33). The derivative m′

12 = 0 because the angular
velocity ratio is constant, and

b1 = (n(1) · E
) (
ω(1) · ω(2)) .

Vectors n(1) and E form the angle 90◦ + α. Gears rotate in opposite directions, and

ω(1) · ω(2) = −ω(1)ω(2), ω(12) = ω(1) − ω(2),
∣∣ω(12)

∣∣ = ω(1) + ω(2).

At point I the curvature radius of shape �1 is IK , and the curvature is

κ1 = 1
r1 sin α

.

The curvature κ1 > 0 because the center of curvature κ1 is located on the positive direc-
tion of the normal.

The coefficient b1 may be expressed as follows:

b1 = (n(1) · E
) (
ω(1) · ω(2)) = ω(1)ω(2)(r1 + r2) sin α.
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Figure 8.3.2: Tangency of involute profiles.

Then, we get (
ω(12)

)2
b1

=
(
ω(1) + ω(2)

)2
ω(1)ω(2)(r1 + r2) sin α

= r1 + r2

r1r2 sin α

and [see Eq. (8.3.33)]

κ2 = 1
r1 sin α

− r1 + r2

r1r2 sin α
= − 1

r2 sin α
. (8.3.43)

The negative sign for curvature κ2 means that the curvature center of shape �2 is located
on the negative direction of the normal. Equation (8.3.43) may be obtained by using
simpler methods; however, the application of general equations (8.3.32) and (8.3.33)
illustrates the power of those equations even for this particular case.

Problem 8.3.2
Consider a cam mechanism with a flat-faced follower (Fig. 8.3.3). We set up coordinate
systems S1, S2, and Sf rigidly connected to the follower, cam, and frame, respectively.
Given are the displacement function

s (φ) ∈ C2, 0 < φ < 2π, (8.3.44)
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Figure 8.3.3: Cam with a flat-faced fol-
lower.

and the shape �1 represented by the equations

x1 = θ1, y1 = 0 (8.3.45)

where a < θ1 < b. Determine (1) the equations of the cam shape �2, (2) the line of
action, and (3) the curvature κ2(φ) of the cam.

Solution

EQUATION OF MESHING. We represent shape �1 in the coordinate system Sf by

r(1)
f = θ1i f + s (φ)j f . (8.3.46)

The normal to the shape �1 is

N(1)
f = ∂r(1)

f

∂θ1
× k f = −j f . (8.3.47)

The sliding velocity is represented by

v(12)
f = v(1)

tr − v(2)
tr = ds

dt
− ω × r(1)

f = ds
dφ

ωj f −

∣∣∣∣∣∣∣
i f j f k f

0 0 ω

x(1)
f y(1)

f 0

∣∣∣∣∣∣∣
= ω

[
s (φ)i f +

(
ds
dφ

− θ1

)
j f

]
. (8.3.48)

The equation of meshing may be determined by

N(1)
f · v(12)

f = f (θ1, φ) = −ω

(
ds
dφ

− θ1

)
= 0. (8.3.49)
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Equation (8.3.49) yields that

f (θ1, φ) = θ1 − ds
dφ

= 0. (8.3.50)

This equation determines the location of the contact point M (Fig. 8.3.3) as a function
of parameter φ.

EQUATION OF SHAPE �2. Shape �2 is determined as follows:

r2 = M21r1 = M2 f r(1)
f , f (θ1, φ) = 0. (8.3.51)

Here,

M21 = M2 f M f 1 =

 cos φ sin φ s (φ) sin φ

− sin φ cos φ s (φ) cos φ

0 0 1

 .

Equations (8.3.50), (8.3.51), and (8.3.45) yield

x2 = θ1 cos φ + s (φ) sin φ, y2 = −θ1 sin φ + s (φ) cos φ, θ1 − ds
dφ

= 0. (8.3.52)

Substituting θ1 by ds/dφ in x2 and y2, we get the following equations of shape �2:

x2 = s (φ) sin φ + ds
dφ

cos φ, y2 = s (φ) cos φ − ds
dφ

sin φ. (8.3.53)

LINE OF ACTION. We represent the line of action by the expressions

r f (θ1, φ), f (θ1, φ) = 0, (8.3.54)

which yield

r f = ds
dφ

i f + s (φ)j f . (8.3.55)

CAM CURVATURE. To determine the cam curvature, we apply Eqs. (8.3.4) to (8.3.7),
which yield

−κ2
(
v(1)

r + v(12)) = −κ1v(1)
r + (ω(12) × n(1)) .

For the considered case, κ1 = 0 (shape �1 is a straight line), ω(12) = −ω, and we get

κ2
(
v(1)

r + v(12)) = ω × n(1). (8.3.56)

Equation (8.3.46) yields

v(1)
r = ∂r(1)

f

∂θ1

dθ1

dt
= dθ1

dt
i f . (8.3.57)

Differentiation of Eq. (8.3.50) gives

dθ1

dt
= d2s

dφ2
ω. (8.3.58)
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Then

v(1)
r = ω

d2s
dφ2

i f . (8.3.59)

Equations (8.3.48) and (8.3.50) yield

v(12)
f = ω s (φ)i f . (8.3.60)

Equations (8.3.56) to (8.3.60) yield that

κ2 ω

[
d2s
dφ2

+ s (φ)
]

i f =

∣∣∣∣∣∣∣
i f j f k f

0 0 ω

0 −1 0

∣∣∣∣∣∣∣ = ω i f

and

κ2 = 1

d2s
dφ2

+ s (φ)

. (8.3.61)

Cam shape �2 must be a convex curve with the curvature center located on the positive
unit normal n(1)

f (Fig. 8.3.3). The curvature κ2 is positive if the following inequality is
observed:

s (φ) + d2s
dφ2

> 0. (8.3.62)

Problem 8.3.3
Figure 8.3.4(a) shows a rack-cutter tooth that generates spur involute gears. The
straight-lined edge of the rack-cutter generates the involute curve, and the arc of the
circle of radius ρ, centered at point C1 [Figs. 8.3.4(a) and (b)], generates the fillet of
the gear. The displacement of the rack-cutter s and the angle of gear rotation φ are
related by

s = rφ (8.3.63)

where r is the radius of the gear pitch circle. Develop equations of the gear fillet and its
curvature. Apply the coordinate systems shown in Fig. 8.3.1(a).

Solution

EQUATIONS OF SHAPE �1. The position vector of a current point M of shape �1

[Fig. 8.3.4(a)] is

r1(θ1) = O1M = O1C1 + C1M. (8.3.64)

Projecting this vector equation on the x1 and y1 axes [Figs. 8.3.4(a) and (b)], we get
for the equations for shape �1,

x1 = a + ρ sin θ1, y1 = b − ρ cos θ1 (8.3.65)
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Figure 8.3.4: Rack-cutter fillet.

where

{x1(θ1), y1(θ1)} ∈ C1, 0 < θ1 < 90◦ − α

Here, a = x(C1)
c and b = y(C1)

1 are the coordinates of point C1.
Shape �1 is a simple and regular curve. The unit normal n1 to shape �1 is

n1 =
∂r1

∂θ1
× k1∣∣∣∣ ∂r1

∂θ1
× k1

∣∣∣∣ = sin θ1i1 − cos θ1j1. (8.3.66)

EQUATION OF MESHING. We apply the equation of meshing that expresses that the unit
normal at the contact point passes through the instantaneous center of rotation (pitch
point) I :

X1(φ) − x1(θ1)
nx1(θ1)

− Y1(φ) − y1(θ1)
ny1(θ1)

= f (θ1, φ) = 0. (8.3.67)

Here [Fig. 8.3.1(a)],

X1(φ) = rφ, Y1 = 0. (8.3.68)

Equations (8.3.65) to (8.3.68) yield

f (θ1, φ) = rφ − a − b tan θ1 = 0. (8.3.69)
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EQUATIONS OF SHAPE �2. Shape �2 is represented by the following equations:

r2 = M21r1, f (θ1, φ) = 0. (8.3.70)

Here [Fig. 8.3.1(a)],

M21 = M2 f M f 1 =

 cos φ sin φ −rφ cos φ + r sin φ

− sin φ cos φ rφ sin φ + r cos φ

0 0 1

 .

Equations (8.3.65), (8.3.69), and (8.3.70) yield

x2 = a cos φ + b sin φ − ρ sin(φ − θ1) − rφ cos φ + r sin φ

y2 = −a sin φ + b cos φ − ρ cos(φ − θ1) + rφ sin φ + r cos φ

rφ − a − b tan θ1 = 0.

(8.3.71)

LINE OF ACTION. We represent the line of action by the equations

r f = M f 1r1, f (θ1, φ) = 0,

which yield

r f = (a + ρ sin θ1 − rφ)i f + (b − ρ cos θ1 + r )j f , rφ − a − b tan θ1 = 0. (8.3.72)

CURVATURE OF SHAPE �2. To determine the curvature κ2, we apply Eq. (8.3.39). Here,

κ1 = −1
ρ

, it =
∂r f

∂θ1∣∣∣∣∂r f

∂θ1

∣∣∣∣ = cos θ1i f + sin θ1j f

v(1)
tr = −rωi f

v(12) = v(1)
tr − v(2)

tr = −rωi f − (ω × r f )

= −rωi f −

∣∣∣∣∣∣∣
i f j f k f

0 0 ω

x f y f 0

∣∣∣∣∣∣∣
= ω[(b − ρ cos θ1)i f + (b tan θ1 − ρ sin θ1)j f ]

(
v (12))2 = ω2

(
b

cos θ1
− ρ

)2

.

Deriving the equation for v(12), we eliminated rφ by using equation of meshing (8.3.69).
Thus, we have [see Eq. (8.3.39)]

κ2(θ1) = − r cos3 θ1 − b cos θ1

b2 + ρ(r cos3 θ1 − b cos θ1)

0 < θ1 < 90◦ − α (b is negative).

(8.3.73)
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The negative sign of κ2 indicates that the center of curvature of the generated fillet
is located on the negative direction of the normal [Fig. 8.3.4(b)]. Consequently, the
rack-cutter and the gear fillet are in internal tangency by cutting.

The rack-cutter shape �1, shown in Fig. 8.3.4(b), generates shape �2 which contains
three curves. These curves are (1) the involute curve, generated by the straight line I ;
(2) the fillet, generated by the arc of circle II ; and (3) a circle which belongs to the
dedendum, generated by the straight line III . The fillet curvature at the point of tangency
of the involute curve and the fillet corresponds to the parameter θ1 = 90◦ − α. The
curvature of the fillet at the point of its tangency with the dedendum circle corresponds
to θ1 = 0.

8.4 DIRECT RELATIONS BETWEEN PRINCIPAL CURVATURES
OF MATING SURFACES

The derivations of the curvature matrix are based on the following ideas: (i) the dis-
placement velocities of contact points and the tip of the surface unit normals in their
motions over the surfaces are related with Eqs. (8.2.2) and (8.2.4), and (ii) the displace-
ment motions are decomposed and the displacements along the principal directions on
the interacting surfaces are considered. Point P is the point of tangency of �1 and �2

(Fig. 8.4.1). The unit vectors of principal directions on �1 at point P are designated by
e f and eh; κf and κh are the respective principal curvatures of �1. Unit vectors es and eq

represent the principal directions on �2; κs and κq are the respective principal curvatures
of �2. Angle σ is formed between e f and es and is measured counterclockwise from e f

to es .

Auxiliary Equations
Henceforth, we consider in the 2D-space coordinate systems Sa (e f , eh) and Sb (es , eq)
that are rigidly connected to gears 1 and 2 (surfaces �1 and �2), respectively. The
coordinate transformation between these coordinate systems is based on application of
the following matrices:

Lba =
[

cos σ sin σ

− sin σ cos σ

]
, Lab =

[
cos σ − sin σ

sin σ cos σ

]
. (8.4.1)

Figure 8.4.1: Unit vectors in tangent plane.
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In the derivations below we use the designations

v(1)
r =

 v (1)
f

v (1)
h

, ṅ(1)
r =

 ṅ(1)
f

ṅ(1)
h

, (8.4.2)

which means that vectors v(1)
r and ṅ(1)

r are represented in coordinate system Sa (e f , eh)
which is rigidly connected to surface �1. We also need the representation of vectors
v(1)

r and ṅ(1)
r in coordinate system Sb (es , eq) which is rigidly connected to gear 2. It is

obvious that v (1)
s

v (1)
q

 = Lba

v (1)
f

v (1)
h

,

 ṅ(1)
s

ṅ(1)
q

 = Lba

 ṅ(1)
f

ṅ(1)
h

 . (8.4.3)

The superscript “1” indicates that the displacement over surface �1 is considered; the
pairs of subscripts “ f ” and “h” and “s” and “q” indicate that the respective vectors
are considered in coordinate systems Sa (e f , eh) and Sb (es , eq), respectively.

Similarly, we use the designations

v(2)
r =

v (2)
s

v (2)
q

, ṅ(2)
r =

 ṅ(2)
s

ṅ(2)
q

 (8.4.4)

and v (2)
f

v (2)
h

 = Lab

v (2)
s

v (2)
q

,

 ṅ(2)
f

ṅ(2)
h

 = Lab

 ṅ(2)
s

ṅ(2)
q

 . (8.4.5)

In Section (8.2) we represented the basic relations between the velocities of displacements
by Eqs. (8.2.2) and (8.2.4) as follows:

v(2)
r = v(1)

r + v(12), ṅ(2)
r = ṅ(1)

r + (ω(12) × n).

Considering that all vectors in these equations are represented in the same coordinate
system, say Sa , we obtain

v (2)
f

v (2)
h

 =
 v (1)

f

v (1)
h

+
v (12)

f

v (12)
h

 (8.4.6)

 ṅ(2)
f

ṅ(2)
h

 =
 ṅ(1)

f

ṅ(1)
h

+
[(

ω(12) × n
) · e f(

ω(12) × n
) · eh

]
. (8.4.7)
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Similar equations can be derived when all vectors of Eqs. (8.2.2) and (8.2.4) are repre-
sented in coordinate system Sb (es , eq), that is,v (2)

s

v (2)
q

 =
v (1)

s

v (1)
q

+
v (12)

s

v (12)
q

 (8.4.8)

 ṅ(2)
s

ṅ(2)
q

 =
 ṅ(1)

s

ṅ(1)
q

+
[ (

ω(12) × n
) · es(

ω(12) × n
) · eq

]
. (8.4.9)

Components of vectors v(i )
r and ṅ(i )

r are related by Rodrigues’ formula (see Section 7.5)
as

ṅ(i )
r = −κ

(i )
I,I I v(i )

r (i = 1, 2) (8.4.10)

where κ
(i )
I,I I are the principal curvatures of surface �i [designated above by (κf , κh) and

(κs , κq)]. Equation (8.4.10) yields ṅ(1)
f

ṅ(1)
h

 = K1

v (1)
f

v (1)
h

 =
[

−κf 0

0 −κh

]v (1)
f

v (1)
h

 . (8.4.11)

Vectors ṅ(1)
r and v(1)

r are represented in coordinate system Sa (e f , eh), and Eqs. (8.4.11)
relate the components of these vectors. Similarly, we obtain ṅ(2)

s

ṅ(2)
q

 = K2

v (2)
s

v (2)
q

 =
[

−κs 0

0 −κq

]v (2)
s

v (2)
q

 . (8.4.12)

Here, Ki (i = 1, 2) is the matrix of curvature of surface �i .
Our next goal is to derive equations that relate (i) components of vectors ṅ(1)

r and
v(1)

r that are represented in Sb (es , eq), and (ii) components of vectors ṅ(2)
r and v(2)

r that
are represented in Sa (e f , eh). This goal can be achieved by application of coordinate
transformations. The transformation of Eqs. (8.4.3) and (8.4.11) yields ṅ(1)

s

ṅ(1)
q

 = Lba K1Lab

v (1)
s

v (1)
q

 . (8.4.13)

Similar transformations of Eqs. (8.4.12) yield ṅ(2)
f

ṅ(2)
h

 = LabK2Lba

v (2)
f

v (2)
h

 . (8.4.14)

Basic System of Linear Equations
Our next goal is to derive the system of four linear equations

AX = B (8.4.15)
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where

X =
[
v (2)

f v (2)
h v (1)

s v (1)
q

]T
. (8.4.16)

Here,

v (2)
f = v(2)

r · e f , v (2)
h = v(2)

r · eh, v (1)
s = v(1)

r · es , and v (1)
q = v(1)

r · eq .

The expressions of the (4 × 4) matrix A and the (4 × 1) matrix B are given below.
We may consider that equation system (8.4.15) consists of two subsystems, in two

linear equations each. The derivation of the first subsystem in the unknowns v (2)
f and

v (2)
h is based on the following procedure:
Step 1: Considering Eqs. (8.4.7) and (8.4.14) simultaneously, we obtain ṅ(1)

f

ṅ(1)
h

+
[(

ω(12) × n
) · e f(

ω(12) × n
) · eh

]
= LabK2Lba

v (2)
f

v (2)
h

 . (8.4.17)

Step 2: Using Eqs. (8.4.11) and (8.4.6), we obtain ṅ(1)
f

ṅ(1)
h

 = K1

 v (1)
f

v (1)
h

 = K1

v (2)
f

v (2)
h

− K1

v (12)
f

v (12)
h

 . (8.4.18)

Step 3: Equations (8.4.17) and (8.4.18) yield the first subsystem of two linear equa-
tions in the unknowns (v (2)

f , v (2)
h ) as follows:

(K1 − LabK2Lba )

v (2)
f

v (2)
h

 = K1

v (12)
f

v (12)
h

+
[(

n × ω(12)
) · e f(

n × ω(12)
) · eh

]
. (8.4.19)

The derivation of the second subsystem of two linear equations in the unknowns
(v (1)

s , v (1)
q ) is based on a procedure similar to that used above.

Step 1: Equations (8.4.13) and (8.4.9) yield ṅ(2)
s

ṅ(2)
q

−
[ (

ω(12) × n
) · es(

ω(12) × n
) · eq

]
= Lba K1Lab

 v (1)
s

v (1)
q

 . (8.4.20)

Step 2: Using Eqs. (8.4.12) and (8.4.8), we obtain ṅ(2)
s

ṅ(2)
q

 = K2

 v (2)
s

v (2)
q

 = K2

v (1)
s

v (1)
q

+ K2

v (12)
s

v (12)
q

 . (8.4.21)

Step 3: Equations (8.4.20) and (8.4.21) enable us to represent the second subsystem
of two linear equations in the unknowns (v (1)

s , v (1)
q ), as follows:

(Lba K1Lab − K2)

 v (1)
s

v (1)
q

 = K2

v (12)
s

v (12)
q

−
[ (

ω(12) × n
) · es(

ω(12) × n
) · eq

]
. (8.4.22)
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The final result of the discussion above is that Eqs. (8.4.19) and (8.4.22) considered
simultaneously represent the desired system (8.4.15) of four linear equations in four
unknowns represented by the matrix (8.4.16).

Matrix A is symmetric and is represented in terms of principal curvatures of contacting
surfaces �1 and �2, and angle σ that is formed between the principal directions on �1

and �2.

A =


b11 b12 0 0

b21 b22 0 0

0 0 b33 b34

0 0 b43 b44

 . (8.4.23)

Using Eqs. (8.4.19) and (8.4.22), we obtain after transformations

b11 = −κf + 0.5(κs + κq) + 0.5(κs − κq) cos 2σ (8.4.24)

b12 = b21 = 0.5(κs − κq) sin 2σ (8.4.25)

b22 = −κh + 0.5(κs + κq) − 0.5(κs − κq) cos 2σ (8.4.26)

b33 = κs − 0.5(κf + κh) − 0.5(κf − κh) cos 2σ (8.4.27)

b34 = b43 = 0.5(κf − κh) sin 2σ (8.4.28)

b44 = κq − 0.5(κf + κh) + 0.5(κf − κh) cos 2σ. (8.4.29)

The column vector B is represented as

B = [ b15 b25 b35 b45 ]T (8.4.30)

where

b15 = − (ω(12) · eh
)− κf

(
v(12) · e f

)
(8.4.31)

b25 = (
ω(12) · e f

)− κh
(
v(12) · eh

)
(8.4.32)

b35 = − (ω(12) · eq
)− κs

(
v(12) · es

)
(8.4.33)

b45 = (
ω(12) · es

)− κq
(
v(12) · eq

)
. (8.4.34)

In the following discussion, we consider three cases:
Case 1: Surfaces �1 and �2 are in line contact at every instant, and point P lies on

the instantaneous line of tangency. Principal curvatures κf and κh are given, and the
parameters of motion at point P are known. The goal is to determine κs , κq , and σ for
�2.

Case 2: Surfaces �1 and �2 are again in line contact, but we consider the principal
curvatures κs and κq of surface �2 as given. The goal is to determine κf , κh, and σ .

Case 3: Surfaces �1 and �2 are in point contact at every instant, and P is the current
point of tangency. The goal is to determine an equation that relates κf , κh, κs , κq , and σ .

Case 1
We use for this case a system of three linear equations in the unknowns v (2)

f and v (2)
h .

This system contains the first two linear equations of system (8.4.15). The third linear



P1: JXT

CB672-08 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:13

8.4 Direct Relations Between Principal Curvatures of Mating Surfaces 223

equation is the differentiated equation of meshing (8.2.7), in which we take i = 1 and
represent it as follows:

ṅ(1)
r · v(12) − [v(1)

r · (ω(12) × n
)]

+ n · [(ω(1) × v(2)
tr
)− (ω(2) × v(1)

tr
)]

− (ω(1))2 m′
21n · [k2 × (r(1) − R

)] = 0. (8.4.35)

We transform Eq. (8.4.35) using the following procedure:
Step 1: Representing vectors of the scalar product ṅ(1)

r · v(12) in coordinate system Sa

(e f , eh), we obtain

v(12) · ṅ(1)
r =

 v (12)
f

v (12)
h

T ṅ(1)
f

ṅ(1)
h

 . (8.4.36)

Step 2: Using Eqs. (8.4.11), we obtain

v(12) · ṅ(1)
r =

v (12)
f

v (12)
h

T

K1

v (1)
f

v (1)
h

 . (8.4.37)

Step 3: Equations (8.4.37) and (8.4.6) yield

v(12) · ṅ(1)
r =

v (12)
f

v (12)
h

T

K1

v (2)
f

v (2)
h

−
v (12)

f

v (12)
h

T

K1

v (12)
f

v (12)
h



=
v (12)

f

v (12)
h

T

K1

v (2)
f

v (2)
h

+ κf
(
v (12)

f

)2 + κh
(
v (12)

h

)2
. (8.4.38)

Step 4: Our next step is directed at the transformation of the triple product {−v(1)
r ·

(ω(12) × n)}. Representing vectors of the triple product in coordinate system Sa (e f , eh),
we obtain

− v(1)
r · (ω(12) × n

) =
[(

n × ω(12)
) · e f(

n × ω(12)
) · eh

]T
v (1)

f

v (1)
h

 . (8.4.39)

Step 5: Equations (8.4.39) and (8.4.6) yield

− v(1)
r · (ω(12) × n

) =
[(

n × ω(12)
) · e f(

n × ω(12)
) · eh

]T
 v (2)

f

v (2)
h

− (n × ω(12)) · v(12). (8.4.40)
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Step 6: Using Eqs. (8.4.38) and (8.4.40), we represent Eq. (8.4.35) as follows:
v (12)

f

v (12)
h

T

K1 +
[(

n × ω(12)
) · e f(

n × ω(12)
) · eh

]T

v (2)

f

v (2)
h


= − n · [(ω(1) × v(2)

tr
)− (ω(2) × v(1)

tr
)]

+ (ω(1))2 m′
21(n × k2) · (r(1) − R)

+ (n × ω(12)) · v(12) − κf
(
v (12)

f

)2 − κh
(
v (12)

h

)2
. (8.4.41)

Finally, using Eq. (8.4.41) and the first two equations of equation system (8.4.15),
we obtain the following system of three linear equations in the unknowns v (2)

f and v (2)
h :

ti 1v (2)
f + ti 2v (2)

h = ti 3 (i = 1, 2, 3). (8.4.42)

Here,

t11 ≡ b11, t12 = t21 ≡ b12, t22 ≡ b22

t13 = t31 ≡ b15, t23 ≡ t32 ≡ b25

t33 = − n · [(ω(1) × v(2)
tr
)− (ω(2) × v(1)

tr
)]

(8.4.43)

+ (ω(1))2 m′
21(n × k2) · (r(1) − R

)
+ (n × ω(12)) · v(12) − κf

(
v (12)

f

)2 − κh
(
v (12)

h

)2
.

For further derivations, it is important to recognize that the rank of the system matrix
and the augment matrix for equation system (8.4.42) is 1. This follows from the fact
that the contacting surfaces are in line contact at every instant, the displacement of
a contact point over the surface is not unique, and therefore the solution of system
equation (8.4.42) for the unknowns v (2)

f and v (2)
h is not unique either. The requirement

that the rank of the system matrix and the augmented matrix be 1 enables us to derive
the following equations for determination of principal directions on �2 and the principal
curvatures of this surface:

tan 2σ = −2t13t23

t2
23 − t2

13 − (κf − κh)t33
(8.4.44)

κq − κs = −2t13t23

t33 sin 2σ
= t2

23 − t2
13 − (κf − κh)t33

t33 cos 2σ
(8.4.45)

κq + κs = κf + κh + t2
13 + t2

23

t33
. (8.4.46)

The advantage of Eqs. (8.4.44) to (8.4.46) is the opportunity to determine the prin-
cipal curvatures and directions on surface �2 knowing the principal curvatures and
directions on �1 and the parameters of motion of the mating surfaces. The knowledge
of principal curvatures and directions of contacting surfaces is necessary for determina-
tion of the instantaneous contact ellipse for elastic surfaces.
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Case 2
The derivations are similar to those discussed in Case 1. We consider the following
system of three linear equations:

ai 1v (1)
s + ai 2v (1)

q = ai 3 (i = 1, 2, 3). (8.4.47)

The first two equations of system (8.4.47) have been represented as the third and fourth
equations in the system of linear equations (8.4.15). The third equation in the system
(8.4.47) is the differentiated equation of meshing (8.2.7) (i = 2) that we express in terms
of v(1)

r and ṅ(1)
r . Here,

a11 = b33, a12 = a21 = b34, a22 = b44

a13 = a31 = −κs v (12)
s − ω(12) · (n × es )

a23 = a32 = −κqv (12)
q − ω(12) · (n × eq)

a33 = −n · [(ω(1) × v(2)
tr
)− (ω(2) × v(1)

tr
)]

(8.4.48)

+ {[(ω(1))2m′
21

(
n × k2

)] · (r(1) − R
)}

− n · (ω(12) × v(12))+ κs
(
v (12)

s

)2 + κq
(
v (12)

q

)2
.

The rank of the system matrix and the augmented matrix is 1, as explained for case 1.
The solution for κf , κh, and σ is as follows:

tan 2σ = 2a13a23

a2
23 − a2

13 + (κs − κq)a33
(8.4.49)

κf − κh = 2a13a23

a33 sin 2σ
= a2

23 − a2
13 + (κs − κq)a33

a33 cos 2σ
(8.4.50)

κf + κh = (κs + κq) − a2
13 + a2

23

a33
. (8.4.51)

Case 3
Surfaces �1 and �2 are in point contact at every instant. The velocity of the point of
contact in its motion over the surface has a definite direction; equation system (8.4.47)
must possess a unique solution; and the rank of the system matrix is 2. This condition
yields that ∣∣∣∣∣∣

a11 a12 a13

a12 a22 a23

a13 a23 a33

∣∣∣∣∣∣ = F
(
κf , κh, κs , κq, σ, m′

21

) = 0. (8.4.52)

There is only one relation between the principal curvatures and directions for the
contacting surfaces. Considering that the principal curvatures are given for one surface,
say �1, we can synthesize an infinitely large number of matching surfaces �2 that will
satisfy the same value of m′

12 and other motion parameters. More details are given in
Litvin & Zhang [1991].
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8.5 DIRECT RELATIONS BETWEEN NORMAL CURVATURES
OF MATING SURFACES

We consider again two cases when the interacting surfaces �1 and �2 are in line contact,
or in point contact. The plane in which unit vectors of principal directions are shown
in Fig. 8.4.1 is the tangent plane to �1 and �2, and P is the point of tangency of
these surfaces. Point P belongs to the instantaneous characteristic (instantaneous line of
tangency) in the case of line contact and is the single point of tangency in the case of point
contact. We consider three trihedrons: Sc (et , em, en), Sa (e f , eh, en), and Sb(es , eq, en),
where en ≡ n is the surface unit normal; e f and eh are the unit vectors of principal
directions on �1; es and eq are the unit vectors of principal directions on �2; and et

and em are two mutually perpendicular directions that are chosen in the tangent plane.
Angles q1, q2, and σ = q1 − q2 designate the angles that are formed between the above-
mentioned respective unit vectors.

Our goal is to determine the relations between the normal curvatures κ
(i )
t , κ

(i )
m

(i = 1, 2) along et and em for surfaces �1 and �2. Our approach to the solution of
this problem is based on two steps of decomposition of motions: the first one is per-
formed along the principal directions, and the second one is in the directions of et and
em. The derivations are based on application of Eqs. (8.2.2), (8.2.4), and (8.2.7). For the
purpose of simplification, we designate v(i )

r = v(i ), ṅ(i )
r = ṅ(i ), v(12) = v, and ω(12) = ω,

and we represent Eqs. (8.2.2) and (8.2.4) as follows:

v(1) − v(2) = −v, ṅ(1) − ṅ(2) = −(ω × n). (8.5.1)

We may represent vectors v(i ) and ṅ(i ) (i = 1, 2) in coordinate systems Sc , Sa , and Sb

as follows:

a(1) = a (1)
t et + a (1)

m em = a (1)
f e f + a (1)

h eh = a (1)
s es + a (1)

q eq(
a(1) = v(1), or a(1) = ṅ(1)) (8.5.2)

b(2) = b(2)
t et + b(2)

m em = b(2)
f e f + b(2)

h eh = b(2)
s es + b(2)

q eq(
b(2) = v(2), or b(2) = ṅ(2)) . (8.5.3)

In addition to Eqs. (8.5.1), we also consider the differentiated equation of meshing
(8.2.7). The following is an application of these equations for the following three cases.

Case 1
Surfaces �1 and �2 are in line contact, and point P is the point of the instantaneous line
of contact. Given are the normal curvatures κ

(1)
t and κ

(1)
m of �1 at point P , and angle

q1. Our goal is to derive the equations for determination of normal curvatures κ
(2)
t , κ

(2)
m ,

and angle q2 (Fig. 8.4.1).
It is shown below that the solution to this problem requires the derivation of three

linear equations in unknowns v (2)
t and v (2)

m . This system is represented as c11 c12

c21 c22

c31 c32

[v (2)
t

v (2)
m

]
=

d1

d2

d3

 . (8.5.4)
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We may derive this system, using equation system (8.4.42) in unknowns v (2)
f and v (2)

h .
It is also shown that the coefficients ckl (k = 1, 2, 3; l = 1, 2) and dk (k = 1, 2, 3) are
represented as follows:

c11 = κ
(2)
t − κ

(1)
t (8.5.5)

c12 = c21 = t (2) − t (1) (8.5.6)

c22 = κ (2)
m − κ (1)

m (8.5.7)

c31 = d1 = −t (1)v (12)
m − κ

(1)
t v (12)

t − (ω(12) · em
)

(8.5.8)

c32 = d2 = −t (1)v (12)
t − κ (1)

m v (12)
m + (ω(12) · et

)
(8.5.9)

d3 = −κ
(1)
t (v (12)

t )2 − κ (1)
m

(
v (12)

m

)2 − 2t (1)v (12)
t v (12)

m

+ (
n × ω(12)) · v(12) − n · [(ω(1) × v(2)

tr
)− (ω(2) × v(1)

tr
)]

+ (
ω(1))2 m′

21

(
n × k2

) · (r(1) − R
)
. (8.5.10)

The designation t (1) indicates the surface torsion of �1 for the displacement along et

and is represented as (see Section 7.9)

t (1) = 0.5
(
κ (1)

m − κ
(1)
t
) · tan 2q1. (8.5.11)

The following is the explanation of the derivation of Eqs. (8.5.5) to (8.5.11).

Derivation of First Two Equations of System (8.5.4)
The derivation is based on the following procedure:

Step 1: Consider the first two equations of system (8.4.42) that have been represented
as [

t11 t12

t12 t22

][
v (2)

f

v (2)
h

]
=
[

t13

t23

]
. (8.5.12)

Here [see Eqs. (8.4.42)], t11 = b11, t12 = b12, t22 = b22, t13 = b15, and t23 = b25. The
bml coefficients (m = 1, 2; l = 1, 2, 5) have been represented by Eqs. (8.4.24), (8.4.25),
(8.4.26), (8.4.31), and (8.4.32).

Step 2: The coordinate transformation in the 2D-space from Sc (et , em) to Sa (e f , eh)
(Fig. 8.4.1) is based on the matrix equation[

v (2)
f

v (2)
t

]
= Lac

[
v (2)

t

v (2)
m

]
(8.5.13)

where

Lac =
[

cos q1 − sin q1

sin q1 cos q1

]
. (8.5.14)

Step 3: Using Eqs. (8.5.12), (8.4.43), (8.5.13), and (8.5.14), we obtain after trans-
formations

Lca

[
b11 b12

b12 b22

]
Lac

v (2)
t

v (2)
m

 = Lca

[
b15

b25

]
(8.5.15)
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where

Lca = LT
ac .

Step 4: We now use the following designations:

Lca

[
b11 b12

b12 b22

]
Lac =

[
c11 c12

c12 c22

]
(8.5.16)

Lca

[
b15

b25

]
=
[

d1

d2

]
. (8.5.17)

Step 5: Using Eqs. (8.5.16) and (8.5.17) and Euler’s equations that relate the principal
and normal curvatures (see Section 7.6), we obtain the above-mentioned equations for
c11, c12, c22, d1, and d2.

Derivation of Third Equation of System (8.5.4)
We use for this purpose the third equation of system (8.4.42) that is represented as

t31v (2)
f + t32v (2)

h = b15v (2)
f + b25v (2)

h = t33 (8.5.18)

[see Eqs. (8.4.43) for t31 and t32]. The transformation of Eq. (8.5.18) is based on the
following procedure:

Step 1: Using Eqs. (8.5.18) and (8.5.13), we obtain

[b15 b25] Lac

[
v (2)

t

v (2)
m

]
= t33. (8.5.19)

Step 2: The matrix product [b15 b25] Lac can be transformed as follows:

[b15 b25] Lac = [b15 b25] LT
ca =

{
Lca

[
b15

b25

]}T

=
{[

cos q1 sin q1

− sin q1 cos q1

] [
b15

b25

]}T

. (8.5.20)

Step 3: Matrix product (8.5.20) results in a row matrix whose elements we designate
as c31, c32. Thus, {[

cos q1 sin q1

− sin q1 cos q1

] [
b15

b25

]}T

= [c31 c32]. (8.5.21)

Step 4: Equations (8.5.21) and (8.5.19) enable us to represent Eq. (8.5.18) as

[c31 c32]

[
v (2)

t

v (2)
m

]
= d3 (8.5.22)

where d3 ≡ t33.
Step 5: Using Eqs. (8.4.31) and (8.4.32) for b15 and b25, respectively, and the Euler

equations that relate the principal and normal curvatures, we obtain Eqs. (8.5.8) and
(8.5.9) for c31 and c32.
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Step 6: To derive the expression for d3, we have to transform the expressions for κf ,
κh, v (12)

f , and v (12)
h in the equation for t33 that has been represented in equation system

(8.4.43). We use for this purpose the following equations:v (12)
f

v (12)
h

 = Lac

v (12)
t

v (12)
m

 =
[

cos q1 − sin q1

sin q1 cos q1

]v (12)
t

v (12)
m

 (8.5.23)

κf = κ
(1)
t cos2 q1 − κ

(1)
m sin2 q1

cos 2q1
(8.5.24)

κh = κ
(1)
m cos2 q1 − κ

(1)
t sin2 q1

cos 2q1
. (8.5.25)

Matrix equation (8.5.23) is similar to Eq. (8.5.13). Equations (8.5.24) and (8.5.25)
are based on the Euler equations that relate the surface principal and normal curvatures
(see Section 7.6). Using the equation for t33 and Eqs. (8.5.23) to (8.5.25), we obtain the
represented equation (8.5.10) for d3.

Derivation of Direct Relations Between the Normal Curvatures
of Mating Surfaces
The derivation is based on the investigation of the overdetermined system (8.5.4) of
three linear equations in two unknowns. The augmented matrix is

C =

 c11 c12 d1

c12 c22 d2

d1 d2 d3

 . (8.5.26)

Matrix C is symmetric and its rank is 1, because the surfaces are in line contact and the
displacement of a contact point over the surface is indefinite. Therefore, we have

c11

c12
= c12

c22
= d1

d2
;

c11

d1
= c12

d2
= d1

d3
;

c12

d1
= c22

d2
= d2

d3
. (8.5.27)

After transformations, we obtain the following relations:

κ
(2)
t = κ

(1)
t + d2

1

d3
(8.5.28)

κ (2)
m = κ (1)

m + d2
2

d3
(8.5.29)

tan 2q2 = 1

κ
(2)
m − κ

(2)
t

[
tan 2q1

(
κ (1)

m − κ
(1)
t
)+ 2d1d2

d3

]
. (8.5.30)

[See expressions (8.5.8), (8.5.9), and (8.5.10) for d1, d2, and d3.] Equations (8.5.28),
(8.5.29), and (8.5.30) enable us to determine the normal curvatures κ

(2)
t , κ

(2)
m , and q2

for surface �2.

Case 2
Surfaces �1 and �2 are in line contact, and L is the instantaneous line of contact. Given
are κ

(2)
t , κ

(2)
m , q2, and m′

21 for point P of L. Our goal is to determine κ
(1)
t , κ

(1)
m , and q1.
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In this case, we consider initially system (8.4.47) of three linear equations in the
unknowns v (1)

s and v (1)
q . Using an approach that is similar to that discussed in Case 1,

we obtain

κ
(1)
t = κ

(2)
t − l 2

1

l3
(8.5.31)

κ (1)
m = κ (2)

m − l 2
2

l3
(8.5.32)

tan 2q1 = 1

κ
(1)
t − κ

(1)
m

[
tan 2q2

(
κ

(2)
t − κ (2)

m

)+ 2l1l2

l3

]
. (8.5.33)

Here,

l1 = −t (2)v (12)
m − κ

(2)
t v (12)

t − (ω(12) · em
)

(8.5.34)

l2 = −t (2)v (12)
t − κ (2)

m v (12)
m + (ω(12) · et

)
(8.5.35)

l3 = κ
(2)
t
(
v (12)

t
)2 + κ (2)

m

(
v (12)

m

)2 + 2t (2)v (12)
t v (12)

m

− (n × ω(12)) · v(12) − n · [(ω(1) × v(2)
tr
)− (ω(2) × v(1)

tr
)]

+ (ω(1))2 m′
21 (n × k2) · (r(1) − R

)
(8.5.36)

t (2) = 0.5
(
κ (2)

m − κ
(2)
t
)

tan 2q2. (8.5.37)

Equations (8.5.31) to (8.5.33) enable us to determine the normal curvatures κ
(1)
t , κ

(1)
m of

surface �1 and angle q1.

Case 3
Surfaces �1 and �2 are in point contact at point P . There is a unique solution of
the system of linear equations (8.5.4) for the unknowns v (2)

t and v (2)
m . The rank of the

augmented matrix is 2. The condition that the det(C) = 0 provides the relation

F
(
κ

(1)
t , κ (1)

m , κ
(2)
t , κ (2)

m , q1, m′
12

)
= 0. (8.5.38)

This means that there is only one constraint when surfaces with an instantaneous point
of contact are synthesized.

Particular Case
Surfaces �1 and �2 are in line contact, but et is directed along the tangent e∗

t to the
contact line at point P . In this case, we have [see Eqs. (8.5.31) to (8.5.33)]

l1 = 0, κ
(1)
t = κ

(2)
t = κt , κ (2)

m − κ (1)
m = l 2

2

l3
,

tan 2q1

tan 2q2
= κt − κ

(2)
m

κt − κ
(1)
m

(8.5.39)

t (2) = t (1) = −κtv
(12)
t + ω(12) · em

v (12)
m

. (8.5.40)

The side result of the performed investigation is the equality of the surface torsions
in the displacement along the tangent e∗

t to the contact line. It also becomes possible to
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determine the component v (i )
m = v(i )

r · e∗
m of the velocity of the contact point along e∗

m

that is perpendicular to e∗
t (see Section 8.6). However, the component v (i )

t is indefinite.

8.6 DIAGONALIZATION OF CURVATURE MATRIX

We recall that matrix A of equation system (8.4.15) is symmetric and is represented by
Eq. (8.4.23). Elements of matrix A are expressed in terms of principal curvatures of
mating surfaces, and therefore we call it the curvature matrix. Our goal is to prove that
the eigenvectors for matrix A are directed along the unit vectors et and em (Fig. 8.4.1),
where et is the unit vector of the tangent to the contact line. It is also proven below
that the eigenvalues are the extreme values of the relative normal curvature. A side
effect of this investigation is that it becomes possible to determine the components
of relative velocities v(i )

r (i = 1, 2) that are directed along em (Fig. 8.4.1). However,
the components of v(i )

r directed along the tangent to the contact line cannot be deter-
mined, because the direction of v(1)

r (or v(2)
r ) in the case of line contact of surfaces is

indefinite.
The initial system of linear equations is Eq. (8.4.15). The diagonalization of matrix

A is based on the matrix equation

UTAU = W. (8.6.1)

Here, U is the matrix of coordinate transformation that is represented by

U =


0 0 cos q1 − sin q1

0 0 sin q1 cos q1

cos q2 − sin q2 0 0

sin q2 cos q2 0 0

 . (8.6.2)

Then, we obtain that the diagonalized matrix is

W =


0 0 0 0

0 w22 0 0

0 0 0 0

0 0 0 w44

 . (8.6.3)

Here:
(i)

w11 = w33 = κ
(2)
t − κ

(1)
t = 0 (8.6.4)

because since the normal curvature along the tangent to the contact line is the same for
both surfaces.

(ii)

w12 = w21 = t (2) − t (1) = 0 (8.6.5)

because the surface torsion in the direction along the tangent to the contact line is the
same for both surfaces [see Eq. (8.5.40)].
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(iii)

w33 = w11 = 0

w34 = w43 = t (2) − t (1) = 0.
(8.6.6)

(iv) In accordance with the results of transformation, we have that

w22 = w44 = κ (2)
m − κ (1)

m (8.6.7)

where κ
(i )
m is the normal curvature along em (Fig. 8.4.1).

It can be proven that the eigenvalues of the curvature matrix represent the extreme
values of the relative normal curvature, κR . This can be done considering the equation
for κR as

κR (q) = κ (2)
n (q) − κ (1)

n (q) (8.6.8)

where

κ (2)
n = κs cos2 q + κq sin2 q, κ (1)

n = κf cos2(q + σ ) + κh sin2(q + σ ), (8.6.9)

and κ
(i )
n designates the surface normal curvature. The varied angle q represents the

direction in the tangent plane where the normal curvature is considered. The extreme
values of κR are determined with ∂κR/∂q = 0 which yields (i) that the directions of
extreme values κR coincide with e∗

t and e∗
m, respectively; and (ii) that the extreme values

of κR on these directions are κR = 0 along e∗
t , and κR = κ

(2)
m − κ

(1)
m along e∗

m.
Using the diagonalized matrix, we may determine as well equations for determination

of components v (i )
m = v(i )

r · e∗
m (i = 1, 2), where e∗

m is the unit vector that is perpendicular
to the tangent to the characteristic. Vectors e∗

t and e∗
m are shown in Fig. 8.4.1 as et and em.

We mentioned above that the initial system of linear equations is [see Eq. (8.4.15)]

A X = B.

We may transform equation system (8.4.15) using the transformations

X = UY (8.6.10)

and

Y = UTX. (8.6.11)

Here, matrix U describes the coordinate transformation in the tangent plane (see
Fig. 8.4.1) and is represented by Eq. (8.6.2). Using new designations, we represent
matrix X as follows [see Eq. (8.4.16)]:

X =
[
ṡ (2)

f ṡ (2)
h ṡ (1)

s ṡ (1)
q

]T
. (8.6.12)

Equations (8.4.15) and (8.6.10) yield

AUY = B (8.6.13)

and

UTAUY = UTB. (8.6.14)
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We recall [see Eq. (8.6.1)] that

UTAU = W. (8.6.15)

Matrix W is represented above by Eqs. (8.6.3) and (8.6.7). The matrix product UTB we
designate by E. Then we obtain

E = WY (8.6.16)

where

E = [ e1 e2 e3 e4 ]T . (8.6.17)

Equations (8.6.16), (8.6.3), (8.6.7), (8.6.11), (8.6.2), and (8.6.12) yield

e1 = e3 = 0 (8.6.18)

e2 = (−ṡ (1)
s sin q2 + ṡ (1)

q cos q2
) (

κ (2)
m − κ (1)

m

)
(8.6.19)

e4 = (− ṡ (2)
f sin q1 + ṡ (1)

h cos q1
) (

κ (2)
m − κ (1)

m

)
. (8.6.20)

Here,

cos q2 = et · es , − sin q2 = em · es (8.6.21)

cos q1 = et · e f , − sin q1 = em · e f . (8.6.22)

It is easy to verify that

ṡ (1)
m = v(1)

r · em = −ṡ (1)
s sin q2 + ṡ (1)

q cos q2 (8.6.23)

using the following considerations:
(i) Let vector v(1)

r be represented as

v(1)
r = ṡ (1)

s es + ṡ (1)
q eq . (8.6.24)

(ii) The coordinate transformation from coordinate system (es , eq) to coordinate
system (et , em) is represented by the following matrix equation (Fig. 8.4.1):[

ṡ (1)
t

ṡ (1)
m

]
=
[

cos q2 sin q2

− sin q2 cos q2

][
ṡ (1)

s

ṡ (1)
q

]
. (8.6.25)

Using matrix equation (8.6.25), we may confirm Eq. (8.6.23).
Equations (8.6.19) and (8.6.23) yield

ṡ (1)
m = e2

κ
(2)
m − κ

(1)
m

. (8.6.26)

Similarly, we obtain that

ṡ (2)
m = e4

κ
(2)
m − κ

(1)
m

= ṡ (1)
m + (v(12) · em

)
. (8.6.27)

To derive equations for e2 and e4, we consider the matrix equation

E = UTB (8.6.28)
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where B is represented by Eqs. (8.4.30) to (8.4.34). Further derivations are based on
the following relations:

t = t (1) = t (2) (8.6.29)

t (1) = 0.5(κh − κf ) sin 2q1 = 0.5
(
κ (1)

m − κt
)

tan 2q1 (8.6.30)

t (2) = 0.5(κq − κs ) sin 2q2 = 0.5
(
κ (2)

m − κt
)

tan 2q2. (8.6.31)

Finally, we obtain

e2 = −κ (2)
m

(
v(12) · em

)− t
(
v(12) · et

)+ (ω(12) · et
)

(8.6.32)

e4 = −κ (1)
m

(
v(12) · em

)− t
(
v(12) · et

)+ (ω(12) · et
)
. (8.6.33)

Equations (8.6.26), (8.6.27), (8.6.32), and (8.6.33) represent the normal components
of relative velocities v(1)

r and v(2)
r . The solutions for ṡ (1)

t and ṡ (2)
t are indefinite.

8.7 CONTACT ELLIPSE

Basic Equation of Elastic Deformations
Due to elasticity of tooth surfaces, the instantaneous contact of surfaces at a point
is spread over an elliptical area. The center of symmetry of the instantaneous contact
ellipse coincides with the theoretical point of tangency. The bearing contact is formed as
the set of contact ellipses. Our goal is to determine the orientation of the contact ellipse
in the plane that is tangent to the contacting surfaces, and the dimensions of the contact
ellipse. This can be done, considering as given: the principal curvatures of the contacting
surfaces, angle σ that is formed between the unit vectors e(1)

I and e(2)
I that represent the

principal directions on the surfaces, and the elastic deformation δ of the surfaces at the
theoretical point of tangency M. The elastic deformation δ depends on the applied load,
but we will consider δ a given value that is known from the experimental data. Usually,
the contact ellipse is considered for the case when the gears are under a small load and δ

is taken to be 0.00025 in. It is shown below that the ratio between the major and minor
axes of the contact ellipse does not depend on δ.

Figure 8.7.1 shows that surfaces �1 and �2 are in tangency at point M. The unit
surface normal and the tangent plane are designated by n and �. The area of surface
deformation is shown by a dashed line and designated by K1M1L1 and K2M2L2 for sur-
faces �1 and �2, respectively. The deformation of contacting surfaces at M is designated
by δ1 and δ2, respectively, and the elastic approach at M is δ = δ1 + δ2.

Designations N and N ′ indicate surface points, candidates for surface tangency after
the elastic deformation (Fig. 8.7.1). There is a backlash between the surfaces at points
N and N ′ before the elastic deformation as shown in Fig. 8.7.1. The location of N
and N ′ with respect to M is determined with coordinates (ρ, l (i )) (i = 1, 2) as shown
in Fig. 8.7.2. Here l (i ) is the deviation of N (i ) from M that depends on the curvature of
the curve Ki MLi (i = 1, 2) in the considered cross section of the surface (Fig. 8.7.1).

Consider now that surfaces �1 and �2 are deformed under the action of the contact
force. We may consider for further derivations that surfaces �1 and �2 are deformed
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Figure 8.7.1: Area of elastic deformation.

separately. Points M and N of surface �1 will take positions M1 and N1, respectively, as
shown in Fig. 8.7.2(a). Here, |MM1| = δ1, |N N1| = f1, where δ1 and f1 are the elastic
deformations of surface �1 at points M and N , respectively; δ1 and f1 are measured
along the surface unit normal n. Similarly, considering the elastic deformation of surface
�2, we say that surface points M and N ′ will take positions M2 and N2, respectively
[Fig. 8.7.2(b)].

The deviations of points M1, M2, N1, and N2 from the tangent plane are represented
as follows:

∆(M1) = δ1n, ∆(M2) = −δ2n, ∆(N1) = (l (1) + f1
)

n

∆(N2) = (l (2) − f2
)

n. (8.7.1)

Figure 8.7.2: For derivation of basic equation of elastic
deformation.
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The backlash between the surfaces at points M1 and M2 is

M2M1 = (δ1 + δ2) n. (8.7.2)

Surfaces �1 and �2 are in continuous tangency while gears 1 and 2 perform rota-
tional motions. The imaginary backlash between the surfaces at points M1 and M2 will
disappear if one of the mating gears, say gear 2, is rotated through a small angle �φ2

about the gear axis of rotation. The condition of tangency of surfaces �1 and �2 at
points M1 and M2 is as follows:

(�φ2 × r2) · n = δ = δ1 + δ2. (8.7.3)

Here, r2 is the position vector of M2 that is drawn from any point of the axis of rotation of
gear 2 to M2. Rotation of gear 2 through the angle �φ2 is equivalent to the displacement
(δ1 + δ2) n of M2 along the surface unit normal n.

Taking into account that ρ is small with respect to r2, we may consider that the
displacement of N2 by the gear rotation is the same as M2. Tangency of surfaces �1

and �2 at points N1 and N2 will be provided simultaneously with tangency at points
M1 and M2, if the following equation is observed:

∆(N2) + δn = ∆(N1)

or [(
l (2) − f2

)+ (δ1 + δ2)
]

n = (l (1) + f1
)

n. (8.7.4)

Equation (8.7.4) yields ∣∣l (1) − l (2)
∣∣ = (δ1 + δ2) − ( f1 + f2). (8.7.5)

The right-hand side of Eq. (8.7.5) is always positive because δ1 > f1 and δ2 > f2. Equa-
tion (8.7.5) is satisfied for all mating points of contacting surfaces within the area of
deformation and at the edge of this area. However, at the edge of this area f1 = 0 and
f2 = 0, and therefore Eq. (8.7.5) becomes∣∣l (1) − l (2)

∣∣ = δ1 + δ2 = δ. (8.7.6)

Outside of the area of deformation,∣∣l (1) − l (2)
∣∣ > δ, (8.7.7)

and within this area, ∣∣l (1) − l (2)
∣∣ < δ. (8.7.8)

Determination of Contact Ellipse
We can correlate deviation l (i ) (i = 1, 2) with the surface curvature as follows. Consider
that a surface � is represented by

r(u, θ ) ∈ C2, ru × rθ �= 0, (u, θ ) ∈ E (8.7.9)

where (u, θ ) represent the surface coordinates. Curve MM′ on surface � is represented
by the equation

r = r [u(s ), θ (s )] (8.7.10)

where s is the arc length.
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Figure 8.7.3: For determination of deviation l .

Let us designate the length of the arc that connects two neighboring points M and
M′ of the curve by �s , where �s =

�

MM′. The increment of the position vector r is
designated by �r, where �r = MM′. Expanding �r with the Taylor-series expansion,
we get

MM′ = �r = dr
ds

�s + d2r
ds2

(�s )2

2!
+ d3r

ds3

(�s )3

3!
+ · · · . (8.7.11)

Here,

dr
ds

= ∂r
∂u

du
ds

+ ∂r
∂θ

dθ

ds

d2r
ds2

= ∂2r
du2

(
du
ds

)2

+ 2
∂2r

∂u∂θ

du
ds

dθ

ds
+ ∂2r

∂θ2

(
dθ

ds

)2

.

Plane � shown in Fig. 8.7.3 is tangent to the surface at point M. Point P designates
the projection of point M′ onto plane �. Vector

P M′ = ln (8.7.12)

is perpendicular to plane � at point P , and l represents the deviation of the curve point
M′ from the tangent plane. The deviation l is positive if P M′ and n are in the same
direction. Equations MM′ = �r and MM′ = MP + ln yield

MP + ln = dr
ds

�s + d2r
ds2

(�s )2

2!
+ d3r

ds3

(�s )3

3!
+ · · · . (8.7.13)

Vectors MP and n are mutually perpendicular. Taking the scalar product on both
sides of Eq. (8.7.13) with n, and limiting the expression for l up to terms of the third
order, we obtain

l =
(

d2r
ds2

· n
)

�s2

2
. (8.7.14)

As mentioned in Chapter 7, the normal curvature of a surface may be represented by

κn = d2r
ds2

· n. (8.7.15)
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Figure 8.7.4: For derivation of contact ellipse.

Thus,

l = κn
�s2

2
= 1

2
κnρ

2 (8.7.16)

considering that �s ≈ ∣∣MP
∣∣ = ρ.

The normal and principal curvatures of surface �i (i = 1, 2) are related by Euler’s
equation (see Chapter 7). Thus,

κ (i )
n = κ

(i )
I cos2 qi + κ

(i )
I I sin2 qi (8.7.17)

where qi is the angle that is formed by vectors e(i )
I and MP (Fig. 8.7.4).

We have designated points N and N ′ of contacting surfaces (Fig. 8.7.1) as the points
of surface tangency after the elastic deformation. Point P is the projection of points N
and N ′ on the tangent plane. The deviations of points N and N ′ from the tangent plane
(before the elastic deformation) are determined with the following equations:

l (1) = ρ2

2

(
κ

(1)
I cos2 q1 + κ

(1)
I I sin2 q1

)
(8.7.18)

l (2) = ρ2

2

(
κ

(2)
I cos2 q2 + κ

(2)
I I sin2 q2

)
. (8.7.19)

Angles q1 and q2 are formed by vectors e(1)
I and MP , e(2)

I and MP , respectively
(Fig. 8.7.4); κ

(i )
I , κ

(i )
I I (i = 1, 2) are the principal curvatures of surfaces �1 and �2.

Let us choose in the tangent plane coordinate axes (η, ζ ) (Fig. 8.7.4) as the axes of
the to-be-determined contact ellipse. The orientation of vector MP in plane (η, ζ ) is
determined with angle µ. At the edge of the contact area, we have [see Eq. (8.7.6)]

l (1) − l (2) = ±δ. (8.7.20)

The determination of the dimensions of the contact ellipse and its orientation with
respect to e(1)

I (or e(2)
I ) is based on Eqs. (8.7.18), (8.7.19), and (8.7.20), taking into
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account the following relations (Fig. 8.7.4):

q1 = α(1) + µ, q2 = α(2) + µ, ρ2 = η2 + ζ 2,

cos µ = η

ρ
, sin µ = ζ

ρ
. (8.7.21)

After transformations, we obtain

η2(κ (1) cos2 α(1) + κ
(1)
I I sin2 α(1) − κ

(2)
I cos2 α(2) − κ

(2)
I I sin2 α(2))

+ ζ 2(κ (1) sin2 α(1) + κ
(1)
I I cos2 α(1) − κ

(2)
I sin2 α(2) − κ

(2)
I I cos2 α(2))

− ηζ
(
g1 sin 2α(1) − g2 sin 2α(2)) = ±2δ (8.7.22)

where

g1 = κ
(1)
I − κ

(1)
I I , g2 = κ

(2)
I − κ

(2)
I I .

Angle α(1) that determines the orientation of the coordinate axes η and ζ with respect
to e(1)

I may be chosen arbitrarily. For instance, α(1) may be chosen as satisfying the
equation

g1 sin 2α(1) − g2 sin 2α(2) = 0 (8.7.23)

where (Fig. 8.7.4)

α(2) = α(1) + σ. (8.7.24)

Equations (8.7.23) and (8.7.24) yield

tan 2α(1) = g2 sin 2σ

g1 − g2 cos 2σ
. (8.7.25)

Equation (8.7.25) provides two solutions for 2α(1). We choose the solution represented
by equations

cos 2α(1) = g1 − g2 cos 2σ(
g2

1 − 2g1g2 cos 2σ + g2
2

)1/2 (8.7.26)

sin 2α(1) = g2 sin 2σ(
g2

1 − 2g1g2 cos 2σ + g2
2

)1/2 . (8.7.27)

Equations (8.7.26), (8.7.27), and (8.7.24) determine the orientation of axes η and ζ

with respect to the principal directions of the contacting surfaces. These equations yield

cos2 α(1) = 0.5 [1 + m(g1 − g2 cos 2σ )] (8.7.28)

sin2 α(1) = 0.5 [1 − m(g1 − g2 cos 2σ )] (8.7.29)

cos2 α(2) = 0.5 [1 + m(g1 cos 2σ − g2)] (8.7.30)

sin2 α(2) = 0.5 [1 − m(g1 cos 2σ − g2)] (8.7.31)
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Figure 8.7.5: Contact ellipse.

where

m = 1(
g2

1 − 2g1g2 cos 2σ + g2
2

)1/2 . (8.7.32)

Equations (8.7.22) and (8.7.23) confirm that the projection of contact area on the
tangent plane is an ellipse. The contact ellipse is determined with the equation

Bη2 + Aζ 2 = ±δ. (8.7.33)

Ellipse axes are determined with the equations

2a = 2
∣∣∣∣ δ

A

∣∣∣∣1/2

, 2b = 2
∣∣∣∣ δ

B

∣∣∣∣1/2

(8.7.34)

where

A = 1
4

[
κ

(1)
� − κ

(2)
� − (g2

1 − 2g1g2 cos 2σ + g2
2

)1/2
]

(8.7.35)

B = 1
4

[
κ

(1)
� − κ

(2)
� + (g2

1 − 2g1g2 cos 2σ + g2
2

)1/2
]

(8.7.36)

κ
(i )
� = κ

(i )
I + κ

(i )
I I , gi = κ

(i )
I − κ

(i )
I I . (8.7.37)

The orientation of the ellipse in the tangent plane is determined with Eqs. (8.7.26) and
(8.7.27). The contact ellipse is shown in Fig. 8.7.5.
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9 Computerized Simulation of Meshing
and Contact

9.1 INTRODUCTION

Computerized simulation of meshing and bearing contact is a significant achievement
that could substantially improve the technology and quality of gears. Computer pro-
grams known as tooth contact analysis (TCA) programs are directed at the solution of
the following basic problem:

The equations of pinion and gear tooth surfaces, the crossing angle, and the shortest
distance between the axes of rotation are given. The pinion and gear tooth surfaces are
in point contact. It is necessary to determine (i) the transmission errors, (ii) the paths
of contact points on the gear tooth surfaces, and (iii) the bearing contact as the set of
instantaneous contact ellipses.

In the case of determination of the bearing contact, it is considered that due to the
elasticity of gear tooth surfaces their contact is spread over an elliptic area, and the
center of the contact ellipse is the theoretical point of contact. It is also considered that
the surface elastic approach is known (for instance, from the experimental data), and
the problem of bearing contact can be solved as a geometric problem (see Section 8.7).

The main idea of TCA is based on simulation of tangency of tooth surfaces that are
in mesh. The determination of the instantaneous contact ellipse requires knowledge
of the principal directions and curvatures of the tooth surfaces that are in tangency.
A substantial simplification for the solution to this problem has been achieved due to
the expression of principal curvatures and directions for the generated surface by the
principal curvatures and directions of the generating tool (see Section 8.4).

The main goal of TCA is the analysis of gear meshing and bearing contact. The de-
termination of machine-tool settings that provide improved conditions of meshing and
contact is the goal of gear synthesis. The computerized search of such settings by the
TCA program can require substantial computer time. This difficulty can be avoided
by application of the local synthesis method that enables machine-tool settings to be
determined directly (see Section 9.3). These machine-tool settings provide improved
conditions of meshing and contact at the mean contact point and within its neighbor-
hood. Local synthesis and tooth contact analysis (TCA) are applied simultaneously in
the design of spiral bevel gears (see Chapter 21).

A specific problem occurs in the case of simulation of meshing and contact for gear
tooth surfaces that are initially in line contact. Examples are spur gears, helical gears with

241
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parallel axes, and worm-gear drives. However, the instantaneous line contact of gear
tooth surfaces exists only theoretically, for an ideal gear train without misalignment or
errors of manufacture. In practice, the surface line contact is substituted by point contact
due to gear misalignment. The problem is to determine the transition point – the point
on the theoretical contact line where the real point contact starts. After determination
of the transition point, it becomes possible to determine a point in the neighborhood
of the transition point that belongs to the path of point contact and then start the TCA
computations.

This chapter covers computerized simulation of meshing and bearing contact, the
local synthesis method, the application of finite element analysis for design of gear
drives, and the analysis of edge contact of gear tooth surfaces.

9.2 PREDESIGN OF A PARABOLIC FUNCTION OF TRANSMISSION ERRORS

Application of a predesigned parabolic function of transmission errors enables the ab-
sorption of almost-linear discontinuous functions of transmission errors that are caused
by misalignment. This is the key for reduction of noise and vibration of gear drives. The
idea of the approach is based on the following considerations Litvin [1994]:

(i) The transmission function for an ideal gear train is linear and is represented as

φ2 = N1

N2
φ1 (9.2.1)

where Ni and φi (i = 1, 2) are the number of teeth and the rotation angle, respec-
tively, for the pinion (i = 1) and the gear (i = 2).

(ii) Due to misalignment (change of crossing angle; change of shortest center distance in
the case of noninvolute gears; axial displacement of spiral bevel gears, hypoid gears,
worm-gears, and so on) the transmission function becomes a piecewise almost-
linear one (Fig. 9.2.1) with a period of the cycle of meshing of a pair of teeth.
This type of function of transmission errors is confirmed by simulation of meshing.

Figure 9.2.1: Transmission function as a sum of a
linear function and a piecewise linear function of
transmission errors.
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Figure 9.2.2: Transmission function as a sum of a
linear function and a predesigned parabolic func-
tion of transmission errors.

Due to the jump in the angular velocity at the junction of cycles, the acceleration
approaches an infinitely large value and this causes large vibrations.

Due to absorption of linear functions of transmission errors by a predesigned
parabolic function of transmission error, the transmission function is of the shape shown
in Fig. 9.2.2. The transfer of meshing is not accompanied by a jump in acceleration as
in the case shown in Fig. 9.2.1.

Effect of Application of a Predesigned Parabolic Function
of Transmission Errors
We discuss the effect of application of a predesigned parabolic function of transmission
errors by considering the interaction of a parabolic function �φ

(1)
2 = −aφ2

1 with a lin-
ear function �φ

(2)
2 = bφ1. Function �φ

(2)
2 is caused by misalignment of the gear drive.

Function �φ
(1)
2 is predesigned for absorption of �φ

(2)
2 .

It is easy to verify that the sum of functions �φ
(1)
2 (φ1) and �φ

(2)
2 (φ1) is a para-

bolic function of the same slope as �φ
(1)
2 (φ1). The new parabolic function designated as

�ψ2 = −aψ2
2 (Fig. 9.2.3) is merely displaced by translation with respect to the initially

given parabolic one. This means that a predesigned parabolic function of transmis-
sion errors can indeed absorb the linear function of transmission errors caused by gear
misalignment. The displacement of function �ψ2(ψ1) with respect to �φ

(1)
2 (φ1) is deter-

mined by c = b/2a and d = b2/4a [Fig. 9.2.3(a)]. We have to emphasize that the end
points of function �ψ2(ψ1) are located asymmetrically in comparison with function
�φ

(1)
2 (φ1) [Fig. 9.2.3(a)]. However, the function of transmission errors for each cycle of

meshing [Fig. 9.2.3(b)] can be obtained as a continuous parabolic function.
In the process of computerized design of a misaligned gear drive, the resulting func-

tion of transmission errors is obtained by application of a tooth contact analysis (TCA)
computer program. In some cases of design, it may happen that the obtained function of
transmission errors is parabolic but discontinuous. This result indicates that the errors
of alignment (simulated by coefficient b of function �φ

(2)
2 = bφ1) are too large. There-

fore, the predesigned parabolic function �φ
(1)
2 (φ1) = −aφ2

1 with the existing parabola
coefficient a cannot absorb the linear functions of transmission errors. Absorption will
be achieved by increasing the parabola coefficient a , but it will be accompanied by an
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Figure 9.2.3: Interaction of parabolic and linear functions.

increase of the maximal error ∣∣�φ
(1)
2

∣∣
max = a

(
π

N1

)2

. (9.2.2)

Design of gear drives of high precision requires reduction of tolerances of errors of
alignment.

NOTE. A negative parabolic function of transmission errors, not a positive one, should
be applied for design so that the gear will lag with respect to the pinion and the elastic
deformation will favor an increase in the contact ratio.

Determination of Derivative m′
21

We recall that the transmission function for an ideal gear drive is represented by linear
function (9.2.1). The transmission function wherein a predesigned parabolic function
of transmission errors is applied is determined as

φ2(φ1) = N1

N2
φ1 − aφ2

1 . (9.2.3)
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The first and second derivatives of φ2(φ1) yield

m21(φ) = d
dφ1

[φ2(φ1)] = N1

N2
− 2aφ1 (9.2.4)

m′
21(φ) = d2

dφ2
1

[φ2(φ1)] = −2a . (9.2.5)

The predesigned parabolic function may be represented as

�φ2(φ1) = −aφ2
1 = −1

2
m′

21φ
2
1 . (9.2.6)

The derivative m′
21(φ1) is used in the local synthesis procedure.

9.3 LOCAL SYNTHESIS

The approach of local synthesis was proposed by Litvin [1968] and then applied for
synthesis of spiral bevel gears, hypoid gears, and face-worm gears. The local synthesis of
gears must provide (i) the required gear ratio at the mean (selected) contact point M, (ii)
the desired direction of tangent t to the contact path on the gear tooth surface determined
by angle η2 (Fig. 9.3.1), (iii) the desired length 2a of the major axis of the contact ellipse at
M (Fig. 9.3.1), and (iv) a predesigned parabolic function of a controlled level of maximal
transmission errors (say, 8 to 10 arc seconds). Angle η2 in Fig. 9.3.1 is formed by tangent
t2 to the path of contact and principal direction es on surface �2. Detailed description of
local synthesis is presented in Section 21.5 in relation to synthesis of spiral bevel gears.

Local synthesis is usually applied in combination with tooth contact analysis (TCA)
and is developed as an iterative process. The local synthesis applied to spiral bevel gears
and hypoid gears is based on the assumptions that the machine-tool settings for the gear
are given already and the gear principal curvatures and directions at the mean contact

Figure 9.3.1: Illustration of parameters η2 and a applied for local synthesis.
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Figure 9.3.2: For derivation of tangents to
paths of contact.

point are known as well. The local synthesis method enables determination of the pinion
machine-tool settings that provide improved conditions of meshing and contact at the
mean contact point M and within the neighborhood of M.

Relation Between Directions of Paths of Contact
We recall that velocities v(1)

r and v(2)
r are related by the equation (see Section 8.2)

v(2)
r = v(1)

r + v(12) (9.3.1)

where v(i )
r (i = 1, 2) is the velocity of the contact point in its motion over surface �i .

Vectors v(1)
r , v(2)

r , and v(12) lie in the tangent plane; vectors v(1)
r and v(2)

r are tangent to
the contact paths. Henceforth, we consider that the principal curvatures and principal
directions on �2 are known. Then, we may consider that the tangents to the contact
paths form angles η1 and η2 with the unit vector es (Fig. 9.3.2), where es and eq are
the unit vectors of principal directions on �2. Usually, the direction of the tangent to
the contact path on surface �2 is chosen. Our goal is to derive equations that enable us
to determine angle η1 and components v (1)

s and v (1)
q – projections of v(1)

r on es and eq

(Fig. 9.3.2) – in terms of η2 and principal curvatures of �2 at M.
It is obvious that

v (2)
s = v (1)

s + v (12)
s , v (2)

q = v (1)
q + v (12)

q (9.3.2)

and

v (i )
q = v (i )

s tan ηi (i = 1, 2). (9.3.3)

The differentiated equation of meshing (it is represented as Eq. (8.2.7) with i = 2) and
Eqs. (9.3.2) and (9.3.3) yield

tan η1 = −a31v (12)
q + (a33 + a31v (12)

s
)

tan η2

a33 + a32
(
v (12)

q − v (12)
s tan η2

) (9.3.4)

v (1)
s = a33

a13 + a23 tan η1
(9.3.5)

v (1)
q = a33 tan η1

a13 + a23 tan η1
. (9.3.6)
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Coefficients a31, a32, and a33 have been represented by Eqs. (8.4.48). Prescribing a
certain value for η2 (choosing the direction for a path of contact on �2), we can determine
tan η1, v (1)

s , and v (1)
q . We recall that coefficients a31, a32, and a33 depend only on the

principal curvatures and principal directions on �2.

Relations Between the Magnitude of the Major Axis of the Contact Ellipse,
Its Orientation, and Principal Curvatures and Directions of
Contacting Surfaces
Our goal is to relate parameters σ (12), κ f , and κh of the pinion surface �1 with the length
of the major axis of the instantaneous contact ellipse. This ellipse is considered to be at
the mean contact point, and the elastic approach δ of contacting surfaces is considered
known from the experimental data. The derivation of the above-mentioned relations is
based on the following procedure:

Step 1: We use for transformations the relations a11 = b33, a12 = b34, and a22 = b44

(see Eqs. (8.4.48) and Eqs. (8.4.27), (8.4.28), and (8.4.29) which determine b33, b34,
and b44). Then, we obtain

a11 + a22 = κ
(2)
� − κ

(1)
� ≡ κ�

a11 − a22 = g2 − g1 cos 2σ (12)

(a11 − a22)2 + 4a2
12 = g2

2 − 2g1g2 cos 2σ (12) + g2
1 .

(9.3.7)

Here, κ
(1)
� = κ f + κh; κ

(2)
� = κs + κq ; g1 = κ f − κh; and g2 = κs − κq .

Step 2: It is known from Eqs. (8.7.34) and (8.7.35) that

a =
√∣∣∣∣ δA

∣∣∣∣ (9.3.8)

A = 1
4

[
κ

(1)
� − κ

(2)
� −

√
g2

1 − 2g1g2 cos 2σ (12) + g2
2

]
(9.3.9)

where a is the major axis of the contact ellipse. Equations (9.3.7) and (9.3.9) yield

[(a11 + a22) + 4A]2 = (a11 − a22)2 + 4a2
12. (9.3.10)

Step 3: We may consider now a system of three linear equations in unknowns a11, a12,
and a22:

v (1)
s a11 + v (1)

q a12 = a13

v (1)
s a12 + v (1)

q a22 = a23

a11 + a22 = κ�.

(9.3.11)

Step 4: The solution of equation system (9.3.11) for the unknowns a11, a12, and a22

allows these unknowns to be expressed in terms of a13, a23, κ� , v (1)
s , and v (1)

q . Then,
using Eq. (9.3.10), we can get the following equation for κ� :

κ� = 4A2 − (n2
1 + n2

2

)
2A − (n1 cos 2η1 + n2 sin 2η1)

. (9.3.12)
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Here,

n1 = a2
13 − a2

23 tan2 η1

(1 + tan2 η1)a33

n2 = (a13 tan η1 + a23)(a13 + a23 tan η1)
(1 + tan2 η1)a33

|A| = δ

a2
.

(9.3.13)

The advantage of Eq. (9.3.12) is that we are able to determine κ�, taking as given the
major axis 2a of the contact ellipse and the elastic approach δ.

Step 5: The sought-for principal curvatures and directions for the pinion identified
as κ f , κh, and σ (12), respectively, can be determined from the following equations:

κ
(1)
� = κ

(2)
� − κ� (9.3.14)

tan 2σ (12) = 2a22

g2 − (a11 − a22)
= 2n2 − κ� sin 2η1

g2 − 2n1 + κ� cos 2η1
(9.3.15)

g1 = 2a12

sin 2σ (12)
= 2n2 − κ� sin 2η1

sin 2σ (12)
(9.3.16)

κ f ≡ κ
(1)
I = κ

(1)
� + g1

2
(9.3.17)

κh ≡ κ
(1)
I I = κ

(1)
� − g1

2
. (9.3.18)

Step 6: The orientation of unit vectors e f and eh for the pinion principal directions
can be represented with the following equations:

e(1)
I = e f = cos σ (12)es − sin σ (12)eq (9.3.19)

e(1)
I I = eh = sin σ (12)es + cos σ (12)eq . (9.3.20)

The orientation of the contact ellipse with respect to e f is determined with angle α(1)

(Fig. 9.3.3) that is represented with the equations

cos 2α(1) = g1 − g2 cos 2σ (12)(
g2

1 − 2g1g2 cos 2σ (12) + g2
2

)1/2 (9.3.21)

sin 2α(1) = g2 sin 2σ (12)(
g2

1 − 2g1g2 cos 2σ (12) + g2
2

)1/2 . (9.3.22)

The minor axis 2b of the contact ellipse is determined with the equations

b =
√∣∣∣∣ δB

∣∣∣∣ (9.3.23)

B = 1
4

[
κ

(1)
� − κ

(2)
� +

√
g2

1 − 2g1g2 cos 2σ (12) + g2
2

]
. (9.3.24)
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Figure 9.3.3: Orientation and dimen-
sions of contact ellipse.

The following is an overview of the computational procedure that is to be used for the
local synthesis. The input data are κs , κq , es , eq , r(M), ω(12), v(12), and δ. The to-be-chosen
parameters are η2, m′

21, and 2a . The output data are κ f , κh, σ (12), e f , and eh.
Step 1: Choose η2 and determine η1 from Eq. (9.3.4).
Step 2: Determine v (1)

s and v (1)
q from Eqs. (9.3.5) and (9.3.6).

Step 3: Determine A from the third equation of system (9.3.13).
Step 4: Determine κ� from Eq. (9.3.12).
Step 5: Determine σ (12), κ f , and κh by using Eqs. (9.3.14) to (9.3.18).
Step 6: Determine the orientation of the contact ellipse and its minor axis by using

Eqs. (9.3.21) to (9.3.24).
To determine the pinion machine-tool settings, we have to consider the meshing of

the pinion with the tool in line contact at every instant (see, for instance, Chapter 21).

9.4 TOOTH CONTACT ANALYSIS

The purpose of TCA computer programs is the simulation of meshing and contact of
gear tooth surfaces with localized bearing contact, which provides the surface contact
point at every instant. The main goals of TCA are to determine (i) the contact paths on
gear tooth surfaces, (ii) the transmission errors caused by gear misalignment, and (iii)
the bearing contact as the set of instantaneous contact ellipses. The gear tooth surfaces
are considered to be known, and the location and orientation of gear axes are given,
taking into account the misalignment.

Conditions of Continuous Tangency
We set up three coordinate systems S1, S2, and S f , rigidly connected with gears 1 and
2 and the frame, respectively. An additional fixed coordinate system Sq is applied to
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simulate the misalignment. The tooth surfaces �1 and �2 are represented in coordinate
systems S1 and S2, respectively, as follows:

ri (ui , θi ) ∈ C2,
∂ri

∂ui
× ∂ri

∂θi
�= 0, (ui , θi ) ∈ Ei (i = 1, 2). (9.4.1)

The surface unit normals are represented as follows:

ni =
∂ri

∂ui
× ∂ri

∂θi∣∣∣∣ ∂ri

∂ui
× ∂ri

∂θi

∣∣∣∣ . (9.4.2)

Consider that gear 1 with the tooth surface �1 rotates about a fixed axis located in
S f . Thus, a family of gear tooth surfaces is generated in the coordinate system S f . The
family of these surfaces may be determined by the matrix equation

r(1)
f = M f 1r1. (9.4.3)

The unit normal to surface �1 is represented in S f by the matrix equation

n(1)
f = L f 1n1. (9.4.4)

Gear 2 with surface �2 rotates about another fixed axis located in Sq . We trace the
errors of misalignment to gear 2, and the location and orientation of Sq with respect to
S f simulates the misalignment of the gear drive. Using matrix equations

r(2)
f = M f qMq2r2 (9.4.5)

and

n(2)
f = L f qLq2n2, (9.4.6)

we represent surface �2 of the misaligned gear drive and the surface unit normal in
coordinate system S f . Matrices L are of the 3 × 3 order and they can be determined
from respective matrices M by the elimination of the last row and column in M.

The contacting surfaces must be in continuous tangency and this can be achieved if
their position vectors and normals coincide at any instant (Fig. 9.4.1). Thus,

r(1)
f (u1, θ1, φ1) = r(2)

f (u2, θ2, φ2) (9.4.7)

n(1)
f (u1, θ1, φ1) = n(2)

f (u2, θ2, φ2) (9.4.8)

where φ1 and φ2 are the angles of gear rotation. Vector equation (9.4.7) yields three
scalar equations, but Eq. (9.4.8) yields only two independent scalar equations because∣∣∣n(1)

f

∣∣∣ = ∣∣∣n(2)
f

∣∣∣ = 1. (9.4.9)

We may require the collinearity of surface normals using the equation

N(1)(u1, θ1, φ1) = λN(2)(u2, θ2, φ2) (9.4.10)

instead of Eq. (9.4.8). However, Eq. (9.4.8) is preferable because it can be applied as a
basis for important kinematic relations.
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Figure 9.4.1: Tangency of surfaces in
ideal gear train.

Analysis of Meshing
Equations (9.4.7) and (9.4.8) may be represented as

r(1)
f (u1, θ1, φ1) − r(2)

f (u2, θ2, φ2) = 0 (9.4.11)

n(1)
f (u1, θ1, φ1) − n(2)

f (u2, θ2, φ2) = 0. (9.4.12)

Vector equations (9.4.11) and (9.4.12) yield five independent scalar equations in six
unknowns, u1, θ1, φ1, u2, θ2, and φ2. Here,

fi (u1, θ1, φ1, u2, θ2, φ2) = 0, fi ∈ C1 (i = 1, 2, 3, 4, 5). (9.4.13)

The aim of gearing analysis is to obtain from Eqs. (9.4.13) the functions

{u1(φ1), θ1(φ1), u2(φ1), θ2(φ1), φ2(φ1)} ∈ C1. (9.4.14)

According to the theorem of implicit function system existence (see Korn & Korn
[1968] and Litvin [1989]), we may state that functions (9.4.14) exist in the neighborhood
of a point

P 0 = (uo
1, θ

o
1 , φo

1 , uo
2, θ

o
2 , φo

2

)
(9.4.15)

if the following are true: (i) functions [ f1, f2, f3, f4, f5] ∈ C1; (ii) Eqs. (9.4.13) are
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satisfied at point P 0; and (iii) the following Jacobian differs from zero, that is, if

D( f1, f2, f3, f4, f5)
D(u1, θ1, u2, θ2, φ2)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ f1

∂u1

∂ f1

∂θ1

∂ f1

∂u2

∂ f1

∂θ2

∂ f1

∂φ2

...
...

...
...

...

∂ f5

∂u1

∂ f5

∂θ1

∂ f5

∂u2

∂ f5

∂θ2

∂ f5

∂φ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0. (9.4.16)

Functions (9.4.14) provide complete information about the conditions of meshing of
gear tooth surfaces that are in point contact. Function φ2(φ1) represents the relation
between the angles of gear rotation (the law of motion). Functions

r1(u1, θ1), u1(φ1), θ1(φ1) (9.4.17)

determine the path of contact points on surface �1. Similarly, functions

r2(u2, θ2), u2(φ2), θ2(φ2) (9.4.18)

determine the path of contact points on surface �2. The path of contact points on
surface �i (i = 1, 2) is the working line on the gear tooth surface. The gear tooth
surface contacts the mating surface at points of the working line only. The line of action
of gear tooth surfaces is represented by functions

r(1)
f (u1, θ1, φ1), u1(φ1), θ1(φ1) (9.4.19)

or by functions

r(2)
f (u2, θ2, φ2), u2(φ1), φ2(φ1), θ2(φ1). (9.4.20)

In some cases, a variable parameter other than φ1, for instance u1, may be chosen
when solving Eqs. (9.4.13). We may solve these equations in the neighborhood of point
P 0 that is determined by Eq. (9.4.15), if the respective Jacobian differs from zero, that
is, if

D( f1, f2, f3, f4, f5)
D(θ1, φ1, u2, θ2, φ2)

�= 0.

The solution of Eqs. (9.4.13) will be obtained by functions

{φ1(u1), θ1(u1), u2(u1), θ2(u1), φ2(u1)} ∈ C1. (9.4.21)

In some cases, the gear tooth surface cannot be represented directly in two-parameter
form but can be represented in three-parameter form with an additional relation between
the parameters that is provided by the equation of meshing. For instance, the worm-gear
surface for certain types of worm-gear drives is represented as

r2(u2, θ2, ψ), f (u2, θ2, ψ) = 0 (9.4.22)

where ψ is the parameter of motion in the process for generation. Then, the to-be-
solved system of nonlinear equations will contain six independent equations in seven
unknowns.
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Figure 9.4.2: Applied coordinate systems.

The numerical solution of the system of nonlinear equations is based on application
of a respective subroutine; see, for instance, More et al. [1980] and Visual Numerics,
Inc. [1998]. The first guess for the solution can be obtained from the data provided by
the local synthesis. We illustrate the discussed method of TCA with the following simple
problem of a planar gearing.

Problem 9.4.1
Consider three coordinate systems S1, S2, and S f that are rigidly connected to driving
gear 1, driven gear 2, and the frame f , respectively (Fig. 9.4.2). Gear 1 is provided with
involute profile �1 that is represented in S1 by the following equations (Fig. 9.4.3):

x1 = rb1(sin θ1 − θ1 cos θ1), y1 = rb1(cos θ1 + θ1 sin θ1), z1 = 0. (9.4.23)

Figure 9.4.3: Profile �1 of gear 1.
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Figure 9.4.4: Profile �2 of gear 2.

Gear 2 is provided with involute profile �2 that is represented in S2 by the equations
(Fig. 9.4.4)

x2 = rb2(− sin θ2 + θ2 cos θ2), y2 = rb2(− cos θ2 − θ2 sin θ2), z2 = 0. (9.4.24)

Solution
The application of the basic principle of tooth contact analysis enables us to determine
the conditions of meshing of �1 and �2 in coordinate system S f using the following
procedure:

(1) We determine the unit normals n1 and n2 to �1 and �2 in coordinate systems S1

and S2, respectively. The unit normals to �1 and �2 must be of the same orientation
at the point of tangency of the profiles.

(2) Then, we represent profiles �1 and �2 in coordinate system S f and derive the
equations of their tangency.

(3) Using the equations of tangency we can obtain three equations of the following
structure:

f1[(θ1 − φ1), (θ2 + φ2)] = 0 (9.4.25)

f2[(θ1 − φ1), rb1, rb2, E] = 0 (9.4.26)

f3[θ1, θ2, rb1, rb2, E, (θ1 − φ1)] = 0. (9.4.27)
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(4) The analysis of the obtained equations shows that the ratio dφ1/dφ2 is constant
and is represented as

dφ1

dφ2
= −dθ1

dθ2
= rb2

rb1
.

(5) We can determine the line of action by the vector function r(1)
f (θ1 − φ1) and prove

that the line of action is a straight line. The orientation of the line of action can be
determined by the scalar product a f · (−i f ) where

a f =
∂r(1)

f

∂θ1∣∣∣∣∣∂r(1)
f

∂θ1

∣∣∣∣∣
is the unit vector of the line of action.

The procedure of derivations is as follows:
Step 1: Equations (9.4.23) yield the following expressions for the unit normal to �1:

n1 = t1 × k1 = cos θ1i1 − sin θ1j1 (provided θ1 �= 0). (9.4.28)

Here, t1 is the unit tangent to �1; k1 is the unit vector of the z1 axis.
Step 2: Similarly, using Eqs. (9.4.24) we obtain that

n2 = k2 × t2 = cos θ2i2 − sin θ2j2. (9.4.29)

Here, t2 is the unit tangent to �2; k2 is the unit vector of the z2 axis. The order of
cofactors in Eq. (9.4.29) provides the orientation of n2 as shown in Fig. 9.4.4.

Step 3: Using matrix equations

r(i )
f = M f i ri (θi ), n(i )

f = L f i ni (θi ) (i = 1, 2), (9.4.30)

we derive the following equations of tangency:

r(1)
f (θ1, φ1) = r(2)

f (θ2, φ2), n(1)
f (θ1, φ1) = n(2)

f (θ2, φ2). (9.4.31)

Step 4: Vector Eqs. (9.4.31) yield the following system of scalar equations:

rb1 [sin(θ1 − φ1) − θ1 cos(θ1 − φ1)]

−rb2 [− sin(θ2 + φ2) + θ2 cos(θ2 + φ2)] = 0 (9.4.32)

rb1 [cos(θ1 − φ1) + θ1 sin(θ1 − φ1)]

−rb2 [− cos(θ2 + φ2) − θ2 sin(θ2 + φ2)] − E = 0 (9.4.33)

cos(θ1 − φ1) − cos(θ2 + φ2) = 0 (9.4.34)

sin(θ1 − φ1) − sin(θ2 + φ2) = 0. (9.4.35)

Step 5: Analyzing Eqs. (9.4.34) and (9.4.35), we obtain

θ1 − φ1 = θ2 + φ2. (9.4.36)
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Equations (9.4.32) and (9.4.33), considered simultaneously, yield the following rela-
tions:

cos(θ1 − φ1) − rb1 + rb2

E
= 0 (9.4.37)

rb1θ1 + rb2θ2 − E sin(θ1 − φ1) = 0. (9.4.38)

The system of Eqs. (9.4.36) to (9.4.38) has the structure of the system of Eqs. (9.4.25)
to (9.4.27) discussed above. Equations (9.4.36) to (9.4.38) yield

θ1 − φ1 = θ2 + φ2 = const. (9.4.39)

rb1θ1 + rb2θ2 = const. (9.4.40)

Step 6: Differentiating Eqs. (9.4.39) and (9.4.40), we obtain that the gear ratio is
constant and can be represented as follows:

m12 = dφ1

dφ2
= −dθ1

dθ2
= rb2

rb1
. (9.4.41)

Step 7: The line of action is represented by the equation

r(1)
f = rb1 [sin(θ1 − φ1) − θ1 cos(θ1 − φ1)] i f

+ rb1 [cos(θ1 − φ1) + θ1 sin(θ1 − φ1)] j f (9.4.42)

where (θ1 − φ1) is constant [see Eq. (9.4.39)]. Vector function r(1)
f (θ1) is a linear one

because (θ1 − φ1) = constant, and the line of action is a straight line.
The unit vector of the line of action is represented as

a f =
∂r(1)

f

∂θ1∣∣∣∣∣∂r(1)
f

∂θ1

∣∣∣∣∣
= − cos(θ1 − φ1)i f + sin(θ1 − φ1)j f . (9.4.43)

The orientation of the line of action is determined with the scalar product

a f · (−i f ) = cos(θ1 − φ1) = rb1 + rb2

E
. (9.4.44)

The line of action passes through point I that lies on the y f axis. Equation (9.4.42)
yields that when x(I )

f = 0, we have

y(I )
f = rb1

cos(θ1 − φ1)
. (9.4.45)

Using Eqs. (9.4.44) and (9.4.45), we obtain

y(I )
f =

(
rb1

rb1 + rb2

)
E = E

1 + m12
. (9.4.46)

The line of action is shown in Fig. 9.4.5. It is easy to verify that the line of action is
tangent to the gear base circles. We emphasize that the location and orientation of the
line of action depends on the chosen center distance E (considering the radii rb1 and
rb2 of base circles as given).
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Figure 9.4.5: Location and orientation of line of action.

9.5 APPLICATION OF FINITE ELEMENT ANALYSIS FOR
DESIGN OF GEAR DRIVES

Application of finite element analysis allows us to perform (i) stress analysis, (ii) inves-
tigation of formation of bearing contact, and (iii) detection of severe areas of contact
stresses inside the cycle of meshing.

Such an approach requires (i) development of the finite element mesh of the gear drive,
(ii) definition of contacting surfaces, and (iii) establishment of boundary conditions for
loading the gear drive.

This section covers the authors’ approach to finite element analysis for gear design.
The approach is based on application of the general purpose computer program pre-
sented by Hibbit, Karlsson & Sirensen, Inc. [1998].

The main features of the developed approach are as follows:

(a) The finite element mesh is generated automatically by using the equations of the
tooth surfaces and the rim. Nodes of finite element mesh are obtained as points of
gear tooth surfaces. Therefore, the loss of accuracy associated with development of
solid models using CAD (computer aided design) computer programs is avoided.
The boundary conditions for stress analysis of the pinion and the gear are set up
automatically as well.
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(b) Modules for automatic generation of finite element models are integrated into the
developed computer programs. Therefore, the generation of finite element mod-
els can be accomplished easily and fast for any position of contact of the cy-
cle of meshing. In addition, the formation of the bearing contact can be inves-
tigated and the appearance of edge contact and areas of severe contact can be
detected.

Application of CAD computer programs for the development of finite element models
is an intermediate stage of the existing approach for application of finite element analysis
and has the following disadvantages:

(1) Determination of wire models formed by splines is obtained numerically. The wire
models consist of planar sections of gear teeth and such sections are used for the
development of solid models.

(2) Finite element meshes of solid models require application of computer programs
for finite element analysis.

(3) Setting of boundary conditions for the finite element meshes have to be deter-
mined.

(4) The increase of planar sections of gear teeth improves the precision of wire models
and solid models but is costly in terms of time.

(5) The developments described above have to be performed by skilled users of CAD
computer programs, are costly in terms of time, and have to be accomplished
for each assigned case of design of various gear geometries, for each position of
meshing, and for various cases of investigation.

The modified approach presented in this section is free of the disadvantages mentioned
above and may be summarized as follows:

Step 1: Using the equations of both sides of the pinion or gear tooth surfaces and
the portions of the corresponding rim, we may represent analytically the volume of the
designed body. Figure 9.5.1(a) shows the designed body for a one-tooth model of the
pinion of a modified involute helical gear drive.

Step 2: Auxiliary intermediate surfaces 1 to 6 shown in Fig. 9.5.1(b) are determined
analytically as well. Surfaces 1 to 6 enable us to divide the tooth into six parts and
control the discretization of these tooth subvolumes into finite elements.

Step 3: Analytical determination of node coordinates is performed taking into ac-
count the number of desired elements in the longitudinal and profile directions [Fig.
9.5.1(c)]. We emphasize that all nodes of the finite element mesh are determined an-
alytically and those lying on the intermediate surfaces of the tooth are indeed points
belonging to the real surface.

Step 4: Discretization of the model by finite elements using nodes determined in
previous step is accomplished as shown in Fig. 9.5.1(d).

Step 5: The setting of boundary conditions for gear and pinion is performed auto-
matically as follows:
(i) Nodes on the sides and bottom part of the rim portion of the gear are considered

fixed [Fig. 9.5.2(a)].
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Figure 9.5.1: Illustration of (a) the volume of the designed body, (b) auxiliary intermediate surfaces,
(c) determination of nodes for the whole volume, and (d) discretization of the volume by finite elements.

(ii) Nodes on the two sides and bottom part of the rim portion of the pinion build a rigid
surface [Fig. 9.5.2(b)]. Rigid surfaces are three-dimensional geometric structures
that cannot be deformed but can perform translation or rotation as rigid bodies
(Hibbit, Karlsson & Sirensen, Inc. [1998]). They are also very cost effective because
the variables associated with a rigid surface are the translations and rotations of
a single node, known as the rigid body reference node [Fig. 9.5.2(b)]. The rigid
body reference node is located on the pinion axis of rotation with all degrees of
freedom except the rotation around the axis of rotation of the pinion fixed to zero.
The torque is applied directly to the remaining degree of freedom of the rigid body
reference node [Fig. 9.5.2(b)].

Step 6: Definition of contacting surfaces for the contact algorithm of the finite element
computer program (Hibbit, Karlsson & Sirensen, Inc. [1998]) is performed automat-
ically as well and requires definition of the master and slave surfaces. Generally, the
master surface is chosen as the surface of the stiffer body or as the surface with the
coarser mesh if the two surfaces are on structures with comparable stiffness.
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Figure 9.5.2: (a) Boundary conditions for the gear; (b) schematic representation of boundary conditions
and application of torque for the pinion.

Figures 9.5.3 to 9.5.5 show examples of finite element models of a spiral bevel gear
drive, a helical gear drive, and a face-worm gear drive with a conical worm, respectively.

9.6 EDGE CONTACT

Most prospective gear design has to be based on localization of the bearing contact
on gear tooth surfaces. Gear tooth surfaces with localized bearing contact are in point
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Figure 9.5.3: Finite element model of a whole spiral bevel gear drive.

contact at every instant but are not in line contact. However, there are at present some
gear drives with tooth surfaces that are still in line contact. In fact, due to errors of
alignment, the theoretical instantaneous contact at a line is turned over into a point
contact, but it may be accompanied by an edge contact (see below). The simulation
of meshing of tooth surfaces being in instantaneous point contact may be performed
by TCA computer programs (see Section 9.4) based on continuous tangency of tooth
surfaces that have a common normal at the instantaneous point contact.

Figure 9.5.4: Finite element model of a whole heli-
cal gear drive.
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Figure 9.5.5: Finite element model of a face-worm gear drive with a conical worm.

Edge contact means that instead of tangency of surfaces, an edge of the tooth surface
of one gear is in mesh with the tooth surface of the mating gear. Edge contact may be
represented by the following equations:

r(1)
f (u1(θ1), θ1, φ1) = r(2)

f (u2, θ2, φ2) (9.6.1)

∂r(1)
f

∂θ1
· N(2)

f = 0. (9.6.2)

Here, r(1)
f (u1(θ1), θ1, φ1) represents the edge of the pinion tooth surface; ∂r(1)

f /∂θ1 is the
tangent to the edge. Equation system (9.6.1) and (9.6.2) represents a system of four
nonlinear equations in four unknowns: θ1, u2, θ2, φ2; φ1 is the input parameter. Similar
equations can be derived for the case of tangency of the edge of the gear tooth surface
with the pinion tooth surface.

Edge contact may occur in two cases: (i) when the gear tooth surfaces are initially
in line contact, and (ii) when the gear tooth surfaces are in point contact. Each case is
discussed separately.

Edge Contact of Gear Tooth Surfaces That Are Initially in Line Contact
We start the discussion with the case of spur gears. Figure 9.6.1(a) shows that the
gear tooth surfaces �1 and �2 of an ideal gear train are in tangency along the line
L1–L2. Consider now that the gears are misaligned and the gear axes are crossed or
intersected. Then, edge E1 of the pinion tooth surface will be in tangency with the
gear tooth surface �2 at point M. The paths of contact on the gear tooth surfaces are
shown in Fig. 9.6.2(a). The transformation of motion is accompanied by the function
of transmission errors shown in Fig. 9.6.2(b). The transfer of meshing at the end of the
cycle of meshing is accompanied by the jump in the angular velocity, and vibration and
noise are inevitable. Similarly, the edge contact of helical gears with parallel axes caused
by angular misalignment, such as the crossing angle of gear axes and the difference of
gear helix angles, may be discussed.

Edge contact of misaligned gears whose tooth surfaces are initially in line contact can
be avoided by application of a modified topology of tooth surfaces. Such a topology
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Figure 9.6.1: Edge contact of tooth surfaces of
spur gears.

Figure 9.6.2: Path of contact and transmission errors
for a gear drive with edge contact: (a) illustration of
path of contact at the edge; (b) illustration of trans-
mission errors in the case of edge contact.
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Figure 9.6.3: Function of transmission errors.

must provide the following: (i) a point contact of tooth surfaces but with the sufficient
dimension of the major axis of the contact ellipse, (ii) a favorable direction of the path
of contact on the gear tooth surface, and (iii) a predesigned parabolic type of function
of transmission errors to absorb a discontinuous almost-linear function of transmission
errors caused by misalignments (see Section 9.2).

Edge Contact of Gear Tooth Surfaces That Are Initially in Point Contact
Instantaneous point contact of gear tooth surfaces is typical, for instance, for hypoid gear
drives and spiral bevel gears. The possibility of edge contact for hypoid gears has been
mentioned in the Gleason commercially available TCA programs for hypoid gear drives.

The edge contact in hypoid gear drives can be discovered if the function of transmis-
sion errors and the shape of contact paths on the gear tooth surfaces are considered
simultaneously. We illustrate this statement in Figs. 9.6.3, 9.6.4, and 9.6.5, which show
the function of transmission errors, and the paths of contact on the pinion and gear
tooth surfaces, respectively. Points φ1(A) and φ1(B) on the φ1 axis in Fig. 9.6.3 indicate
the values of φ1 for the beginning and the end of the cycle of meshing for one pair
of teeth. These points also correspond to the points of intersection of the functions of
transmission errors for three neighboring pairs of teeth. Figures 9.6.4 and 9.6.5 show
the paths of contact on the pinion and gear tooth surfaces, respectively. The sufficient

Figure 9.6.4: Path of contact on pinion tooth sur-
face.
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Figure 9.6.5: Path of contact on gear
tooth surface.

condition for avoidance of tangency of pinion edge E1 with the gear tooth surface �2

is that point B (Fig. 9.6.4) is inside of the dimensions of the pinion tooth. Similarly, the
sufficient condition for avoidance of tangency of E2 with �1 can be formulated: point A
must be inside of the dimensions of the gear tooth (Fig. 9.6.5). Figures 9.6.4 and 9.6.5
show that the conditions above are not satisfied and the edge contact of E1 and E2 will
occur.

Figure 9.6.3 shows that the surface-to-surface contact will be only in the area

φ1(A∗) ≤ φ1 ≤ φ1(B∗). (9.6.3)

Here, B∗ and A∗ are the points of intersection of the path of contact with the addendum
edge of the pinion and the gear, respectively (Figs. 9.6.4 and 9.6.5); φ1(A∗) and φ1(B∗)
designate the angles of rotation of the pinion with which the gear tooth surfaces will be
in tangency at A∗ and B∗, respectively. Edge contact at E2 (Fig. 9.6.5) will occur when
φ1 < φ1(A∗). Respectively, edge contact at E1 (Fig. 9.6.4) will occur when φ1 > φ1(B∗).

Due to the edge contact, the resulting function of transmission errors is a combination
of three functions that correspond to edge contacts at E1 and E2 and surface-to-surface
tangency (Fig. 9.6.6).

Figure 9.6.6: Resulting function of transmission
errors.
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We have discussed the case when during the cycle of meshing the edge contact occurs
twice. Similarly, we can consider the case when the edge contact occurs only once and
the resulting transmission errors are determined by a combination of two functions.

The edge contact can be avoided by proper choice of machine-tool settings which can
be accomplished by application of the local synthesis method and the TCA approach.
The local synthesis method will enable us to obtain the most favorable direction of the
tangent to the path of contact. The application of TCA is the final test of whether the
objective, the avoidance of edge contact, is indeed achieved.
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10.1 INTRODUCTION

The involute gearing, first proposed by Euler, has found widespread application in
the industry due to its many advantages: (i) the tools for generation of involute gears
can be produced with high precision, (ii) it is easy to vary the tooth thickness and
provide a nonstandard center distance just by changing tool settings for gear generation,
(iii) nonstandard involute gears can be generated by using standardized tools applied for
standard gears, and (iv) the change of gear center distance does not cause transmission
errors.

The invention of Novikov–Wildhaber gearing is very attractive in its theoretical aspect
and has found application in some areas. However, this gearing is limited to application
to helical gears and has not replaced the involute gearing. A new version of Novikov–
Wildhaber gears based on the latest developments is presented in Chapter 17 of this
book.

Spur involute gears are in line contact at every instant, and therefore they are sensitive
to the misalignment of gear axes. For this reason, it is necessary to localize their bearing
contact, and this can be achieved by crowning the surface of one of the mating gears. It is
preferable to crown the pinion tooth surface rather than the gear tooth surface because
the number of pinion teeth is smaller than the number of gear teeth. The tooth profile
of the spur gears is generated as an involute curve. The meshing of a crowned pinion
tooth surface and a conventional involute gear tooth surface should be the subject of
a study directed at minimization of transmission errors and favorable location of the
bearing contact. Modified spur involute gears with a localized bearing contact and a
reduced level of transmission errors have been presented in the work of Litvin et al.
[2000b].

For better understanding of the following chapters, a brief review of the basic
concept of centrodes (Section 3.1), the geometry of planar curves (Chapter 4), the de-
termination of the envelope to a family of planar curves and surfaces (Chapter 6), and
the concept of relative velocity (Chapter 2) is recommended.

267
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Figure 10.2.1: Involute and evolute.

10.2 GEOMETRY OF INVOLUTE CURVES

Henceforth, we consider conventional, extended, and shortened involute curves (see
Section 1.6). We start with general definitions of the evolute and the involute of a
planar curve.

Involute and Evolute
Consider that a planar curve I is given (Fig. 10.2.1). Segments Mi Ni (i = 1, 2, . . . , n)
represent the curvature radii of curve I at points Mi , where Ni is the curvature center.
The locus of curvature centers Ni is the evolute E to curve I . The main features of E ,
evolute to curve I , are as follows:

(i) The normal Mi Ni at point Mi of curve I is the tangent to the evolute E .
(ii) The evolute to a regular curve I is the envelope to the family of normals Mi Ni to I .

Considering E as given, we may determine the involute I for E as the result of
development of E . Let us imagine an inextensible thread MN that is wrapped on
curve E . Point M of the thread will trace out the involute I while the thread is wound
on and off.

Involute Curve Used for Spur Gears
Consider the particular case when the evolute E is a circle. The involute I for such a
case is the tooth profile for a spur gear. The evolute, the circle of radius rb (Fig. 10.2.2),
is called the base circle. Two branches of an involute curve are shown in Fig. 10.2.2.
They are generated by point Mo of the straight line that rolls over the base circle
clockwise and counterclockwise, respectively. Each branch represents its respective side
of the tooth (Fig. 10.2.3).
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Figure 10.2.2: For derivation of the
equation of an involute curve.

The analytical representation of an involute curve is based on the following consid-
erations (Fig. 10.2.2).

(i) A current point M of the involute curve is determined by the vector equation

OM = OP + PM (10.2.1)

Figure 10.2.3: Two branches of an involute curve.
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where

OP = rb[sin φ cos φ]T (10.2.2)

PM = PM [− cos φ sin φ]T. (10.2.3)

(ii) Due to rolling without sliding, we have

PM =
�

MoP= rbφ. (10.2.4)

Here, φ is the angle of rotation in rolling motion.
(iii) Equations (10.2.1) to (10.2.4) yield

x = rb(sin φ − φ cos φ), y = rb(cos φ + φ sin φ). (10.2.5)

Another representation of an involute curve is based on application of variable pa-
rameter α (Fig. 10.2.2). The derivation of equations of the involute curve may be ac-
complished as follows:

x = r sin θ, y = r cos θ. (10.2.6)

Here,

r = rb

cos α
, rb(θ + α) =

�
Mo P ,

�
Mo P= MP

MP = rb tan α, θ = tan α − α. (10.2.7)

Function θ (α) is designated as inv α. Equations (10.2.6) and (10.2.7) yield

x = rb

cos α
sin(inv α), y = rb

cos α
cos(inv α). (10.2.8)

Function

inv α = tan α − α (10.2.9)

may be determined by direct computation considering α as given. The inverse opera-
tion, determination of α considering inv α as given, needs the solution of the nonlinear
equation

α − tan α + inv α = 0

where inv α is considered as given. The solution can be obtained using the IMSL library
for solution of nonlinear equations (see More et al. [1980] or Visual Numerics, Inc.
[1998]). An approximate representation but with high precision of the inverse function
α(θ ) (θ = tan α − α) was proposed by Cheng [1992]:

α = (3θ )1/3 − 2
5

θ + 9
175

32/3θ5/3 − 2
175

31/3θ7/3 + · · · for θ < 1.8 (10.2.10)

Extended and Shortened Involute Curves
These curves are traced out by point M, which is offset with respect to the rolling
straight line (Figs. 10.2.4 and 10.2.5). The straight line rolls over the circle of radius rb.



P1: FHA/JTH

CB672-10 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:19

10.2 Geometry of Involute Curves 271

Figure 10.2.4: Extended involute curve.

Using an approach similar to that discussed above, we obtain the following equations:

x = (rb ∓ h) sin φ − rbφ cos φ

y = (rb ∓ h) cos φ + rbφ sin φ.
(10.2.11)

The upper sign in Eqs. (10.2.11) corresponds to the extended involute (Fig. 10.2.4),
and the lower sign to the shortened involute (Fig. 10.2.5). Parameter h is the offset of the
tracing point M with respect to the rolling straight line. Two branches are generated by
rolling of the straight line clockwise and counterclockwise, respectively. The common
point of the two branches is Mo, and Mo is a regular curve point (see Problem 10.2.2).
Point P is the instantaneous center of rotation of the rolling straight line.

Figure 10.2.5: Shortened involute curve.
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Figure 10.2.6: Archimedes spiral.

There is a particular case when h = rb and the extended involute curve turns out into
the Archimedes spiral (Fig. 10.2.6) determined by the equation

Mo M = r = rbφ.

(See also Problem 1.6.1). Another particular case is when h = 0 and curve (10.2.11) is a
conventional involute curve. An example of an extended involute curve is the trajectory
that is traced out in relative motion by the center of the circular arc, the fillet of a
rack-cutter (see Section 6.8).

Problem 10.2.1
Consider Eqs. (10.2.11) of extended and shortened involute curves. Derive equations
of tangent T and normal N = T × k, where k is the unit vector of the z axis.

Solution

Tx = ∓h cos φ + rbφ sin φ, Ty = ±h sin φ + rbφ cos φ

Nx = ±h sin φ + rbφ cos φ, Ny = ±h cos φ − rbφ sin φ.

Problem 10.2.2
Represent the curve normal N in coordinate system Sa (Fig. 10.2.7) for an extended
involute curve, and define the orientation of N.

Solution

Nxa = h, Nya = −rbφ.

The normal is directed from curve current point M to the instantaneous center of
rotation P .
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Figure 10.2.7: Geometric interpretation of normal
to involute curve.

Problem 10.2.3
Consider equations of a conventional involute curve, taking, in Eqs. (10.2.11), h = 0.
A singular point is determined with the condition that the tangent to a curve is T = 0.
Determine and visualize the singular point of the curve (see also Problem 4.3.2).

Solution

Tx = rbφ sin φ, Ty = rbφ cos φ.

Tx = Ty = 0 at the position where φ = 0 (point Mo in Fig. 10.2.2).

NOTE. There is only a “half” tangent to the curve at Mo (see Section 4.3). The direction
of the “half” tangent may be represented by the equations [Rashevski, 1956]

Txφ = ∂Tx

∂φ
= rb(φ cos φ + sin φ), Tyφ = ∂Ty

∂φ
= rb(−φ sin φ + cos φ).

Taking into account that φ = 0 at point Mo, we obtain that the “half” tangent T at Mo

is directed opposite to the normal MoO to the base circle (Fig. 10.2.2).

10.3 GENERATION OF INVOLUTE CURVES BY TOOLS

The generation of involute spur gears by a rack-cutter, hob, or shaper is a widespread
practice in industry.

Generation by a Rack-Cutter
The generation of a spur involute gear by a rack-cutter is shown in Fig. 10.3.1. The gear
to be cut rotates with angular velocity ω about O, and the rack-cutter translates with
velocity v. The velocity |v| and angular velocity ω are related by the equation

v
ω

= rp = N
2P

. (10.3.1)
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Figure 10.3.1: Generation of involute
curve by rack-cutter.

Here, rp is the radius of the pitch circle, N is the number of gear teeth, and P is the
diametral pitch. The pitch circle is the gear centrode by cutting. The rack-cutter centrode
by cutting is the straight line a–a that is tangent to the pitch circle and parallel to v
(Fig. 10.3.1). Point I is the instantaneous center of rotation.

During tooth cutting, the rack-cutter reciprocates parallel to the gear axis of rotation.
The gear tooth shape �2 is generated as the envelope to the family of rack-cutter shapes
�1 that is represented in coordinate system S2 rigidly connected to the gear being gener-
ated. Shape �2 is a conventional involute. The evolute for �2 is the base circle of radius
rb (Fig. 10.3.2) determined as

rb = N cos αc

2P
= rp cos αc = v

ω
cos αc (10.3.2)

where αc is the profile angle of the rack-cutter.

Figure 10.3.2: Meshing of rack with
involute gear.
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We may prove that a rack-cutter with a straight-lined shape �1 generates an involute
curve �2, by applying the theory of envelopes (see Section 6.1 and Problem 6.12.1). The
same involute �2 (with the same radius rb of the base circle) can be generated using a
rack-cutter with various profile angles αc by changing the ratio of v/ω correspondingly
[see Eq. (10.3.2)]. This is used in practice when an involute gear is ground by a plane
and αc is the tilt of the plane.

Figure 10.3.2 illustrates the meshing of the rack-cutter with the gear: I is the instanta-
neous center of rotation; M is the current point of tangency of �1 and �2; the common
normal to �1 and �2 passes through I and is tangent to the base circle.

Design Parameters of Rack-Cutter
To visualize a rack it is useful to consider a rack as the limiting case of a gear with an
infinite number of teeth. Figure 10.3.3 shows an involute spur gear. The radii of the
pitch circle and the base circle, rp and rb, are related as [see Eq. (10.3.2)]

rb = rp cos αc = N
2P

cos αc

where αc determines the orientation of the normal PK to the involute curve at point P .
The curvature radius PK at P is

rb tan αc = PK = N
2P

sin αc . (10.3.3)

Consider now that the number N of gear teeth has been increased but P and αc

are kept at the same values. With N ′ > N the radii of the pitch circle and the base

Figure 10.3.3: Rack as a particular case of a gear.
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Figure 10.3.4: Parameters of a rack-
cutter.

circle are r′p and r ′
b, respectively; the center of these circles is O ′. The curvature center

is K ′, and the curvature radius PK ′ = r ′
b tan αc is increased. It is evident that while

the gear center O is moved to infinity along OO ′, the curvature center at P is also
moved to infinity but along PK ′; the gear involute profile is turned out into a straight
line that is perpendicular to PK (Fig. 10.3.3). The gear pitch circle is turned out into
the straight line a–a . Thus, when N approaches infinity, the gear is turned out into a
rack.

The design parameters of rack-cutters are standardized to save the number of tools
to be applied (Fig. 10.3.4). The standardized parameters are P = π

pc
(see Section 10.4),

αc , the dimensions of the dedendum and addendum of the rack-cutter, and the clear-
ance parameter c. We have to differentiate between a conventional rack designed to
be in mesh with a spur gear, and a rack-cutter designated for generation of spur gears.
The addendum of the rack-cutter is extended in comparison with the addendum of a
conventional rack. Only the rack-cutter is provided with the shaded part of the tooth.
The shape of the fillet of the rack-cutter is shown in Fig. 6.9.1. The same rack-cutter can
be applied for generation of gears with the given values of P and αc but with different
numbers of teeth.

Generation by Hob
The generation of gears by a hob is shown in Fig. 10.3.5. The hob may be considered as
a worm [usually a worm with a single thread, as in Fig. 10.3.5(a)]. The worm is slotted
in the axial direction to form a series of cutting blades. The axial section of the worm
may be considered to be a rack. The rotation of the hob simulates the translation of
the imaginary rack. During cutting, the hob and the gear to be generated rotate about
their respective axes [Fig. 10.3.5(b)]. The hob in addition to rotating translates parallel
to the gear axis; this is the feed motion of the hob.

Angles φh and φg of hob and gear rotations are related as

φh

φg
= Ng

Nh
(10.3.4)

where Ng is the number of gear teeth and Nh is the number of hob threads. Usually
Nh = 1. The meshing of the hob with the gear being generated may be considered as the
rack-gear meshing. The rotation of the hob simulates the translation of the imaginary
rack.
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(a)

(b)

Figure 10.3.5: Generation by hob.

Figure 10.3.6: Generation by shaper.
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Figure 10.3.7: Meshing of gear and shaper.

Generation by Shaper
Tooth generation by a shaper simulates the mesh of two gears, one of which is the shaper
(Fig. 10.3.6). An involute shaper with a radius of base circle rbc generates an involute
spur gear with the radius of the base circle rbg determined as

rbg = Ng

Nc
rbc (10.3.5)

where Nc and Ng are the numbers of teeth of the shaper and of the generated gear,
respectively. The shape �2 of the gear teeth is the envelope to the family of shaper
shape �1, which is formed in relative motion (Fig. 10.3.7).

The great advantage of generation of gears by a shaper is the possibility of manufac-
turing of gears with internal teeth. Such gears have been widely applied in planetary
trains due to higher efficiency of internal gearing.

10.4 TOOTH ELEMENT PROPORTIONS

The pitch circle is the reference circle for tooth element proportions (Fig. 10.4.1). The
circular pitch pc is the distance between two gear neighboring teeth measured along
the pitch circle. The circular pitch is an arc of the pitch circle. The distance between
two neighboring teeth of the rack-cutter (Fig. 10.3.4) is a segment of a straight line
that is equal to pc . (Recall that the pitch circle is the centrode in meshing with the
rack-cutter.)

The diametral pitch is represented as

P = N
d

= π

pc
(10.4.1)
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Figure 10.4.1: Gear tooth parameters.

and is defined as the number of teeth of the gear per inch of its diameter. Relations
(10.4.1) are based on the following considerations:

Step 1: The circumference of the pitch circle is

L = pc N = πd (10.4.2)

where N is the number of gear teeth.
Step 2: Equations (10.4.2) yield relation (10.4.1). The ratio N/d is called the diame-

tral pitch.
The module m is represented as

m = pc

π
= d

N
.

The unit for m is in millimeters, but the unit for P is (1/in.).
The addendum a is the radial distance between the addendum circle and the pitch

circle.
The dedendum b is the radial distance between the pitch circle and the dedendum

circle.
The tooth thickness t and the space width w are arcs measured along the pitch

circle.
In the case of standard gears (with standard tooth element proportions) we have

a = 1/P ; b = 1.250/P for coarse pitch gears (up to P = 20); b = 1.200/P + 0.002 in.
for fine pitch gears; the clearance is c = b − a ; and the nominal values of tooth thickness
and space width are t = w = pc/2.

Problem 10.4.1
Consider the following as known: the diameter of the addendum circle da = 2.200 in.
(obtained by measurements); the teeth number N = 20; and the gear is generated by a
rack-cutter with the profile angle αc = 20◦ with the conventional setting of the tool.
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Determine

(i) the diametral pitch P ,
(ii) the circular pitch pc ,

(iii) the radius of the base circle rb,
(iv) the base pitch pb,
(v) the nominal value of tooth thickness t on the pitch circle.

Solution
(i) P = 10

1
in.

.

(ii) pc = π

10
in.

(iii) rb = rp cos 20◦ = 0.94 in.

(iv) pb = π

10
cos 20◦ in. = 0.094π in.

(v) t = π

20
in.

10.5 MESHING OF INVOLUTE GEAR WITH RACK-CUTTER

Conventional and Non-Conventional Settings of Rack-Cutter
Recall that the gear centrode by cutting is the pitch circle because the translational
velocity v and the angular velocity ω are related by cutting with Eq. (10.3.1). The rack-
cutter centrode is the straight line that is tangent to the gear centrode and is parallel
to v.

We call the setting of the rack-cutter with respect to the gear the conventional set-
ting when the middle-line of the rack-cutter is tangent to the gear pitch circle. Figure
10.5.1 shows that the rack-cutter was displaced at the distance e; the middle-line of the
rack-cutter is designated as II–II , and the rack-cutter centrode is I–I . This setting of
the rack-cutter we call the non-conventional setting. The displacement of the rack-cutter
enables us to change the gear tooth thickness and avoid undercutting as well. We have
to emphasize that the gear and rack-cutter centrodes are the same for conventional and
non-conventional settings because the ratio v/ω is observed to be the same for both types
of settings. Involute gears generated by the non-conventional setting of the rack-cutter
are called nonstandard gears.

Conditions of Nonundercutting
Conditions of nonundercutting by a rack-cutter may be determined by using the general
approach presented in Section 6.3 (see also Problems 10.5.1 to 10.5.3). An approach
based on simple geometric considerations is introduced in this section to illustrate the
case of undercutting of involute gears. We start the discussions with the concept of the
limiting setting of a rack-cutter. We have to emphasize that generally speaking the initial
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Figure 10.5.1: Generation of point G.

point of the involute curve that is generated by the rack-cutter may be located upward
with respect to the base circle.

We designate by F the point of tangency of the straight line of the rack-cutter shape �1

with the rack-cutter fillet. It is evident that the initial point of the involute curve �2 is
generated when �1 and �2 will be in tangency at point G of the line of action. Thus,
initial point G of the involute curve belongs to the gear circle of radius rG = OG, and
rG �= rb. This means that generally G does not coincide with the initial point Mo of the
involute curve that belongs to the base circle (Fig. 10.2.2). The real initial point of an
involute curve generated by a rack-cutter is G but not Mo.

Using Fig. 10.5.1 we may derive the following equations:

tan αG = GL
rb

= tan αc − 4P (a − e)
N sin 2αc

(10.5.1)

rG = N cos αc

2P cos αG
. (10.5.2)

Equations (10.5.1) and (10.5.2) enable us to determine the radius rG of the circle where
the initial point of the involute curve is located. Using these equations we are able to de-
termine as well the conditions of nonundercutting with the requirements that rG ≥ rb or
αG ≥ 0. Simpler expressions can be derived if we use the concept of minimal number of
teeth free from undercutting. Figure 10.5.2 shows one such case when point F generates
the initial point of the involute curve at point L of the line of action. This case may exist
if and only if a pinion with a certain number of teeth is generated. It is assumed in our dis-
cussion that the setting of the rack-cutter is the conventional one (the middle rack-cutter
line a–a is the tangent to the pitch circle). Equation (10.5.1) with αG = 0 and e = 0 yields

Nmin = 2Pa

sin2 αc
. (10.5.3)
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Figure 10.5.2: Limiting setting of rack-cutter.

For the case where a = 1/P , we obtain that

Nmin = 2

sin2 αc
. (10.5.4)

The minimal number of pinion teeth, Nmin, indicates for the designer that when N ≥
Nmin the pinion may be generated with the conventional setting of the rack-cutter. Here,
N is the number of teeth of the designed pinion. For the case where N < Nmin, a non-
conventional setting of the rack-cutter must be provided. The respective displacement e
of the rack-cutter (Fig. 10.5.1) can be determined from Eq. (10.5.1) with the requirement
that αG ≥ 0. Then we obtain

tan αc − 4P (a − e)
N sin 2αc

≥ 0. (10.5.5)

Expression (10.5.5) with a = 1/P yields

N sin2 αc − 2(1 − Pe)
N sin αc cos αc

≥ 0. (10.5.6)

Considering (10.5.6) and (10.5.4) simultaneously, we obtain

Pe ≥ Nmin − N
Nmin

. (10.5.7)

Here, Pe is an algebraic unitless value. Designating Pe by ζ , we obtain

ζ ≥ Nmin − N
Nmin

. (10.5.8)

We may consider two cases:

(i) N < Nmin. Then ζ > 0, and the rack-cutter must be displaced outward from the
gear center. The minimal value of ζ is

ζmin = Nmin − N
Nmin

. (10.5.9)
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Choosing ζ > ζmin, we have to limit ζ due to the possibility of tooth pointing (see
Problem 10.6.2).

(ii) N > Nmin. Then ζ ≤ 0, and the rack-cutter can be displaced toward the gear center,
or the setting can be conventional (ζ = 0).

Change of Gear Tooth Thickness and Dedendum Height
The displacement of the rack-cutter affects the gear tooth thickness and the dedendum
dimension. Henceforth, we consider the change of tooth thickness (space width) that is
measured along the gear pitch circle. The space width of the gear that is measured along
the pitch circle is equal to the tooth thickness of the rack-cutter that is measured along
I–I , the rack-cutter centrode. In the case of the conventional setting of the rack-cutter,
the nominal value of the gear space width is

w = sc = pc

2
= π

2P
(10.5.10)

where sc is the tooth thickness of the rack-cutter on the middle-line a–a . When a non-
conventional setting of the rack-cutter is provided, the tooth thickness of the rack-cutter
on its centrode I–I is [Fig. 10.5.3(b)]

s ∗
c = sc − 2e tan αc = pc

2
− 2e tan αc . (10.5.11)

The gear space width is

w = s ∗
c = pc

2
− 2e tan αc . (10.5.12)

The radius of the dedendum circle is determined with the equation

rd = rp − b + e, (10.5.13)

and the dedendum height is (b − e). To keep the total height at the gear tooth at the
proper value it is necessary to change the radius of the addendum circle while preparing
the gear blank for cutting.

Problem 10.5.1
Consider a conventional setting of the rack-cutter (e = 0). The radius rG of the circle
where the initial point of the involute curve is located is represented by Eqs. (10.5.1)
and (10.5.2). Represent radius rG in terms of N , αc , and P ; take a = 1/P .

Solution

rG = (N2 sin2 αc − 4N sin2 αc + 4)
1
2

2P sin αc
. (10.5.14)

Problem 10.5.2
Consider that radius rG is represented by Eq. (10.5.14). Derive an equation in
terms of N and αc when the initial point of the involute curve belongs to the base
circle.
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Figure 10.5.3: Illustration of (a) generation of standard and nonstandard gears and (b) tooth thickness
of the rack-cutter.

Solution

N = 2

sin2 αc
.

Problem 10.5.3
Transform expression (10.5.8) by using Eq. (10.5.4). Represent ζ in terms of N
and αc .

Solution

ζ ≥ 2 − N sin2 αc

2
.

Problem 10.5.4
A gear with tooth number N > Nmin is generated by a rack-cutter with the profile angle
αc ; the diametral pitch is P ; the addendum of the rack-cutter is b = 1.25/P ; a non-
conventional setting of the rack-cutter is used (e < 0). Represent in terms of N , αc , and
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P the minimal radius of the gear dedendum circle with which undercutting might still
be avoided.

DIRECTIONS. Use Eq. (10.5.13) for rd . Expression (10.5.7) yields that undercutting may
still be avoided with

e = Nmin − N
P Nmin

= 2 − N sin2 αc

2P
.

Solution

rd = N cos2 αc − 0.5
2P

. (10.5.15)

Problem 10.5.5
Equation (10.5.15) determines the radius of the dedendum circle when the non-
conventional setting of the rack-cutter is applied. The radius of the dedendum circle
when a conventional setting of the rack-cutter is applied is represented by the equation

r ∗
d = rp − 1.25

P
.

Determine N in terms of αc when: (i) rd > r ∗
d , (ii) rd = r ∗

d , and (iii) rd < r ∗
d .

Solution

(i) N <
2

sin2 αc
; (ii) N = 2

sin2 αc
; (iii) N >

2

sin2 αc
.

10.6 RELATIONS BETWEEN TOOTH THICKNESSES MEASURED
ON VARIOUS CIRCLES

Consider that the tooth thickness tp =
�

AA′ on the pitch circle is given (Fig. 10.6.1). The
goal is to determine the tooth thickness tx =

�

BB ′ on the circle of given radius rx; tx must
be represented in terms of P , pressure angle αc , tooth number N , and radius rx.

The tooth half-thickness and the corresponding angle β (or βx) are related by the
following equations:

β =
�

AA′

2rp
= tp

2rp
(10.6.1)

βx = tx

2rx
(10.6.2)

Figure 10.6.1 yields

βx = β + inv αc − inv αx (10.6.3)

where inv αc = tan αc − αc , inv αx = tan αx − αx, and

cos αx = rb

rx
= N cos αc

2Prx
. (10.6.4)
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Figure 10.6.1: For derivation of tooth thickness.

The nominal value of tp for a standard gear is

tp = pc

2
= π

2P
. (10.6.5)

Equations (10.6.1) to (10.6.3) yield

tx = rx

[
tp

rp
+ 2(inv αc − inv αx)

]
. (10.6.6)

The procedure for computation of tx is as follows:
Step 1: Determine cos αx:

cos αx = N cos αc

2Prx
.

Step 2: Determine inv αx:

inv αx = tan αx − αx.

Step 3: Determine tx using Eq. (10.6.6).
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Problem 10.6.1
Determine the tooth thickness on the base circle of a standard gear [use Eq. (10.6.6)].

Solution

tb = rb

( π

N
+ 2 inv αc

)
. (10.6.7)

Problem 10.6.2
Determine the radius of the circle where the teeth are pointed for: (i) a standard gear,
and (ii) a nonstandard gear.

Solution
(i)

inv αx = π

2N
+ inv αc (10.6.8)

rx = N cos αc

2P cos αx
. (10.6.9)

(ii) In the case of a nonstandard gear we have [see Eq. (10.5.12)]

tp = pc − w = pc

2
+ 2e tan αc = π

2P
+ 2e tan αc (10.6.10)

inv αx = π

2N
+ 2e P tan αc

N
+ inv αc (10.6.11)

rx = N cos αc

2P cos αx
.

10.7 MESHING OF EXTERNAL INVOLUTE GEARS

Figure 10.7.1 shows involute profiles β–β and γ –γ of the teeth of two mating gears.
These curves have been obtained by the development of base circles of radii rb1 and rb2,
respectively.

Constancy of Gear Ratio
The transformation of motion is performed with a constant ratio of angular velocities
because the common normal KL to the involute curve intersects the center distance
O1–O2 at a point of constant location (point I in Fig. 10.7.1). This point is the instan-
taneous center of rotation. The proof of this statement is based on the basic theorem of
planar gearing, Lewis’ theorem (see Section 6.1).

Line of Action
The line of action is KL, the common tangent to the base circles. Straight line KL is the
common normal to the gear tooth profiles as well.
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Figure 10.7.1: Meshing of involute gears.

Gear Centrodes
Circles of radii O1 I and O2 I are the gear centrodes. Generally, the gear centrodes do
not coincide with the gear pitch circles (see below).

Pressure Angle
The pressure angle α is formed by the line of action KL and the tangent to the gear
centrodes. Generally, the pressure angle α differs from the rack-cutter profile angle αc .
The equality α = αc can be observed in a particular case only (see below).

Change of Center Distance
The change of center distance does not affect the gear ratio m12, but it is accompanied
with a change of the pressure angle and the radii of gear centrodes. The proof of this
statement is based on the following considerations:

(a) Considering that gear tooth profiles β–β and γ –γ are given, we have to consider
that the corresponding base circles are also given (Fig. 10.7.1). Recall that β–β and
γ –γ have been obtained by the development of base circles of radii rb1 and rb2,
respectively.

(b) Figure 10.7.2 shows that the gears with the same base circles have been assembled:
initially with the center distance E [Fig. 10.7.2(a)], and then with the center distance
E ′ = E + �E [Fig. 10.7.2(b)]. The common normal in the first case is KL and in
the second case is K ′L′. The point of intersection of the common normal with the
center distance (I and I ′, respectively) does not change its location in the process
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Figure 10.7.2: Influence of change of center
distance.

of transformation of motions. Thus, the gear ratio is constant in both previously
mentioned cases.

(c) Due to the change of center distance, the new pressure angle is α′ �= α, and the radii
of gear centrodes r ′

i (i = 1, 2) differ from the previous ones, ri .
(d) It is easy to verify that the gear ratio is the same for both cases of assembly. This

statement follows from the equations

m12 = ω(1)

ω(2)
= r2

r1
= rb2

rb1
= r ′

2

r ′
1
. (10.7.1)

Involute Profiles as Equidistant Curves
The advantage of involute gearing is that the tooth profiles are equidistant curves
(Fig. 10.7.3) because they are generated by a rack-cutter whose tooth profiles are parallel
straight lines (Fig. 10.3.4). The distance pb between the gear tooth profiles (Fig. 10.7.3)
that is measured along the common normal to the profiles is equal to the distance pn

between the profiles of the rack-cutter (Fig. 10.3.4) and is determined as

pb = pn = pc cos αc .

Taking into account how the involute curves are generated, we obtain (Fig. 10.7.3) that

pb =
�

MN

where arc
�

MN is the distance between two neighboring involute curves that is measured
along the base circle.

The neighboring involute curves, because they are the equidistant ones, have a com-
mon normal at a position that is called the transfer of meshing when one pair of teeth is
out of mesh and is substituted by another one. This is especially important in the case
when gear eccentricity is an error of manufacturing (or assembly). The transmission
function of eccentric gears is nonlinear, but if the profiles are involute curves the trans-
mission function and its first derivative are continuous ones at the transfer point. This
means that eccentricity of involute gears does not cause a stroke at the transfer point.
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Figure 10.7.3: Involute profiles as equidis-
tant curves.

Sliding of Involute Profiles
The involute profiles while they are in mesh are in tangency at a point that belongs to
the line of action KL. The relative motion of one tooth profile with respect to the other
one is pure rolling when they are in tangency at point I , the instantaneous center of
rotation. The relative motion when the tooth profiles are in tangency at any point of
KL that differs from I is rolling and sliding (Fig. 10.7.4). Our goal is to determine the
sliding velocity.

Let the tooth profiles be in tangency at point M of line KL. This means that point
M1 of profile �1 coincides with point M2 of profile �2. The velocity of point M1 with
respect to point M2 is

v(12) = v(1,M) − v(2,M) = (ω(1) × O1M
)− (ω(2) × O2M

)
. (10.7.2)

The sliding velocity at point I is equal to zero. When the point of tangency goes through
I , the direction of sliding velocity will be changed in the neighborhood of I .

Interference
Interference means that an involute shape of one mating gear is in mesh with the fillet
of the other gear. The determination of conditions of noninterference is based on the
following considerations:

(i) Equation (10.5.1) determines parameter αG for the point of tangency of the involute
profile with the fillet. Here,

tan αGi = tan αc − 4P (a − ei )
Ni sin 2αc

(i = 1, 2). (10.7.3)
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Figure 10.7.4: For derivation of sliding
velocity.

(ii) Figure 10.7.1 shows B1–B2, the working part of the line of action. Here, B1 is
the point of tangency of the tip of the driven profile γ –γ with the driving profile
β–β; B2 is the point of tangency of the tip of the driving profile β–β with the
driven profile γ –γ . The pressure angles at points B1 and B2 are determined by the
equations

tan αb1 = (rb1 + rb2) tan α − rb2 tan αa2

rb1

= tan α − N2

N1
(tan αa2 − tan α) (10.7.4)

tan αb2 = tan α − N1

N2
(tan αa1 − tan α) (10.7.5)

where αai (i = 1, 2) is the pressure angle at the tip of the involute pro-
file (at the point of intersection of the involute profile with the addendum
circle).

(iii) The interference will be avoided if the following inequality is observed:

αGi ≤ αbi (i = 1, 2). (10.7.6)
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Figure 10.8.1: Angular pitch.

10.8 CONTACT RATIO

The contact ratio is an important criterion of load distribution between the teeth that
are in mesh. We start the discussion with the definition of angular pitch, which is the
angle θN that corresponds to the circular pitch pc . Here (Fig. 10.8.1),

θNi = pc

r pi
= 2pc P

Ni
= 2π

Ni
(i = 1, 2). (10.8.1)

Figure 10.7.1 shows the tooth profiles β–β and γ –γ at three positions of meshing.
Points B1 and B2 indicate the points of contact at the line of action in the beginning
and at the end of meshing for the same pair of profiles, respectively. These points have
been obtained as points of intersection of the line of action with (i) the gear addendum
circle (point B1), and (ii) the pinion addendum circle (point B2). Point M is the current
point of tangency of the tooth profiles.

Let us now consider the angles of rotation of mating gears for the cycle of meshing
when one pair of profiles starts and finishes the meshing. It is evident that the pinion
and gear angles of rotation for the cycle are ̂B1O1 B2 and ̂B1O2 B2, respectively. The
tangency of neighboring tooth profiles is a continuous process if

̂B1O1 B2 ≥ 2π

N1
, ̂B1O2 B2 ≥ 2π

N2
.

The contact ratio is represented by the equation

mc =
̂B1Oi B2

θNi
(i = 1, 2). (10.8.2)

Another representation of the contact ratio is based on the equation

mc = l
pb

= l
pc cos αc

= Pl
π cos αc

(10.8.3)

where l = B1 B2 is the length of the working part of the line of action – the displacement
of the contact point along the line of action during the cycle of meshing; pb is the
distance between the neighboring tooth profiles that is measured along their common
normal.

Using Fig. 10.7.1, we obtain

KB2 + B1L = KL + l . (10.8.4)
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Thus,

l = KB2 + B1L − KL = (r 2
a1 − r 2

b1

) 1
2 + (r 2

a2 − r 2
b2

) 1
2 − E sin α (10.8.5)

or

l = rb1 tan αa1 + rb2 tan αa2 − (rb1 + rb2) tan α. (10.8.6)

Thus, we can obtain two alternative expressions for mc ,

mc = P

(
r 2

a1 − r 2
b1

) 1
2 + (r 2

a2 − r 2
b2

) 1
2 − E sin α

π cos αc
(10.8.7)

and

mc = N1(tan αa1 − tan α) + N2(tan αa2 − tan α)
2π

(10.8.8)

where

cos αai = rbi

rai
= Ni cos αc

2Prai
(i = 1, 2).

We must emphasize that α �= αc if E �= (N1 + N2)/2P [see Eq. (10.9.16)]. The contact
ratio increases as the number of teeth N1 and N2 increases. A pinion has the largest
value of mc when N2 approaches infinity and the gear is a rack (see Problem 10.8.1).
A high contact ratio can be obtained for a gear drive with teeth of increased height. In
the case of an error of the base pitch pb, the contact ratio is equal to 1, and the transfer
of meshing is accompanied with a stroke.

Problem 10.8.1
Determine the contact ratio for a drive formed by a gear and a rack (Fig. 10.8.2). Given:
the number N of gear teeth; ra = rp + 1/P ; the rack addendum is 1/P . Determine
(i) the length l = B1 B2 of the working length of the line of action, and (ii) the contact
ratio.

Figure 10.8.2: For derivation of contact ratio.
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Solution
(i)

l = 1
P

[
N cos αc

2
(tan αa − tan αc ) + 1

sin αc

]
where

cos αa = rb

ra
= N cos αc

N + 2
.

(ii)

mc = 1
π

[
N (tan αa − tan αc )

2
+ 2

sin 2αc

]
.

10.9 NONSTANDARD GEARS

Nonstandard gears are applied in the following cases:

(1) To avoid undercutting of the pinion with the tooth number N < 2/ sin2 αc

(2) To obtain the contact ratio mc ≥ 2 by increasing the tooth height
(3) To design a gear train with a specific value of center distance
(4) To increase the tooth thickness and reduce the bending stresses.

Nonstandard gears are generated by a standardized tool used for generation of standard
gears but with modified settings of the tool with respect to the gear being generated.

The need for a specific value of the center distance for a gear train is illustrated in
Fig. 10.9.1. Gears 1, 2, and 3 have the same circular pitch pc , N2 �= N3, but the center
distance E12 must be equal to the center distance E13. The requirement that E12 = E13

can be observed if one of the two gears (2 or 3) is designed as a nonstandard gear, with
a changed tooth thickness.

We recall that when a non-conventional setting of the rack-cutter is applied, its middle-
line m–m is displaced at the distance e with respect to the tangent a–a to the pitch

Figure 10.9.1: Application of nonstandard gears in a
gear train.
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Figure 10.9.2: Non-conventional setting of rack-cutter.

circle (Fig. 10.9.2). The displacement e is performed perpendicular to v and must be
considered as an algebraic value: e > 0 if the displacement is performed outward from
the gear center O; e < 0 if the displacement is performed toward O; a conventional
setting of the rack-cutter means that e = 0. The gear and rack-cutter centrodes are the
same for all three types of rack-cutter setting (with e > 0, e < 0, and e = 0) because
the same ratio v/ω is observed for the gear generation. A non-conventional setting of
the rack-cutter results in a change of tooth thickness of the gear being generated: the
space width is decreased and tooth thickness is increased if e > 0.

There are two systems of nonstandard gears:

(a) the Long–Short Addendum System that is characterized with the relation
e p + eg = 0

(b) the General Nonstandard Gear System that is characterized with the relation e p +
eg �= 0.

The subscripts “p” and “g” indicate the rack-cutter displacements for pinion and gear
generation, respectively.

Long–Short Addendum System
The main features of the system are as follows:

(i) e p + eg = 0, which means that the absolute values of the rack-cutter displacements
e p and eg are the same but are performed in opposite directions with respect to the
centers of the pinion and the gear, Op and Og .
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(ii) The pressure angle is α = αc .
(iii) The center distance is E = (N1 + N2)/2P .
(iv) The pinion and gear tooth thicknesses that are measured on the pitch circles differ

from the standard ones.
(v) The pinion and gear addendums and dedendums differ from the standard ones.
(vi) The pinion and gear centrodes coincide with their pitch circles.

The discussed nonstandard system can be applied if the following inequality is ob-
served:

Np + Ng ≥ 2Nmin = 4

sin2 αc
. (10.9.1)

This statement may be proven with the following considerations:

(i) The undercutting of the pinion and the gear can be avoided if [see expression
(10.5.7)]

e p ≥ Nmin − Np

P Nmin
(10.9.2)

eg ≥ Nmin − Ng

P Nmin
. (10.9.3)

(ii) Taking into account that e p + eg = 0, we obtain inequality (10.9.1).

Long–Short Addendum System: Computational Procedure
We assume (a) the pinion tooth number is Np < Nmin, thus the pinion tooth under-
cutting must be avoided; and (b) the sum of the numbers of gear and pinion teeth is
(Fig. 10.9.3)

Np + Ng ≥ 2Nmin.

Step 1: Determination of rack-cutter settings:

e p = Nmin − Np

P Nmin
(10.9.4)

eg = −e p. (10.9.5)

Step 2: Determination of tooth thicknesses on the pitch circle:

tp = π

2P
+ 2e p tan αc (10.9.6)

tg = π

2P
+ 2eg tan αc . (10.9.7)

It is easy to prove that

tp = wg
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Figure 10.9.3: Long–short addendum system.

where wg is the gear space width. This comes from the relations

wg = pc − tg = π

P
−
( π

2P
+ 2eg tan αc

)
= π

2P
− 2eg tan αc = π

2P
+ 2e p tan αc .

because eg = −e p. Due to the relations

tp = wg , tg = wp,

the pinion and the gear may be assembled with a standard center distance

E = rp + rg = Np

2P
+ Ng

2P
. (10.9.8)

Step 3: Determination of pinion and gear dedendums:

(a) for coarse diametral pitches (P from 1 up to 20)

bp = 1.250
P

− e p (10.9.9)

bg = 1.250
P

− eg (10.9.10)
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(b) for fine diametral pitches (for P = 20–200)

bp = 1.200
P

+ 0.002 − e p (10.9.11)

bg = 1.200
P

+ 0.002 − eg . (10.9.12)

Step 4: Determination of pinion and gear addendums:

a p = 1
P

+ e p (10.9.13)

ag = 1
P

+ eg . (10.9.14)

General Nonstandard Gear System: Computational Procedure
The main features of this system are as follows: (i) e p + eg �= 0; (ii) the center distance
is E ′ �= N1+N2

2P ; (iii) the pressure angle is α �= αc ; (iv) the gear centrodes differ from pitch
circles; and (v) the tooth element proportions and tooth thicknesses are modified. There
is a particular case when one of the mating gears (say, the gear with tooth number Ng )
is generated with the conventional setting of the rack-cutter (eg = 0 but e p �= 0).

Step 1: Determination of the pressure angle α.
The pressure angle α is represented by the equation

inv α = inv αc + 2(e p + eg )P
Np + Ng

tan αc . (10.9.15)

The derivation of Eq. (10.9.15) is based on the following considerations:
(i) The pinion tooth thickness on the pitch circle is [see Eq. (10.6.10)]

tp = π

2P
+ 2e p tan αc . (10.9.16)

(ii) The pinion tooth thickness on the pinion centrode, the pinion operating pitch circle,
is designated by t ′

p (Fig. 10.9.4) and may be determined as [see Eq. (10.6.6) and
Fig. 10.9.4]

t ′
p

r′p
= tp

rp
− 2(inv α − inv αc )

= π + 4e p P tan αc

Np
− 2(inv α − inv αc ). (10.9.17)

(iii) Similarly, using Fig. 10.9.5, we obtain

w′
g

r ′
g

= π − 4eg P tan αc

Ng
+ 2(inv α − inv αc ) (10.9.18)

where w′
g is the gear space width on the gear centrode of radius r ′

g . Here, r ′
g is the

expected centrode radius of the gear. Centrodes of radii r ′
p and r ′

g roll over each
other and t ′

p = w′
g . Consequently,

t ′
p

r ′
p

:
w′

g

r ′
g

= r ′
g

r ′
p

= Ng

Np
= mpg (10.9.19)
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Figure 10.9.4: Tooth thickness on pinion centrode.

α

αc

Figure 10.9.5: Space width on gear centrode.
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Figure 10.9.6: Gear centrodes of nonstandard
gears.

where mpg is the angular velocity ratio by transformation of motion from
the pinion to the gear. Equations (10.9.17), (10.9.18), and (10.9.19) yield
Eq. (10.9.15).

Step 2: Determination of operating center distance. Figure 10.9.6 shows the pinion
and gear assembled with operating center distance E ′ and operating pressure angle α.
It is evident that

E ′ = r ′
p + r ′

g = rbp

cos α
+ rbg

cos α
= (rp + rg ) cos αc

cos α

= (Np + Ng ) cos αc

2P cos α
. (10.9.20)

It is easy to verify that [see Eq. (10.9.15)] α = αc with e p + eg = 0. In this case
Eq. (10.9.20) yields that

E ′ = Np + Ng

2P
.

NOTE. the gear centrodes differ from the pitch circles and are determined as

r ′
p = rb1

cos α
, r ′

g = rb2

cos α
(α �= αc ). (10.9.21)

Step 3: Determination of radii of dedendum circles:

rdi = ri − b + ei (i = p, g). (10.9.22)

Here, b is the rack-cutter addendum represented as:

b = 1.250
P

(in inches) for coarse diametral pitches (P from 1 up to 20);

b = 1.200
P

+ 0.002 (in inches) for fine pitches.
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Figure 10.9.7: For derivation of the addendum radii of pinion and gear.

Step 4: Determination of radii of addendum circles.
The following derivations are directed at the observation of the standardized clearance

c between the addendum circle of one gear and the dedendum circle of the other one.
This requirement can be observed with the following equations (Fig. 10.9.7):

rap + rdg + c = E ′, rag + rdp + c = E ′. (10.9.23)

Equations (10.9.23) yield

rap = E ′ − rdg − c (10.9.24)

rag = E ′ − rdp − c. (10.9.25)

The clearance is c = 0.250/P for coarse pitch gears (P < 20) and c = 0.200/P +
0.002 in. for fine pitch gears (P ≥ 20).

The observation of the standardized value of clearance is accompanied with the reduc-
tion of tooth height h in the case of a general nonstandard gear system. The derivation
of h is based on the following equations (Fig. 10.9.7):

E ′ = rdp + rdg + h + c = rdp + rdg + h + (b − a). (10.9.26)
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Figure 10.9.8: Visualization of sum of set-
tings (e p + eg ).

Here, rdp and rdg are represented by Eq. (10.9.22); a and b are the dedendum and
addendum of the rack-cutter. We may represent Eq. (10.9.26) as

E ′ = E + �E = rp + rg + �E = Np + Ng

2P
+ �E (10.9.27)

where �E is the change of standard center distance E .
Equations (10.9.26), (10.9.22), and (10.9.27) yield

h = ho − [(e p + eg ) − �E] (10.9.28)

where ho = a + b is the conventional tooth height. It may be proven that e p + eg > �E .
Figure 10.9.8 shows nonstandard gears that have been generated with the displacements
of the rack-cutter e p and eg and then assembled with the center distance

E ′ = (rp + rg ) + (e p + eg ) = E + (e p + eg ).

The rack-cutter is simultaneously in tangency with the pinion and the gear. Points I1

and I2 are the instantaneous centers of rotation of the rack-cutter with the pinion and
the gear, respectively. The pinion and gear pitch circles are the centrodes in the process
of meshing of the rack-cutter and the pinion and gear. Points M1 and M2, and N1 and
N2, respectively, are the points of tangency of the rack-cutter with the pinion and the
gear. However, the pinion and gear tooth profiles are not in tangency if the gears are
assembled with the center distance

E ′ = rp + rg + e p + eg = N1 + N2

2P
+ �E
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where

�E = e p + eg .

The gear tooth profiles will be in tangency if the center distance E ′ satisfies Eqs. (10.9.20)
and (10.9.15). These equations provide �E < e p + eg . This means [see Eq. (10.9.28)]
that h < ho, and generally the tooth height of nonstandard gears is less than the tooth
height of standard gears. However, the tooth height of nonstandard gears is the same as
that of standard gears if e p + eg = 0, as in the case of the long–short addendum system.
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11.1 INTRODUCTION

A gear drive composed of external and internal gears is considered. Application of such a
train enables us to reduce the loss of power caused by sliding of tooth profiles. This effect
is the result of the reduction of the relative angular velocity ω(12) = ω(1) − ω(2), where
|ω(12)| = |ω(1) − ω(2)|. (Recall that the gears perform rotation in the same direction).
However, a high reduction of |ω(12)| requires a small difference �N of the numbers of
teeth of the pinion and the internal gear. The possible interference of tooth profiles by
the gear assembly, and the undercutting of the internal gear in the process of generation,
should be investigated before designation of the desired value of �N . Another advantage
of application of an internal gear train is the possibility of reducing the dimensions of the
train. Trains with internal gears are applied in planetary transmissions, in transmissions
of cranes, in excavators, and so on.

The problems of undercutting of internal involute spur gears in the process of gener-
ation and interference by their assembly with pinions have been studied by several re-
searchers. The phenomenon of undercutting of internal involute gears was first discussed
by Schreier [1961]. Polder [1991] has extended this research and contributed the idea
of the envelope to a family of extended hypocycloids. Dudley [1962] has considered the
interference for the cases of axial and radial assembly of an internal gear with the mating
pinion and has published useful tables for the determination of the minimal difference
(N2 − N1), where N2 and N1 are the numbers of gear and pinion teeth, respectively.

The solutions to the problems discussed in this chapter are based on research by
Litvin, Hsiao, Wang, and Zhou [1994] and cover the following:

(i) The kinematics of the process for generation of the gear fillet as a pseudohypocy-
cloid, ordinary extended hypocycloid, and an envelope to the family of ordinary
extended hypocycloids

(ii) Investigation of interference by radial assembly of the gear and pinion that is based
on a tooth contact analysis (TCA) program for simulation of meshing.

The term pseudohypocycloid means that the generation of the gear fillet is performed
with the following conditions: (a) the center distance Ec between the axes of rotation
of the shaper and the internal gear is not constant; and (b) Ec and the angle of rotation
of the gear, φ2, are related by function Ec (φ2) that simulates the radial feed motion of

304
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Figure 11.2.1: Applied coordinate systems.

the shaper in the process of generation. The research mentioned above was performed
for pressure angles of 20◦, 25◦, and 30◦.

11.2 GENERATION OF GEAR FILLET

Consider coordinate systems Sc , S2, and S f that are rigidly connected to the cutter
(shaper), the gear being generated, and the frame of the cutting machine, respectively
(Fig. 11.2.1). Angles φc and φ2 of rotation of the cutter and the gear are related with
the equation

mc2 = φc

φ2
= N2

Nc
. (11.2.1)

The center distance Ec is considered either constant or varied due to the following
cases of generation:

(1) Case 1, axial generation. The center distance Ec is constant, and the cutter performs
a reciprocative motion that is parallel to the gear axis. In this case

Ec = rp2 − rpc = N2 − Nc

2P
. (11.2.2)

(2) Case 2, axial–radial generation. The cutter performs the reciprocating motion de-
scribed above as well as the continuous radial motion that is perpendicular to the
axes of the cutter and the gear. The varied center distance in this case is represented
by linear function Ec (φ2).

(3) Case 3, axial and step-by-step radial generation. It is assumed that the generation of
the internal gear is performed by k steps. During each step the center distance Ec is
constant, and the angles of rotation are related to Eq. (11.2.1). The center distance
Ec is installed as the minimal at the first step, and as the maximal at the kth step.
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Figure 11.2.2: Representation of generating
point.

In all the cases above, the gear root curve is generated in S2 by the tip point M of
the cutter (Fig. 11.2.2) and can be represented analytically by the following matrix
equation:

r(M)
2 (φ2, Ec ) = M2c (φ2, Ec ) r(M)

c . (11.2.3)

Here,

M2c = M2 f M f c =


cos(φc − φ2) − sin(φc − φ2) 0 Ec sin φ2

sin(φc − φ2) cos(φc − φ2) 0 Ec cos φ2

0 0 1 0

0 0 0 1

 (11.2.4)

r(M)
c = rac [− sin � cos � 0 1]T (11.2.5)

where

� = sac

2rac
. (11.2.6)

Using Fig. 11.2.2, we can determine the following relations between the tooth element
parameters of the shaper (see Nomenclature at the end of this chapter):

sac

2rac
= spc

2rpc
− (inv αac − inv αc ) (11.2.7)

cos αac = rbc

rac
= Nc cos αc

2rac P
(11.2.8)

inv αac = tan αac − αac (11.2.9)

cos αc = rbc

rpc
= 2rbc P

Nc
. (11.2.10)
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In the case of standard gears, we have

rac = Nc + 2.5
2P

, rpc = Nc

2P
, rbc = Nc

2P
cos αc , spc = π

2P
.

Equations (11.2.3), (11.2.4), and (11.2.5) yield

r(M)
2 (φ2, Ec ) = (−rac sin(φc − φ2 + �) + Ec sin φ2)i2

+ (rac cos(φc − φ2 + �) + Ec cos φ2)j2 (11.2.11)

where φc = φ2(N2/Nc ).
Using vector-function r(M)

2 (φ2, Ec ), we can represent the gear fillet for all three cases
discussed above: (i) as an ordinary extended hypocycloid, (ii) as a pseudohypocycloid,
and (iii) as an envelope to the family of ordinary extended hypocycloids (see below).
Undercutting of the gear tooth profile is the result of intersection of the gear fillet with
the working part of the gear tooth profile. The investigation of undercutting will be
considered in Section 11.3 for these three cases.

Ordinary Extended Hypocycloid
The gear fillet is determined by Eq. (11.2.11) while considering that Ec is constant and
is represented by Eq. (11.2.2).

Pseudohypocycloid
We consider that the center distance Ec is continuously varied in the process of gener-
ation. Function Ec (φc ) is linear because only a linear relation between φc (or φ2) and
Ec can be provided by the transmission of the cutting machine. The pseudohypocycloid
is represented by Eq. (11.2.11) while considering that the varied center distance Ec is
represented as a linear function with respect to φ2:

Ec (φ2) = E (1)
c + 2.25

2Pπa
φ2. (11.2.12)

Here, E (1)
c = Ec (0) is the initial value of the center distance represented by

E (1)
c = ra2 − rac =

(
rp2 − 1

P

)
−
(

rpc + 1.25
P

)
= N2 − Nc

2P
− 2.25

P
. (11.2.13)

Parameter a in Eq. (11.2.12) is the number of revolutions of gear 2 that will be performed
for the whole process of generation.

The derivation of Eq. (11.2.12) is based on the following considerations:

(i) The final value of Ec (φ2) is

E (2)
c = Ec (2πa) = rp2 − rpc = N2 − Nc

2P
. (11.2.14)

(ii) It is obvious that

Ec (φ2) − E (1)
c

E (2)
c − E (1)

c

= φ2

2πa
. (11.2.15)

(iii) Equations from (11.2.13) to (11.2.15) confirm Eq. (11.2.12).
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Figure 11.2.3: Pseudohypocycloid.

The pseudohypocycloid is shown in Fig. 11.2.3. We emphasize that the initial and
final points of the generated pseudohypocycloid are located in the same gear space as
shown in Fig. 11.2.3 if the following conditions are observed: (i) the gear and the shaper
perform a whole number of revolutions, a and b, during the process of generation; and
(ii) a and b satisfy the equation

a
b

= φ2

φc
= Nc

N2
. (11.2.16)

Envelope to Family of Extended Hypocycloids
We consider that the internal gear is generated by k steps and the center distance Ec

is constant at each step, but the magnitude of Ec for each step is different and is in
the range E (1)

c ≤ Ec ≤ E (2)
c . Equation (11.2.11) with the conditions above represents a

family of extended hypocycloids (Fig. 11.2.4). We interpret Eq. (11.2.11) as an equation
with two independent parameters, φ2 and Ec , where Ec is the parameter of the family of
curves. Considering that the family of curves is represented in S2 by the vector function
r2(φ2, Ec ), we determine the envelope to the family of curves as (see Section 6.1)

r2 = r(M)
2 (φ2, Ec ),

∂r2

∂φ2
× ∂r2

∂Ec
= 0. (11.2.17)

Using Eqs. (11.2.11) and (11.2.17), we obtain the following equations of the envelope:

Ex2 = rac

Nc
[−Nc sin(φc + �) cos φ2 + N2 cos(φc + �) sin φ2]

Ey2 = rac

Nc
[Nc sin(φc + �) sin φ2 + N2 cos(φc + �) cos φ2]

(11.2.18)

Figure 11.2.4 shows the family of extended hypocycloids, the envelope to the family,
and the location of these curves in the space of an internal involute gear.
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Envelope

Figure 11.2.4: Family of extended hypocycloids and their envelope.

11.3 CONDITIONS OF NONUNDERCUTTING

We consider the conditions of nonundercutting of the internal involute gear for two
cases of generation: (i) axial generation when the center distance between the shaper
and the gear is constant and installed as Ec = E (2)

c , and (ii) parametric generation with
two independent parameters φ2 and Ec ; Ec is changed (independently with respect to
φ2) in the range E (1)

c ≤ Ec ≤ E (2)
c . The conditions of nonundercutting are determined

as conditions of nonintersection of the gear involute profile with the gear root curve.

Internal Gear Involute Profile
Figure 11.3.1 shows an involute profile represented in parametric form in an auxiliary
coordinate system Sa ; θi is the curve parameter. The derivation of equations of the
involute profile is based on the relation that MN =

�

M0N (see Chapter 10). Figure 11.3.2
shows the gear involute profile with the y2 axis as the axis of symmetry of the space.
The equation of the involute profile is

r2(θ2) = rb2


sin(θ2 − q2) − θ2 cos(θ2 − q2)

cos(θ2 − q2) + θ2 sin(θ2 − q2)

0

1

 (11.3.1)

where

q2 = inv αc + π

2N2
. (11.3.2)

For further derivations, we need the width wa2 of the space on the gear addendum
circle. It is easy to verify that

wa2 = 2ra2(q2 − inv αa2) (11.3.3)
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Figure 11.3.1: Representation of involute profile in Sa .

Figure 11.3.2: Space of internal gear.
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Figure 11.3.3: For determination of conditions of nonundercutting.

where

cos αa2 = rb2

ra2
= N2 cos αc

2Pra2
(11.3.4)

inv αa2 = tan αa2 − αa2. (11.3.5)

Nonundercutting by Axial Generation
We consider the limiting case when the extended hypocycloid intersects the gear involute
curve at the gear addendum circle. Coordinates of point K of the involute curve are
represented as (Fig. 11.3.3)

x2 = −ra2 sin
(

wa2

2ra2

)
, y2 = ra2 cos

(
wa2

2ra2

)
. (11.3.6)

Using Eqs. (11.2.11), we represent the extended hypocycloid by the equations

x2 = −rac sin(φc − φ2 + �) + N2 − Nc

2P
sin φ2

y2 = rac cos(φc − φ2 + �) + N2 − Nc

2P
cos φ2

(11.3.7)

where φc = φ2
N2
Nc

.
Equations (11.3.6) and (11.3.7) represent a system of two nonlinear equations in

unknowns φ2, Nc (N2 is given).

−rac sin(φc − φ2 + �) + Ec sin φ2 = −ra2 sin
(

wa2

2ra2

)
rac cos(φc − φ2 + �) + Ec cos φ2 = ra2 cos

(
wa2

2ra2

) (11.3.8)
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where

Ec = N2 − Nc

2P
.

The solution of this system for Nc determines the maximal number of cutter teeth
allowed from the conditions of gear nonundercutting. The first guess for the solution is
based on the following considerations:

Step 1: Transforming equation system (11.3.8), we obtain

cos(φc + �) = r 2
a2 − r 2

ac − E2
c

2Ecrac
. (11.3.9)

We take for the first guess that Nc = 0.9N2 and determine φc from Eq. (11.3.9).
Parameter φ2 is determined as

φ2 = φc
Nc

N2
. (11.3.10)

Step 2: Knowing Nc , φc , and φ2 for the first guess parameter, we can determine the
exact solution of system (11.3.8) for Nc using a numerical method (see More et al.
[1980] and Visual Numerics, Inc. [1998]).

Two-Parameter Generation
The generation of the internal gear is performed with the continuously varied value of
Ec , and the gear root curve is determined as the envelope to the family of extended
hypocycloids. Figure 11.3.4 shows the case when the envelope intersects the gear in-
volute profile, and undercutting occurs. The limiting case of nonundercutting is when
the envelope intersects the involute profile at point K (Fig. 11.3.3). Conditions of inter-
section at point K of the envelope and the involute profile yield the following system
of two nonlinear equations formed by Eqs. (11.3.6) and (11.2.18) in the unknowns φ2

Envelope

Figure 11.3.4: Undercutting by two-parameter generation.
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and Nc (N2 is given):

rac

Nc
[−Nc sin(φc + �) cos φ2 + N2 cos(φc + �) sin φ2] = −ra2 sin

(
wa2

2ra2

)
rac

Nc
[Nc sin(φc + �) sin φ2 + N2 cos(φc + �) cos φ2] = ra2 cos

(
wa2

2ra2

)
.

(11.3.11)

The first guess for the solution of system (11.3.11) is based on considerations similar
to those previously discussed:

Step 1: Transforming equation system (11.3.11), we obtain

cos2(φc + �) = r 2
a2 − r 2

ac

r 2
ac

[ (
N 2

Nc

)2
− 1
] . (11.3.12)

We take for the first guess Nc = 0.8N2 and obtain (φc + �) from Eq. (11.3.12). Param-
eter φ2 is determined from Eq. (11.3.10).

Step 2: Knowing Nc , φc , and φ2 for the first guess, and using the subroutine for
the solutions of equation system (11.3.11), we can determine the exact solution for
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Figure 11.3.5: Design chart for pressure angle αc = 30◦.
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Table 11.3.1: Maximal number of shaper teeth

Pressure angle Generation method Gear teeth Shaper teeth

Axial 25 ≤ N2 ≤ 31 Nc ≤ 0.82N2 − 3.20
αc = 20◦ Axial 32 ≤ N2 ≤ 200 Nc ≤ 1.004N2 − 9.162

Two-parameter 36 ≤ N2 ≤ 200 Nc ≤ N2 − 17.6

Axial 17 ≤ N2 ≤ 31 Nc ≤ 0.97N2 − 5.40
αc = 25◦ Axial 32 ≤ N2 ≤ 200 Nc ≤ N2 − 6.00

Two-parameter 23 ≤ N2 ≤ 200 Nc ≤ N2 − 11.86

αc = 30◦ Axial 15 ≤ N2 ≤ 200 Nc ≤ N2 − 4.42
Two-parameter 17 ≤ N2 ≤ 200 Nc ≤ N2 − 8.78

Nc . Computations based on the above algorithms allow us to develop charts for de-
termination of the maximal number of shaper teeth, Nc , as a function of N2 and the
pressure angle αc . An example of such a chart developed for axial generation and two-
parameter generation is shown in Fig. 11.3.5. Table 11.3.1 (developed by Litvin et al.
[1994]) allows us to determine the maximal number of shaper teeth for various pressure
angles.

11.4 INTERFERENCE BY ASSEMBLY

We consider that the internal gear with the tooth number N2 was generated by the
shaper with tooth number Nc and the condition of nonundercutting was observed.
Then, we consider that the internal gear is assembled with the pinion with the tooth
number N1 > Nc . The question is what is the limiting tooth number N1 that allows
us to avoid interference by assembly. Henceforth, we consider two possible cases of
assembly – axial and radial.

Axial Assembly
Axial assembly is performed when the final center distance E (2) = (N2 − N1)/2P is
initially installed and the pinion is put into mesh with the internal gear by the axial
displacement of the pinion. Radial assembly means that the pinion is put into mesh
with the internal gear by translational displacement along the center distance. The center
distance E by the radial displacement of the pinion is changed from (N2 − N1 − 4)/2P
to (N2 − N1)/2P .

Interference in the axially assembled drive occurs if the tip of the pinion tooth gener-
ates in relative motion a trajectory that intersects the gear involute profile. The trajectory
is an extended hypocycloid. The solution is based on the same approach that was applied
for axial generation. The limiting number N1 of pinion teeth is a little larger than Nc

due to the lessened dimension of the pinion addendum in comparison with the shaper
addendum.
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Radial Assembly
The investigation of interference in the radial assembly is based on the following con-
siderations:

(i) We represent in fixed coordinate system S f equations of profiles of several gear
spaces and pinion teeth by the following vector functions:

r(2)
f (θ2, j δ2, N2), r(1)

f (θ1, j δ1, E, N1). (11.4.1)

Here, θi is the parameter of the involute profile (i = 1, 2); δi = (2π )/Ni is the
angular pitch; j is the space (tooth) number; and E is the variable center distance
that is installed by the assembly. The superscripts “1” and “2” indicate the pinion
and the gear, respectively; N2 is considered as given.

(ii) Interference of pinion and gear involute profiles occurs if

r(2)
f (θ2, j δ2, N2) − r(1)

f (θ1, j δ1, E, N1) = 0. (11.4.2)

(iii) Equations (11.4.2) provide a system of two scalar equations

f j (θ2, θ1, j δ2, j δ1, E, N1, N2) = 0 ( j = 0, 1, 2, . . . , m). (11.4.3)

We consider the most unfavorable case when the point of interference lies on the
addendum circles of the pinion and the gear (Fig. 11.4.1), and therefore parameters θ1

and θ2 are known. We will determine (N1, E) if the solution of equation system (11.4.3)
exists. The solution for N1 = N (r )

1 determines the maximal number N (r )
1 of the pinion

that is allowed by radial assembly.

Figure 11.4.1: Interference by radial assembly.
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Figure 11.4.2: Radial assembly.

After the gears are radially assembled and the final center distance E (2) is installed, the
tip of the pinion generates an extended hypocycloid while the pinion and gear perform
rotational motions. Interference of the hypocycloid with the gear involute profile is
avoided by making the number of pinion teeth N1 ≤ N (a)

1 , where N (a)
1 is the number

of pinion teeth allowed by axial assembly. The designed number of pinion teeth should
not exceed N (a)

1 and N (r )
1 .

Figure 11.4.2 illustrates the computerized simulation of radial assembly of the pinion
and gear. The computations were performed for a gear drive with N1 = 25, N2 = 40,
diametral pitch P = 8, and pressure angle αc = 20◦.

We can avoid the investigation of interference by radial assembly if the pinion tooth
number N (r )

1 satisfies the inequality N (r )
1 ≤ N (r )

c where N (r )
c is the shaper tooth number

allowed by radial–axial generation (see Table 11.3.1).

Nomenclature
Ec distance between gear and cutter axes (Fig. 11.2.1)
N1 pinion teeth number
N2 gear teeth number
Nc shaper teeth number
P diametral pitch
j tooth number
mi j transmission ratio of gear i to gear j
ra1 radius of pinion addendum circle
ra2 radius of gear addendum circle (Fig. 11.3.2)
rac radius of cutter addendum circle (Fig. 11.2.2)
rb1 radius of pinion base circle
rb2 radius of gear base circle (Fig. 11.3.2)
rbc radius of cutter base circle (Fig. 11.2.2)
r p2 radius of gear pitch circle (Fig. 11.3.2)
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r pc radius of cutter pitch circle (Fig. 11.2.2)
sac tooth thickness of the cutter on the addendum circle (Fig. 11.2.2)
s pc tooth thickness of the cutter on the pitch circle (Fig. 11.2.2)
wa2 space width on the gear addendum circle (Fig. 11.3.2)
wp2 space width on the gear pitch circle (Fig. 11.3.2)
2� angle of tooth thickness on the cutter addendum circle (Fig. 11.2.2)
αc pressure angle of cutter
θi parameter of gear involute profile (i = 1, 2) (Fig. 11.3.1)
φ2 angle of gear rotation (Fig. 11.2.1)
φc angle of cutter rotation (Fig. 11.2.1)
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12 Noncircular Gears

12.1 INTRODUCTION

Noncircular gears transform rotation between parallel axes with the prescribed gear
ratio function

m12 = ω(1)

ω(2)
= f (φ1)

where φ1 is the angle of rotation of the driving gear. The center distance between the
axes of rotation is constant. The most typical examples of application of noncircular
gears are (i) as the driving mechanism for a linkage to modify the displacement function
or the velocity function, and (ii) for the generation of a prescribed function.

Figure 12.1.1 shows the Geneva mechanism that is driven by elliptical gears. The
application of elliptical gears enables it to change the angular velocity of the crank of
the mechanism during the crank revolution. A crank–slider linkage that is driven by
elliptical gears is shown in Fig. 12.1.2. A kinematical sketch of the mechanism is shown
in Fig. 12.1.3(a). Application of elliptical gears enables it to modify the velocity function
v(φ) of the slider [Fig. 12.1.3(b)]. Oval gears (Fig. 12.1.4) are applied in the Bopp and
Reuter meters for the measurement of the discharge of liquid; the oval gears are shown
in the figure in three positions. Figure 12.1.5 shows noncircular gears with unclosed
centrodes that are applied in instruments for the generation of functions. Figure 12.1.6
shows a noncircular gear of a drive that is able to transform rotation between parallel
axes for a cycle that exceeds one gear revolution. During the cycle the gears perform
axial translational motions in addition to rotational motions.

Noncircular gears have not yet found a broad application although modern man-
ufacturing methods enable their makers to provide conjugate profiles using the same
tools as are applied for spur circular gears. The following sections are based on work
by Litvin [1956].

12.2 CENTRODES OF NONCIRCULAR GEARS

We consider two cases, assuming as given either (i) the gear ratio function m12(φ1), or
(ii) the function y(x) to be generated.

318
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Chain conveyor

Elliptical
gears

Figure 12.1.1: Conveyor driven by the Geneva mechanism and elliptical gears.

Case 1: The gear ratio function

m12(φ1) ∈ C1, 0 ≤ φ1 ≤ φ∗
1 (12.2.1)

where φ1 is the angle of rotation of the driving gear 1 is given. Here,

m12(φ1) = ω(1)

ω(2)
= dφ1

dφ2

where ω(i ) (i = 1, 2) is the gear angular velocity.

Figure 12.1.2: Conveyor based on application of the crank–slider linkage and elliptical gears.
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Figure 12.1.3: Combination of elliptical gears with a crank–slider linkage.

I

II

III

Figure 12.1.4: Oval gears of a liquid meter.

320
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Figure 12.1.5: Noncircular gears applied in in-
struments.

Figure 12.1.6: Twisted noncircular gear.
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The centrode of gear 1 is represented in polar form by the equation

r1(φ1) = E
1

m12(φ1) ± 1
(12.2.2)

where E is the center distance. The centrode of the driven gear 2 is determined with the
equations

r2(φ2) = E
m12(φ1)

m12(φ1) ± 1
, φ2 =

∫ φ1

0

dφ1

m12(φ1)
. (12.2.3)

Function φ2(φ1) ∈ C2 is a monotonic increasing function, and the gear ratio function
m12(φ1) ∈ C1 must be positive. The difference between m12 max and m12 min is to be
limited to avoid undesirable pressure angles (see Section 12.12). We have to differentiate
the angle of rotation φi of gear i from the polar angle θi that determines the position
vector of the centrode (i = 1, 2). Angles φi and θi are equal, but they are measured in
opposite directions.

The orientation of the tangent with respect to the current position vector of the
centrode is designated by angle µ, where

tan µi = ri (φi )
dri

dφi

. (12.2.4)

Equations (12.2.1), (12.2.3), and (12.2.4) yield

tan µ1 = −m12(φ1) ± 1
m ′

12(φ1)
(12.2.5)

tan µ2 = ±m12(φ1) ± 1
m ′

12(φ1)
. (12.2.6)

Here, m ′
12 = (∂/∂φ1)[m12(φ1)].

Function µi (φ1)(i = 1, 2) is used for determination of variations of the pressure angle
in the process of meshing (see Section 12.12). The upper (lower) sign in the above
expressions with double signs corresponds to the case of external (internal) gears. Angle
µi is measured in the same direction as θi .

The following discussion is limited to the case of external noncircular gears. The
subscripts “1” and “2” in expressions for µ1 and µ2 indicate gears 1 and 2, respectively.

Case 2: Function y(x) to be generated is given

y(x) ∈ C2, x2 ≥ x ≥ x1.

Rotation angles of the gears are determined as

φ1 = k1(x − x1), φ2 = k2[y(x) − y(x1)] (12.2.7)

where k1 and k2 are the scale coefficients of constant values. Equations (12.2.7) represent
in parametric form the displacement function of the gears.

The gear ratio function is

m12 = dφ1

dφ2
= k1

k2yx
(12.2.8)
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where yx = dy/dx; yx(x) ∈ C1, and x1 ≤ x ≤ x2. The gear centrodes are represented
by the equations

φ1 = k1(x − x1), r1 = E
k2yx

k1 + k2yx
(12.2.9)

φ2 = k2[y(x) − y(x1)], r2 = E
k1

k1 + k2yx
. (12.2.10)

In the case when the derivative yx changes its sign in the area x1 ≤ x ≤ x2, the di-
rect generation of y(x) by noncircular gears becomes impossible. This obstacle can be
overcome as follows:

(i) Consider that the noncircular gears generate instead of y(x) the function

F1(x) = y(x) + k3x (k3 is constant). (12.2.11)

(ii) A pair of circular gears generates simultaneously the function

F2(x) = k3x. (12.2.12)

(iii) Functions F1(x) and F2(x) are transmitted to a differential gear mechanism, and
then the given function y(x) will be executed as the angle of rotation of the driven
shaft of the differential mechanism.

The maximal values of the scale coefficients are determined by the equations

k1 max = φ1 max

x2 − x1
, k2 max = φ2 max

y(x2) − y(x1)
(12.2.13)

where φi max = 300◦ ∼ 330◦ for gears with unclosed centrodes. Knowing function
yx(x) and the coefficients k1 and k2, we are able to determine function µ1(φ1) and
estimate the variation of the pressure angle. In some cases, it becomes necessary to
use a sequence of two pairs of noncircular gears to decrease the maximal value of
the pressure angle (see Section 12.8).

12.3 CLOSED CENTRODES

Noncircular gears designated for continuous transformation of rotational motion must
be provided with closed centrodes. This yields the following requirement for m12(φ1).
The gear ratio function m12(φ1) must be a periodic one, and its period T is related with
the periods T1 and T2 of the revolutions of gears 1 and 2 as

T = T1

n2
= T2

n1
(12.3.1)

where n1 and n2 are whole numbers.
Let us now consider the following design case:

(i) The centrode of gear 1 is already designed as a closed curve.
(ii) Gears 1 and 2 must perform continuous rotations, and n1 and n2 are the numbers

of revolutions of the gears.
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The question is, what are the requirements to be satisfied to obtain that the gear 2
centrode is a closed curve as well. The solution is based on the following ideas:

(i) We consider that the centrode of gear 1 is represented as a closed curve by the
periodic function r1(φ1) ∈ C2 and r1(2π) = r1(2π/n1) = r1(0).

(ii) The angle of rotation of gear 2, φ2 = 2π/n2, must be performed while gear 1
performs rotation of the angle φ1 = 2π/n1.

(iii) Taking into account that

2π

n2
=
∫ 2π

n1

0

dφ1

m12(φ1)
(12.3.2)

and

m12(φ1) = r2(φ1)
r1(φ1)

= E − r1(φ1)
r1(φ1)

. (12.3.3)

we obtain

2π

n2
=
∫ 2π

n1

0

r1(φ1)
E − r1(φ1)

dφ1. (12.3.4)

Equation (12.3.4) can be satisfied with a certain value of center distance E , with
which the centrode of gear 2 will be a closed curve.

Problem 12.3.1
Consider that the centrode of gear 1 is an ellipse (Fig. 12.3.1) and the number of
revolutions of the gears are n1 = 1 and n2 = n. The center of rotation of gear 1 is focus
O1 of the ellipse. The centrode of gear 1 is represented in polar form by the equation

r1(φ1) = p
1 + e cos φ

. (12.3.5)

Here, p = a(1 − e2), e = c/a (Fig. 12.3.1).

Figure 12.3.1: Elliptical centrode.
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Equation (12.3.4) yields

2π

n
=
∫ 2π

0

p
E − p + Ee cos φ1

dφ1 = 2πp

[(E − p)2 − E2e2]
1
2

. (12.3.6)

The derivation of Eq. (12.3.6) is based on the following considerations:

(i) ∫ 2π

0

dφ

a + b cos φ
=
∫ π

−π

dφ

a + b cos φ

where a = E − p, b = Ee.
(ii) The substitution

tan
φ

2
= y

yields that ∫
dφ

a + b cos φ
= 2

(a + b)

∫
dy

1 +
[(

a − b
a + b

)0.5

y

]2

= 2
(a2 − b2)0.5

∫
dz

1 + z2
= 2

(a2 − b2)0.5
tan−1 z

where

z =
(

a − b
a + b

)0.5

y =
(

a − b
a + b

)0.5

tan
(

φ

2

)
.

(iii) Finally, we obtain∫ π

−π

dφ

a + b cos φ
= 2

(a2 − b2)0.5

{
tan−1

[(
a − b
a + b

)0.5

tan
(

φ

2

)]}∣∣∣∣∣
π

−π

= 2π

(a2 − b2)0.5
.

The derivations above confirm Eq. (12.3.6).
Using Eq. (12.3.6), we obtain the following expression for E:

E = p
1 − e2

{
1 + [1 + (n2 − 1)(1 − e2)]

1
2

}
. (12.3.7)

For the case when n = 1, we obtain

E = 2p
1 − e2

= 2a,

and the gear centrode is an ellipse as well.
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12.4 ELLIPTICAL AND MODIFIED ELLIPTICAL GEARS

Modification of Elliptical Centrode
The modification of an elliptical centrode is based on the following ideas proposed by
Litvin [1956]:

(i) Consider that a current point M of the elliptical centrode is determined with the
position vector [Fig. 12.4.1(a)]

O1M = r1(φ1), 0 ≤ φ1 ≤ π. (12.4.1)

(ii) We determine the respective point M∗ of the modified centrode as

O1M∗ = r∗
1

(
φ1

mI

)
0 ≤ φ1 ≤ π, |r∗

1| = |r1|. (12.4.2)

(iii) The same principle of centrode modification is applied for the lower part of the
ellipse [Fig. 12.4.1(b)]; the modification coefficient is mI I . Generally, mI I �= mI .

(iv) The initial elliptical centrode and the modified one are shown in Fig. 12.4.1(c).

Figure 12.4.1: Modified elliptical centrode.
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Figure 12.4.2: Ordinary and modified elliptical centrodes.

Figure 12.4.2 shows the modification of identical elliptical centrodes for the case
where mI = 3/2, n1 = n2 = 1, and e1 = 0.5. Figure 12.4.2 illustrates the principle of
centrode modification. Noncircular gears with modified elliptical centrodes transform
rotation with a nonsymmetrical gear ratio function m12(φ1). This function is symmetrical
for noncircular gears with elliptical centrodes.

Figures 12.4.3 and 12.4.4 illustrate noncircular gear drives whose driving gear is pro-
vided with an elliptical centrode. The driving gear performs two and three revolutions,
respectively, while the driven gear performs one revolution. It was proven by Litvin
[1956] that the centrodes of driven gears are modified ellipses.

Figure 12.4.3: Conjugation of an elliptical centrode
and an oval centrode for two revolutions of the driving
gear.
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Figure 12.4.4: Conjugation of an ellip-
tical centrode and a mating centrode for
three revolutions of the driving gear.

Two oval gears with identical centrodes (Fig. 12.4.5) are a particular case of mod-
ified elliptical gears when the coefficients of modification are mI = mI I = m = 2 (see
Fig. 12.4.1). The gear centrode is represented by the equation

r1 = a(1 − e2)
1 − e cos 2φ1

= p
1 − e cos 2φ1

. (12.4.3)

The center of gear rotation is the center of symmetry of the oval. The oval gears are
used in the meter for liquid discharge (Fig. 12.1.4). A gear drive formed by an oval
centrode and a deformed ellipse is shown in Fig. 12.4.6. The driving gear performs two
revolutions for one revolution of the driven gear.

Figure 12.4.5: Oval centrodes.
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Figure 12.4.6: Conjugation of an ellip-
tical centrode with the mating centrode
for four revolutions of the driving link.

12.5 CONDITIONS OF CENTRODE CONVEXITY

Noncircular gears with convex–concave centrodes can be generated by a shaper but not
by a hob. The condition of convexity of a gear centrode means that ρ > 0, where ρ is
the centrode curvature radius. In the case of concave–convex centrodes, there is a point
of the gear centrode where ρ = ∞.

The curvature radius of a gear centrode is represented by the equation

ρ =

[
r 2 +

(
dr
dφ

)2
]3/2

r 2 + 2
(

dr
dφ

)2

− r
d2r
dφ2

. (12.5.1)

The condition of centrode convexity (ρ > 0) yields

r 2 + 2
(

dr
dφ

)2

− r
d2r
dφ2

> 0. (12.5.2)

Using Eqs. (12.2.2) and (12.2.3), we can represent the condition of centrode convexity
in terms of function m12(φ1) and its derivatives:

(i) For the driving gear we have

1 + m12(φ1) + m ′′
12(φ1) ≥ 0. (12.5.3)

(ii) For the driven gear we obtain

1 + m12(φ1) + (m ′
12(φ1))2 − m12(φ1)m ′′

12(φ1) ≥ 0. (12.5.4)

Here, m ′
12 = (d/dφ1)(m12(φ1)), m ′′

12 = (d2/d2φ1)(m12(φ1)). When the inequalities
(12.5.3) and (12.5.4) turn into equalities, there is a centrode point where ρ = ∞.
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In the case of generation of given function f (x), we obtain the following conditions
of convexity for the driving and driven gears, respectively:

(i)

k1k2[ f ′(x)]3 + k2
1[ f ′(x)]2 + 2[ f ′′(x)]2 − f ′′′(x) f ′(x) ≥ 0. (12.5.5)

(ii)

k2[ f ′(x)]3[k1 + k2 f ′(x)] + f ′(x) f ′′′(x) − [ f ′′′(x)]2 ≥ 0. (12.5.6)

Problem 12.5.1
Consider an oval centrode given as [see Eq. (12.4.3)]

r1 = a(1 − e2)
1 − e cos 2φ1

.

Determine the condition of centrode convexity.

Solution
The gear ratio function and its derivatives are

m12(φ1) = E − r1(φ1)
r1(φ1)

= 1 − 2e cos 2φ1 + e2

1 − e2
(12.5.7)

because E = 2a .

m ′
12(φ1) = 4e sin 2φ1

1 − e2
, m ′′

12(φ1) = 8e cos 2φ1

1 − e2
. (12.5.8)

Equations (12.5.3), (12.5.8), and (12.5.7) yield

1 + 3e cos 2φ1 ≥ 0, (12.5.9)

which yields e ≤ 1/3.

12.6 CONJUGATION OF AN ECCENTRIC CIRCULAR GEAR WITH A
NONCIRCULAR GEAR

Figure 12.6.1 shows that the center of rotation O1 of the eccentric circular gear 1 does
not coincide with the geometric center of the circle of radius a . The centrode of gear 2
must be conjugate with the eccentric circle, the centrode of gear 1. Such drives can be
applied with n = 1, 2, 3, . . . ,n where n is the total number of revolutions of gear 2.

The centrode of the eccentric circular gear is represented by the equation

r1(φ1) = (a2 − e2 sin2 φ1)1/2 − e cos φ1 = a[(1 − ε2 sin2 φ1)1/2 − ε cos φ1] (12.6.1)

where ε = e/a , and e is the eccentricity. The gear ratio function m21(φ1) is

m21(φ1) = r1(φ1)
E − r1(φ1)

= c

c − (1 − ε2 sin2 φ1)1/2 + ε cos φ1
− 1 (12.6.2)

where c = E/a , m21 max = (1 + ε)/(c − (1 + ε)), m21 min = (1 − ε)/(c − (1 − ε)).
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Figure 12.6.1: Conjugation of an eccentric
circular centrode with the mating centrode.

The centrode of gear 2 will be a closed curve if the following equation is observed
[see Eq. (12.3.4)]:

2π

n
=
∫ 2π

0

(
c

c − (1 − ε2 sin2 φ1)1/2 + ε cos φ1
− 1
)

dφ1. (12.6.3)

The solution of Eq. (12.6.3) for c can be accomplished numerically, using an iterative
process of computations. The first guess for c is [Litvin, 1968]

c = (1 + n)
[
1 − (n − 12)ε2

4n

]
. (12.6.4)

The centrode of gear 2 is determined with the following equations:

r2 = E − r1 = a[c − (1 − ε2 sin2 φ1)1/2 + ε cos φ1] (12.6.5)

φ2 =
∫ φ1

0

(1 − ε2 sin2 φ1)1/2 − ε cos φ1

c − (1 − ε2 sin2 φ1)1/2 + ε cos φ1
dφ1. (12.6.6)

The curvature radius of the gear 2 centrode is

ρ2 = a r1(φ1)[E − r1(φ1)]
[r1(φ1)]2 + Ee cos φ1

. (12.6.7)

The condition of convexity of the gear 2 centrode is

[r1(φ1)]2 + Ee cos φ1 ≥ 0. (12.6.8)

12.7 IDENTICAL CENTRODES

In some rare cases the centrodes of mating gears can be designed to be identical. This
goal can be achieved if the following requirements are satisfied:

(i)

φ2 max = F (φ1 max) = φ1 max (12.7.1)
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m
ax

m
ax

max

Figure 12.7.1: Displacement function
for gears with identical centrodes.

where

F (φ1) = φ2

is the displacement function.
(ii)

F (φ1 max − F (φ1)) = φ1 max − φ1. (12.7.2)

The displacement function F (φ1) that satisfies Eqs. (12.7.1) and (12.7.2) is shown
in Fig. 12.7.1. Points m and m ′ of the graph are conjugate points of the function.
At these points we have

φ′
2 = φ1 = β, φ′

1 = φ2 = δ, tan α = dφ2

dφ1
= dφ′

1

dφ′
2
. (12.7.3)

It is easy to verify that elliptical gears that have identical centrodes satisfy the above
requirements.

Another example of design of noncircular gears with identical centrodes is the
case where the gears generate the function

y = 1
x

, x2 ≥ x ≥ x1. (12.7.4)
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The design is based on the relations

φ1 = k1(x − x1), φ2 = k2

(
1
x1

− 1
x

)
(12.7.5)

k1 = φ1 max

x2 − x1
, k2 = φ2 max

1
x1

− 1
x

(12.7.6)

where φ1 max = φ2 max.
The displacement function of the gears is

φ2 = F (φ1) = a2φ1

a3 + a4φ1
(12.7.7)

where a2 = k2, a3 = k1x2
1 , a4 = x1. Coefficients a2, a3, and a4 are related as

φ2 max = φ1 max = a2φ1 max

a3 + a4φ1 max
, (12.7.8)

which yields

a2 − a3

a4
= φ1 max. (12.7.9)

Using Eq. (12.7.7), we may represent the required functional relations (12.7.2)
as follows:

a2[φ1 max − F (φ1)]
a3 + a4[φ1 max − F (φ1)]

= φ1 max − φ1. (12.7.10)

It is easy to verify that Eq. (12.7.10) is satisfied with expressions (12.7.8) for φ1 max

and (12.7.7) for F (φ1). Thus, the requirement for the design of identical centrodes
is observed, and function y = 1/x can be generated by a noncircular gear with such
centrodes.

12.8 DESIGN OF COMBINED NONCIRCULAR GEAR MECHANISM

A combined mechanism of noncircular gears (Fig. 12.8.1) enables us to generate function
y(x) with substantial variation of the derivative yx(x). Application of a mechanism with
only one pair of noncircular gears might cause undesirable pressure angles. There are
important reasons to require that gears 1 and 3, respectively gears 2 and 4, be provided
with identical centrodes. The design of such a combined mechanism of noncircular gears
is considered in this section.

We designate with α and δ the angles of rotation of gears 1 and 4 (Fig. 12.8.1) and
introduce the equations

α = k1(x − x1), δ = k4(y − y1) (12.8.1)

where

k1 = αmax

x2 − x1
, k4 = δmax

y2 − y1
. (12.8.2)
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Figure 12.8.1: Combined gear mechanism with identical
centrodes for (i) gears 1 and 3, and (ii) gears 2 and 4.

Because the above identity of gear centrodes must be provided, it is required that

αmax = βmax = γmax = δmax. (12.8.3)

It is obvious that β = γ because gears 2 and 3 perform rotation as a rigid body. The
requirement that the centrodes be identical can be represented by the following equation:

ψ(α) = f ( f (α)). (12.8.4)

Here,

δ = ψ(α) (12.8.5)

is the function to be generated. Function

β = f (α), δ = f (β)

that relates the angles of rotation β and α (δ and β) is to be determined. In other words,
considering function ψ(α) as given, we have to determine function f (α).

Generally, Eq. (12.8.4) can be solved only numerically, using an iterative process for
computations. Such a process is based on the idea that if f (αi ) is known for a fixed
value αi , and f (αi ) �= αi , we can determine the desired function f (α) numerically, in
discrete form, using the equations

αi+1 = f (αi ), f (αi+1) = ψ(αi ). (12.8.6)

The above procedure is illustrated graphically in Fig. 12.8.2; more details are given
in Litvin [1968].
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Figure 12.8.2: Iterative process of the solution of Eq.
ψ(α) = f ( f (α)).

The first guess for the numerical solution of Eq. (12.8.4) is based on the approximate
solution

f (α) ≈ [ψ(α)αn]1/(1+n) (12.8.7)

where

n =
[
αψ ′(α)
ψ(α)

]1/2

.

Another approximate solution for f (α) was proposed by Kislitsin [1955]:

f (α) ≈ ψ(α) + α[ψ ′(α)]1/2

1 + [ψ ′(α)]1/2
. (12.8.8)

12.9 GENERATION BASED ON APPLICATION OF
NONCIRCULAR MASTER-GEARS

Initially, the generation of noncircular gears was based on application of devices that
simulated the meshing of a noncircular gear with a tool. Figure 12.9.1 shows the Fellow
device where the noncircular master-gear 1 is in mesh with a master-rack. The rack-
cutter and gear being generated are designated by 3 and 4, respectively. The device
developed by Bopp and Reuter is based on simulation of meshing of a noncircular
master worm gear c with a worm f that is identical to the hob d (Fig. 12.9.2); a is
the spur noncircular gear being generated; the cam b and the follower e form the cam
mechanism designated for simulation of the required variable distance between c and
f . Weight g maintains the continuous contact between the cam and the follower.
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1 2 3

4

Figure 12.9.1: Generation of noncircular gears by application of the noncircular master-gear and the
rack-cutter.

12.10 ENVELOPING METHOD FOR GENERATION

The main difficulty in application of the devices discussed above was the necessity of
manufacturing noncircular master-gears. A general method for generation of noncircu-
lar gears that does not require master-gears is based on remodelling existing equipment
designed for manufacture of circular gears or using computer-controlled machines, as
proposed by Litvin [1956, 1968]. Patents based on this idea were claimed by Litvin and

d

a

b e

fc

g

Figure 12.9.2: Generation of a noncircular gear by application of a noncircular worm-gear.
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Figure 12.10.1: General principle of generation of noncircular gears.

followers in 1949–1951. The proposed approach is based on the following ideas:

(a) The noncircular gears are generated by the same tools (rack-cutters, hobs, and
shapers) that are used for manufacture of circular gears.

(b) Conjugate tooth profiles for noncircular gears are provided due to the imaginary
rolling of the tool centrode over the given gear centrode.

(c) The imaginary rolling of the tool centrode over the centrode of the gear being
generated is accomplished with proper relations between the motions of the tool
and the gear in the process of cutting.

Figure 12.10.1 illustrates the principle of conjugation of tooth shapes for two mating
noncircular gears that are generated by a rack-cutter. The gear centrodes 1 and 2 and
the rack-cutter centrode 3 are in tangency at the instantaneous center of rotation I . The
rack-cutter centrode is a straight line. Pure rolling of each centrode over the other one
is provided if the instantaneous linear velocities of point I of each centrode are equal
under the magnitude and direction. While the gears perform rotation about O1 and
O2, respectively, the rack-cutter translates along the tangent t–t to the gear centrodes
and along the center distance E and rotates about I . The pure rolling of the rack-
cutter over the gear centrodes is provided if the following vector equations are observed
(Fig. 12.10.1):

v(3) = v(1) = v(2). (12.10.1)

Here,

v(i ) = ω(i ) × Oi I (i = 1, 2)

is the gear velocity in rotation about Oi .

v(3) = v(3)
t + v(3)

e
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where v(3)
t and v(3)

e are the rack-cutter velocities in the direction of t–t and O1O2,
respectively. The velocity of the rack-cutter in rotational motion about I is equal to
zero at point I . We have to emphasize that the instantaneous center of rotation I moves
in the process of meshing along the center distance, and Eqs. (12.10.1) must be observed
for any instantaneous position of I .

While the rack-cutter and the gears being generated perform the described related
motions, the rack-cutter will generate conjugate tooth profiles for gears 1 and 2. This
principle for generation also works for the case when a shaper (preferably an involute
shaper) is used instead of a rack-cutter.

Generation by a Rack-Cutter: Relations Between Motions
While discussing the principle for generation, we have considered the pure rolling of
three centrodes (Fig. 12.10.1). To determine the relations between the motions of the
tool and the gears, we may consider the conditions of pure rolling of only two centrodes –
the one of the rack-cutter and the one of the gear being generated.

Consider that the gear centrode 1 and the rack-cutter centrode 2 are in tangency
at a current point M [Fig. 12.10.2(a)]. The rack-cutter translates along the common
tangent t–t to the centrodes with velocity v(2), and the gear rotates about point O1

with angular velocity ω(1) and translates in a direction that is perpendicular to t–t . Pure
rolling at point M of centrode tangency will be provided if M is the instantaneous center

Figure 12.10.2: Derivation of displace-
ment functions for generation by a rack-
cutter.
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of rotation and the following relation between the velocities is observed:

v(2) = v(1)
rot + v(1)

tr . (12.10.2)

Here,

v(1)
rot + v(1)

tr = v(1), v(1)
rot = ω(1) × O1M

where v(1) is the resulting velocity of point M of centrode 1, v(1)
rot is the gear velocity in

rotational motion, and v(1)
tr is the gear velocity in translational motion.

Consider now that we set up three coordinate systems [Fig. 12.10.2(b)]: the fixed
coordinate system S f that is rigidly connected to the frame of the cutting machine, S1

that is rigidly connected to the gear, and S2 that is rigidly connected to the rack-cutter.
Axes x f and x2 coincide with the rack-cutter centrode. The governance of motions of
the rack-cutter and gear being generated can be accomplished with functions

x(O2)
f (θ1), φ1(θ1), and y(O1)

f (θ1) (12.10.3)

where the variable θ1 is the parameter of the gear centrode, O2 is the origin of S2, and
O1 is the origin of S1. The derivation of functions (12.10.3) is given in Appendix 12.A.

The manufacture of noncircular gears based on the principle above has been ac-
complished (i) by remodelled cutting machines complemented by two cam mechanisms
(proposed by Litvin [1956, 1968]) and (ii) by numerically controlled machines (CNC)
(proposed by F. Cunningham [Smith, 1995]). The design of such cam mechanisms and
the development of computer programs for the CNC are based on the following con-
siderations:

(i) Using functions (12.10.3), we can also determine functions (Fig. 12.10.3)

φ1
(
x(O 2)

f

)
and y(O 1)

f (φ1). (12.10.4)

(ii) Function φ1(x(O2)
f ) may be represented as a sum of linear function φ

(1)
1 and nonlinear

function

φ
(2)
1 = φ1

(
x(O 2)

f

)− φ
(1)
1 = φ1

(
x(O 2)

f

)− m
(
x(O 2)

f

)
. (12.10.5)

Here, m = 2P/N , P is the diametral pitch, and N is the number of gear teeth.
(iii) The proposed cam mechanisms generate functions φ

(2)
1 (x(O 2)

f ) and y(O 1)
f (φ1), re-

spectively.
(iv) In the case when the gear centrode is an unclosed curve, Functions (12.10.4) can

be determined for the range 0 < φ1 < φk, where φk < 2π . However, because the
generation of the gear by a hob requires several gear revolutions, it is necessary to
extend Functions (12.10.4) and make functions φ

(2)
1 (x(O 2)

f ) and y(O 1)
f (φ1) periodic

ones.

Figure 12.10.4 shows one of the first models of a cutting machine for generation
of noncircular gears by a hob. The cutting machine represents a remodelled machine
applied for generation of circular gears. The remodelling is based on application of two
additional cam mechanisms (proposed by Litvin and Pavlov [1951]).
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Figure 12.10.3: Extension of displacement functions used for generation.

Figure 12.10.4: One of the first models of a
cutting machine for generation of noncircular
gears.

340
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Figure 12.10.5: Velocity polygon in the case
of generation by a shaper.

Generation by a Shaper
Application of a shaper enables us to generate (i) gears with concave–convex centrodes,
and (ii) internal noncircular gears. In the process of generation the shaper rotates about
O2 with angular velocity ω(2), and the gear rotates about O1 with angular velocity ω(1)

and translates into two perpendicular directions with velocities v(1)
trI and v(1)

trI I that are
collinear to the common normal n and the common tangent to the centrodes at point I ,
respectively (Fig. 12.10.5). The pure rolling of centrodes is provided by the following
equation:

v(1)
rot + v(1)

trI + v(1)
trI I = v(1) = v(2). (12.10.6)

Here, v(1) is the resulting velocity of point I of the gear centrode that is represented
as a sum of three components; v(2) is the velocity of point I of the shaper centrode.
Point I of centrode tangency does not change its location in the process of genera-
tion. The derivation of displacement functions for the gear and the shaper is given in
Appendix 12.B.

12.11 EVOLUTE OF TOOTH PROFILES

The method described above for generation of noncircular gears (Section 12.10) pro-
vides that the normal ai ni to the tooth profile and the tangent ai ti to the gear centrode
form angle αc at their point of intersection ai (Fig. 12.11.1) where αc is the profile angle
of the rack-cutter. Henceforth, we differentiate the evolute of the gear centrode from
the evolute of the gear tooth profile.

Figure 12.11.2 shows the gear centrode b–b, and the evolute a–a of the centrode.
Point Ci is the current point of the evolute of the gear tooth profile. It can be proven
that the curvature radius Ai Ci of the profile evolute and the curvature radius Ai Bi of
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Figure 12.11.1: Orientation of the tooth profile with respect to the tangent of the gear centrode.

the gear centrode form angle αc , and the radii above are related by the equation

li = ρi cos αc (12.11.1)

where li = Ai Ci , Ai Bi = ρi .
In the case of a circular involute gear, the right-side involute tooth profiles and the left-

side profiles have the same evolute, the base circle. The right-side and left-side involute
profiles have different evolutes as shown in Fig. 12.11.3. Here, M is the current point

Figure 12.11.2: Gear centrode, centrode evolute, and tooth profile evolute.
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Figure 12.11.3: Gear centrode and evolutes of left- and right-hand sides of tooth profile.

of the centrode; K is the curvature center at M; L and N are the current points of both
profile evolutes.

An approximate representation of tooth profiles of a noncircular gear is based on the
local substitution of the gear centrode by the pitch circle of a circular involute gear. Figure
12.11.4 shows that the profiles of tooth number 1 can be approximately represented

Figure 12.11.4: Local representation of a noncircular gear by the respective circular gear.
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as tooth profiles of the circular involute gear with the pitch circle ρA, where ρA is the
curvature radius of the noncircular gear centrode at point A. Similarly, tooth profiles
of tooth number 10 are represented approximately as tooth profiles of the circular gear
with the pitch circle of radius ρB .

The number of teeth of the substituting circular gear is determined as

Ni = 2Pρi (12.11.2)

where ρi is the curvature radius of the centrode of the noncircular gear, and P is the
diametral pitch of the tool applied for generation.

12.12 PRESSURE ANGLE

Consider Fig. 12.12.1 which shows conjugate tooth profiles of the noncircular gears.
The rotation centers of the gears are O1 and O2; the driving and resisting torques are
m1 and m2. The tooth profiles are in tangency at the instantaneous center of rotation I .
The common normal to the tooth profiles is directed along n–n. The pressure angle α12

is formed by the velocity vI2 of driven point I and the reaction R(12)
n that is transmitted

from the driving gear 1 to driven gear 2. (Friction of profiles is neglected.) The pressure
angle is determined with the following equations:

(i) When the driving profile is the left-side one, as shown in Fig. 12.12.1, we have

α12(θ1) = µ1(θ1) + αc − π

2
. (12.12.1)

Figure 12.12.1: Pressure angle of noncircular gears.
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(ii) When the driving profile is the right-side one, we have

α12(θ1) = µ1(θ1) − αc − π

2
. (12.12.2)

The pressure angle α12(θ1) is varied in the process of motion because µ1 is not con-
stant. The negative sign of α12 indicates that the profile normal passes through another
quadrant in comparison with the case shown in Fig. 12.12.1.

APPENDIX 12.A: DISPLACEMENT FUNCTIONS FOR GENERATION
BY RACK-CUTTER

Gear Centrode
The gear centrode is represented in polar form by angle θ1 and function ρ1(θ1) = |ρ1(θ1)|,
where ρ1(θ1) = O1M is the position vector of current point M (see Fig. 12.A.1). The
tangent τ 1 to the centrode and ρ1(θ1) form angle µ where

tan µ(θ1) = ρ1(θ1)
ρθ

,

(
ρθ = dρ1

dθ1

)
. (12.A.1)

Point M0 and angle µ0 are determined with θ1 = 0 and µ0 = µ(0). The coordinate
axis x1 is parallel to τ 0. The Cartesian coordinates of the centrode, the unit tangent τ 1,
and the unit normal n1 are represented by the equations

x1 = ρ1(θ1) cos(θ1 − µ0), y1 = −ρ1(θ1) sin(θ1 − µ0) (12.A.2)

Figure 12.A.1: Representation of gear centrode, its unit tangent, and its unit normal.
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where µ0 = 90◦ − ψ .

τ 1 = [cos(θ1 + µ − µ0) − sin(θ1 + µ − µ0) 0]T (12.A.3)

n1 = τ 1 × k1 = [− sin(θ1 + µ − µ0) − cos(θ1 + µ − µ0) 0]T. (12.A.4)

Rack-Cutter Centrode
The centrode of the rack-cutter coincides with the x2 axis [Fig. 12.10.2(b)]. The rack-
cutter centrode and its unit normal are represented in S2 by the equations

ρ2 = [u 0 0 1]T (12.A.5)

n2 = [0 − 1 0]T. (12.A.6)

Coordinate Transformation
Our next goal is to represent the gear and rack-cutter centrodes in fixed coordinate sys-
tem S f . The coordinate transformation from Si (i = 1, 2) to S f is based on the following
matrix equations [Fig. 12.10.2(b)]:

r(i )
f = M f i ρi , n(i )

f = L f i ni . (12.A.7)

After transformations we obtain

r(1)
f = [ρ1(θ1) cos q − ρ1(θ1) sin q + y(O 1)

f 0 1]T. (12.A.8)

Here, q = θ1 − µ0 − φ1, where φ1 is the angle of gear rotation; y(O 1)
f = (O f O1) · j f ;

n(1)
f = [− sin δ − cos δ 0]T (12.A.9)

where δ = θ1 + µ − µ0 − φ1.

r(2)
f = [u + x(O 2)

f 0 0 1]T (12.A.10)

where x(O 2)
f = (O f O2) · i2.

n(2)
f = [0 − 1 0]T. (12.A.11)

Equations of Centrode Tangency
The gear and rack-cutter centrodes are in tangency at any instant. Thus

r(1)
f − r(2)

f = 0 (12.A.12)

n(1)
f − n(2)

f = 0. (12.A.13)

Equations (12.A.12) and (12.A.13) yield a system of only three independent scalar
equations because |n(1)

f | = |n(2)
f | = 1. These equations are

ρ1(θ1) cos q − u − x(O 2)
f = 0 (12.A.14)

−ρ1(θ1) sin q + y(O 1)
f = 0 (12.A.15)

− sin δ = 0, − cos δ = −1. (12.A.16)



P1: GDZ/SPH P2: GDZ

CB672-12 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:32

Appendix 12.A Displacement Functions for Generation by Rack-Cutter 347

Equations (12.A.16) yield

φ1(θ1) = θ1 + µ − µ0 (12.A.17)

where µ = arctan(ρ1(θ1)/ρθ ), µ0 = arctan(ρ1(0)/ρθ ).
Transformations of Eqs. (12.A.14) are based on the following considerations:

(i) At the start of motion we have φ1 = 0, θ1 = 0, origins O f and O2 coincide with
each other, and x(O 2)

f (0) = 0. Then, we obtain

ρ1(0) cos µ0 = ρ0 cos µ0 = u0 (12.A.18)

where u0 determines the initial position of the point of tangency of the centrodes
on the x2 axis.

(ii) The displacement of the point of tangency of the centrodes along the rack-cutter
centrode is

s2 = u − u0. (12.A.19)

(iii) The displacement of the point of tangency along the gear centrode is determined as

s1 =
∫ θ1

0
ds1(θ1) =

∫ θ1

0

(
dx2

1 + dy2
1

)1/2 =
∫ θ1

0

ρ1(θ1)
sin µ

dθ1. (12.A.20)

Due to pure rolling of the centrodes, we have that s1 = s2 and

u − u0 = u − ρ0 cos µ0 =
∫ θ1

0

ρ1(θ1)
sin µ

dθ1. (12.A.21)

(iv) Equation (12.A.17) yields

q = θ1 − µ0 − φ1 = −µ. (12.A.22)

(v) Equations (12.A.14), (12.A.21), and (12.A.22) yield the following final expression
for x(O 2)

f :

x(O 2)
f (θ1) = ρ1(θ1) cos µ − ρ0 cos µ0 − s1. (12.A.23)

Similar transformations of Eq. (12.A.15) yield

y(O 1)
f (θ1) = −ρ1(θ1) sin µ. (12.A.24)

Computational Procedure
The final system of displacement equations is

φ1(θ1) = θ1 + µ − µ0

x(O 2)
f = ρ1(θ1) cos µ − ρ0 cos µ0 − s1(θ1)

y(O 1)
f = −ρ1(θ1) sin µ.

(12.A.25)

Here,

µ = arctan
(

ρ1(θ1)
ρθ

)
, ρθ = dρ1

dθ1
, s1(θ1) =

∫ θ1

0

ρ1(θ1)
sin µ

dθ1.
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Generally, s1(θ1) can be determined by numerical integration. Equation system (12.A.25)
is used for the numerical control of motions of the cutting machine (or for the design
of cams if a mechanical cutting machine is used).

APPENDIX 12.B: DISPLACEMENT FUNCTIONS FOR
GENERATION BY SHAPER

The applied coordinate systems S1, S2, and S f are rigidly connected to the gear being
generated, the shaper, and the frame of the cutting machine, respectively. The orienta-
tion of these coordinate systems at the initial position is as shown in Fig. 12.B.1. The
gear centrode and its unit normal are represented in S1 by Eqs. (12.A.2) and (12.A.4),
respectively. The shaper centrode is a circle of radius ρ2, and this centrode and its normal
are represented in S2 by the equations

ρ2(θ2) = ρ2[sin θ2 − cos θ2 0 1]T (12.B.1)

n2 = [sin θ2 − cos θ2 0]T. (12.B.2)

The coordinate transformations from S1 and S2 to S f (Fig. 12.B.2) are based on the
following equations:

ρ
(i )
f (θi , φi ) = M f i ρi (θi , φi ) (i = 1, 2) (12.B.3)

n(i )
f (θi , φi ) = L f i ni (θi , φi ) (i = 1, 2). (12.B.4)

Figure 12.B.1: Coordinate systems applied for generation by a shaper.
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Figure 12.B.2: Derivation of displacement functions for generation by a shaper.

The centrodes of the gear and the shaper are in tangency with each other at point I ,
represented as [ 0 − ρ2 0 1]T. Equations of centrode tangency provide the following
displacement functions:

φ1(θ1) = θ1 + µ − µ0 (12.B.5)

x(O 1)
f (θ1) = −ρ1(θ1) cos µ (12.B.6)

y(O 1)
f (θ1) = −ρ2 − ρ1(θ1) sin µ (12.B.7)

φ2(θ1) = 1
ρ2

∫ θ1

0

ρ1(θ1)
sin µ

dθ1. (12.B.8)

Displacement functions (12.B.5)–(12.B.8) enable us to execute the motions of the shaper
and gear being generated in the process for generation.
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13 Cycloidal Gearing

13.1 INTRODUCTION

The predecessor of involute gearing is the cycloidal gearing that has been broadly used
in watch mechanisms. Involute gearing has replaced cycloidal gearing in many areas
but not in the watch industry. There are several examples of the application of cycloidal
gearing not only in instruments but also in machines that show the strength of positions
that are still kept by cycloidal gearing: Root’s blower (see Section 13.8), rotors of screw
compressors (Fig. 13.1.1), and pumps (Fig. 13.1.2).

This chapter covers (1) generation and geometry of cycloidal curves, (2) Camus’
theorem and its application for conjugation of tooth profiles, (3) the geometry and design
of pin gearing for external and internal tangency, (4) overcentrode cycloidal gearing with
a small difference of numbers of teeth, and (5) the geometry of Root’s blower.

13.2 GENERATION OF CYCLOIDAL CURVES

A cycloidal curve is generated as the trajectory of a point rigidly connected to the circle
that rolls over another circle (over a straight line in a particular case). Henceforth, we
differentiate ordinary, extended, and shortened cycloidal curves.

Figure 13.2.1 shows the generation of an extended epicycloid as the trajectory of
point M that is rigidly connected to the rolling circle of radius r . In the case when
generating point M is a point of the rolling circle, it will generate an ordinary epicycloid,
but when M is inside of circle r it will generate a shortened epicycloid.

Point P of tangency of circles r and r1 is the instantaneous center of rotation. The
velocity v of point M of the rolling circle is determined as

v = ω × PM. (13.2.1)

Vector v is directed along the tangent to the cycloidal curve � being generated, and PM
is directed along the normal to � at point M.

There is an alternative approach for generation of the same curve �. The generation
is performed by the rolling of circle r ′ over the circle r ′

1. The same tracing point M is
rigidly connected now to circle r ′. The new instantaneous center of rotation is P ′ which
is determined as the point of intersection of two straight lines: (i) the extended straight

350
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Figure 13.1.1: Screw rotors of a compressor.

Figure 13.1.2: Screw rotors of a pump.

Figure 13.2.1: Generation of extended epicycloid.

351
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line PM – the normal to the generated curve, and (ii) line O ′P ′ that passes through point
O1 and is drawn parallel to OM. Point O1 is the common center of circles r1 and r ′

1.
Point O ′ is a vertex of parallelogram OMO ′O1 and is also the center of circle r ′. The radii
r ′ and r ′

1 of the circles used in the alternative approach are determined with the equations

r ′ = a
r1 + r

r
(13.2.2)

r ′
1 = a

r1

r
(13.2.3)

where a = |OM|. The segments |PM| and |P ′M| are related with the equation

PM
P ′M

= r
r1 + r

. (13.2.4)

The velocity v of generating point M is the same in both approaches if the angular
velocities ωP and ωP ′ are related as

ωP

ωP ′
= r1 + r

r
. (13.2.5)

The Bobilier construction [Hall, 1966] enables us to determine the curvature center
C of the generated curve. The theorem states:

Consider as known the centers of curvature of two centrodes and the centers of
curvature of two conjugate profiles that are rigidly connected to the respective centrodes.
Draw two straight lines such as those that interconnect the curvature center of the
respective centrode and the curvature center of the profile rigidly connected to the
centrode. These two straight lines intersect at point K of line PK that passes through
the instantaneous center of rotation P and is perpendicular to the common normal to
the conjugate profiles.

In our case, one of the mating profiles is the tracing point M, and the other mating
profile is the generated extended epicycloid. The determination of curvature center C
of the extended epicycloid in accordance with the Bobilier construction is based on the
following procedure (Fig. 13.2.1):

Step 1: Identify as given (a) the centers of curvature O and O1 of the centrodes r
and r1, (b) point M is one of the mating profiles that is rigidly connected to centrode r ,
(c) point P is the point of tangency of the centrodes r and r1, and (d) the normal PM
to the generated curve.

Step 2: Draw straight line MO that interconnects points M and O.
Step 3: Draw through point P line PK that is perpendicular to the normal PM.
Step 4: It is evident that the sought-for center of curvature of the extended epicycloid

is point C. The two straight lines OM and O1C intersect each other at point K .
Step 5: The Bobilier construction can be similarly applied for the alternative method

of generation of the extended epicycloid where the rolling centrodes are the circles of
radii r ′

1 and r ′ (Fig. 13.2.1). The two straight lines O ′M and O1C intersect each other at
point K ′ of the straight line P ′K ′; line P ′K ′ passes through point P ′ and is perpendicular
to the curve normal P ′M.

Figure 13.2.2 shows the generation of an extended hypocycloid by two alternative
approaches. In this case it is necessary to take (r1 − r ) instead of (r1 + r ) in equations
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Figure 13.2.2: Generation of extended hypocy-
cloid.

that are similar to (13.2.2), (13.2.4), and (13.2.5). The Bobilier construction has been
applied in this case as well to illustrate the geometric way of determining the curvature
center C for the extended hypocycloid.

Figures 13.2.3 and 13.2.4 illustrate the generation of an ordinary epicycloid and an or-
dinary hypocycloid. Again, two alternative methods for generation can be applied. Here,

a = r, r ′
1 = r1, r ′ = r1 ± r. (13.2.6)

The upper (lower) sign corresponds to the case of generation of an ordinary epicycloid
(hypocycloid).

Figure 13.2.3: Generation of ordinary epicycloid.
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Figure 13.2.4: Generation of ordinary hypocycloid.

13.3 EQUATIONS OF CYCLOIDAL CURVES

Extended Epicycloid
The position vector O1M (Fig. 13.3.1) is represented as

O1M = O1O ′ + O ′M. (13.3.1)

Due to pure rolling, we have

ψr = φr1. (13.3.2)

Figure 13.3.1: For derivation of equations of
extended epicycloid.
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Figure 13.3.2: For derivation of equations of ex-
tended hypocycloid.

After transformations we obtain the following equations:

x = (r1 + r ) sin φ − a sin
[
φ
(
1 + r1

r

)]
y = (r1 + r ) cos φ − a cos

[
φ
(
1 + r1

r

)]
.

(13.3.3)

In the case of an ordinary epicycloid, we have to take a = r .

Extended Hypocycloid
The derivations are based on an approach similar to the one discussed above. Using
Fig. 13.3.2, we obtain

x = (r1 − r ) sin φ − a sin
[
φ
(r1

r
− 1
)]

y = (r1 − 1) cos φ + a cos
[
φ
(r1

r
− 1
)]

.

(13.3.4)

In the case of an ordinary hypocycloid, we have to take a = r .

13.4 CAMUS’ THEOREM AND ITS APPLICATION

Camus’ theorem formulates the conditions of conjugation of two cycloidal curves. Con-
sider that gear centrodes are given. An auxiliary centrode a (Fig. 13.4.1) is in tangency
with centrodes 1 and 2, and P is their common instantaneous center of rotation. An
arbitrarily chosen point M is rigidly connected to centrode a . Point M traces out in
relative motion (with respect to centrodes 1 and 2) the curves �1 and �2, respectively.
Camus’ theorem states that curves �1 and �2 may be chosen as conjugated shapes for
teeth of gears 1 and 2, respectively.



P1: GDZ/SPH P2: GDZ

CB672-13 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:36

356 Cycloidal Gearing

Figure 13.4.1: For illustration of Camus’ theorem.

To prove this theorem, let us consider an instantaneous position of centrodes 1, 2,
and a . Supposing that centrode 1 is fixed and centrode a rolls over centrode 1, we say
that the motion of centrode a relative to centrode 1 is rotation about point P . Assume
that centrode a rotates about point P through a small angle. Then point M of centrode
a traces out in this motion a small piece of curve �1 (point M moves along �1). Line
MP is the normal to �1 at point M. Similarly, by rotation of centrode a about P with
respect to centrode 2, point M traces out a small piece of curve �2 (M moves along
�2). Line MP is also the normal to shape �2 at point M.

Thus, curves �1 and �2 have a common point M, they are in tangency at M, and their
common normal MP passes through point P , the instantaneous center of rotation of
centrodes 1 and 2. According to the general theorem of planar gearing (see Section 6.1),
the generated curves �1 and �2 are the conjugate ones.

Tooth Addendum–Dedendum Profiles
Considering the synthesis of planar cycloidal gears, the Camus’ theorem should be
applied twice, for conjugation of profiles for the gear addendum and dedendum.

Figure 13.4.2 shows the gear centrodes 1 and 2 with radii r1 and r2. To generate
the profiles of the gear addendum and dedendum, two auxiliary centrodes 3 and 3′, of
radii r and r ′, are used. The generation of conjugate profiles for gears 1 and 2 may be
represented as follows:

Step 1: Consider that the auxiliary centrode 3 rolls over the gear centrodes 1 and
2. Centrodes 3 and 1 are in external tangency and centrodes 3 and 2 are in internal
tangency. Point P of auxiliary centrode 3 generates in coordinate system S1 rigidly
connected to gear 1 the epicycloid Pα as the profile of the addendum of gear 1.
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Figure 13.4.2: Generation of conjugate profiles for cycloidal gears.

Respectively, point P of auxiliary centrode 3 generates in coordinate system S2 rigidly
connected to gear 2 the hypocycloid Pβ as the profile of the dedendum of gear 2. In
accordance to Camus’ theorem, curves Pα and Pβ are the conjugate profiles for gears
1 and 2.

Step 2: We consider now that the other auxiliary centrode, circle 3′, rolls over the
gear centrodes 1 and 2. Centrodes 1 and 3′ are in internal tangency, and centrodes 2 and
3′ are in external tangency. Point P of circle 3′ generates in S1 the hypocycloid Pβ ′ as
the profile of the tooth dedendum of gear 1. Respectively, point P of circle 3′ generates
in S2 the epicycloid Pα′ as the profile of the addendum of gear 2.

Unlike involute planar gears, the addendum and dedendum profiles of a cycloidal gear
are represented by two different curves, an epicycloid and a hypocycloid. The change of
the center distance of cycloidal gears is accompanied with the breaking of conjugation
of tooth profiles.

The line of action of cycloidal gears is a combination of two circular arcs that belong to
auxiliary centrodes 3 and 3′ as shown in Fig. 13.4.3. Here, L1 PK1 and L′

1 PK ′
1 represent

the lines of action for both sides of tooth profiles. The tangent T to the line of action
at P is perpendicular to the center distance O1O2. Point P of the gear tooth profiles is
a singular point. However, normal N to the tooth profiles at P can be determined. The
line of action of N is the same as of T. Thus, the pressure angle at P is equal to zero.
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Figure 13.4.3: Lines of action of cycloidal
gears.

Watch Gearing
Cycloidal watch gearing that is still used in watch mechanisms is a particular case of a
general cycloidal gearing. The main features of cycloidal watch gearing are as follows
(Fig. 13.4.4):

(i) Driving gear 1 in a watch gear mechanism is provided with a larger number N1

of teeth than the number of teeth N2 of the driven gear. Therefore, the angular

Figure 13.4.4: Watch gearing.
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Figure 13.4.5: Centrodes of gears 1 and
2, rack-cutter 3, and auxiliary centrodes
a and a∗.

velocity ω(2) of driven gear 2 is larger than the angular velocity of driving gear 1,
and the gear ratio is

m21 = ω(2)

ω(1)
= N1

N2
> 1.

The watch gear mechanism is designated to multiply the angular velocity because
the rotation is provided to the watch arrows. Recall that the main purpose of a
reducer with involute gears is to reduce the angular velocity of the driven gear. In
a reducer, we have that N1 is less than N2, and the gear ratio is m21 < 1.

(ii) The profile of the tooth dedendum is a straight line directed from P to Oi (i = 1, 2).
Such straight lines are particular cases of hypocycloids Pβ and Pβ ′ (Fig. 13.4.2)
that are generated when r ′ = r1/2 and r = r2/2. This statement can be proven with
the analysis of Eqs. (13.3.4) for an extended hypocycloid.

Rack-Cutter Profiles for Watch Gears
Figure 13.4.5 shows gear centrodes 1 and 2 and two auxiliary centrodes a and a∗ that
are used for generation of conjugate profiles of watch gears. The radii of the circles a
and a∗ are

ra = r2

2
, r ∗

a = r1

2

The rack-cutter centrode 3 is a straight line that is tangent to the gear centrodes at P .
The rack-cutter profiles, �3 and �∗

3, are ordinary cycloids that are generated in S3 by
point P of auxiliary centrodes a and a∗ (Fig. 13.4.6).

13.5 EXTERNAL PIN GEARING

Pin gearing (Fig. 13.5.1) is a particular case of cycloidal gearing. The teeth of the pinion
are cylinders and the gear tooth surface is conjugate to the cylinder surface. Pin gearing
is used in reducers for cranes, in some planetary trains, and is still used as watch gearing.
The main advantage of pin gearing is the possibility of avoiding the generation of the
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Figure 13.4.6: Rack-cutter profiles.

pinion teeth because the pinion is designed as an assembly of cylinders placed between
two disks (Fig. 13.5.1).

The centrodes of pin gearing that are represented in Fig. 13.5.1 are in external tan-
gency. In addition, we consider a pin gearing that has centrodes in internal tangency, and
the pins are tooth profiles of the driven gear 2 but not the pinion 1 (see Section 13.6).
The pin gearing is used for transformation of rotation between parallel axes and it can
be considered as a planar gearing where the pinion tooth profile is a circle, and the gear
tooth profile is a curve conjugate to such a circle.

Conjugation of Tooth Profiles
Conjugation of tooth profiles of pin gearing may be considered as a particular case of
application of Camus’ theorem that is based on the following considerations:

Step 1: Figure 13.5.2 shows the pinion-gear centrodes, circles of radii r1 and r2. We
may consider that the Camus auxiliary centrode coincides with the pinion centrode,
the circle of radius r1. Point P of this circle generates in coordinate system S2 rigidly
connected to gear 2 epicycloids Pα and Pβ.

Figure 13.5.1: Pin gearing.
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Figure 13.5.2: For conjugation of tooth profiles for pin gearing.

Step 2: We can imagine now that the conjugate pinion-gear tooth profiles are (i) point
P of the pinion, and (ii) the two branches Pα and Pβ of the epicycloid of the tooth
profiles of the gear.

Step 3: The interaction of a point and a curve as the conjugation of tooth profiles is
not applicable in practice. The real conjugate profiles are (i) the circle of radius ρ as the
pinion tooth profile, and (ii) curves d–d and d–d ′ (Fig. 13.5.2) that are equidistant to
the epicycloids Pα and Pβ.

Applied Coordinate Systems
The investigation below is directed at the determination of the equation of meshing, the
line of action, the equations of the gear tooth profile, and the profile of the rack-cutter
for gear generation. Movable coordinate systems S1 and S2 (Fig. 13.5.3) are rigidly
connected to the pinion and the gear, respectively. Fixed coordinate system Sf is rigidly
connected to the housing. Movable coordinate system St is rigidly connected to the tool,
the rack-cutter.

Equation of Meshing
Consider that the pinion tooth profile, the circle of radius ρ, is represented in coordinate
system S1 (Fig. 13.5.4) by the equations

x1 = −ρ sin θ, y1 = −(r1 + ρ cos θ ) (13.5.1)

where the variable parameter θ determines the location of a current point on the pin
circle. The unit normal to the pinion tooth profile passes through center C and is
represented as

nx1 = − sin θ, ny1 = − cos θ. (13.5.2)

The normal at point M of tangency of the pinion-gear tooth profiles must pass through
the instantaneous center of rotation determined in S1 as

X1 = −r1 sin φ1, Y1 = −r1 cos φ1. (13.5.3)
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Figure 13.5.3: Applied coordinate systems.

Figure 13.5.4: For derivation of equation of meshing.
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Thus,

−r1 sin φ1 + ρ sin θ

− sin θ
= −r1 cos φ1 + r1 + ρ cos θ

− cos θ
. (13.5.4)

Using Eqs. (13.5.4), we can obtain the equation of meshing in the form

sin(θ − φ1) − sin θ = 0, (13.5.5)

which yields two solutions for θ considering φ1 as given:

(i) Any value of θ satisfies Eq. (13.5.5) when φ1 is zero.
(ii) The other solution is

θ = 90◦ + φ1

2
. (13.5.6)

The kinematic interpretation of the first solution is based on the following consider-
ations:

(a) Center C of the circle of radius ρ coincides with the instantaneous center of rotation
P when φ1 is zero and any normal to this circle passes through P .

(b) Thus, circle ρ copies itself as a part of the profile of the gear 2 tooth.

Taking into account both solutions, it is easy to verify that the profile of one side of
the gear 2 tooth is composed by two curves:

(i) a circular arc of radius ρ determined by 90◦ ≥ θ ≥ 0;
(ii) a curve that is conjugate to the pinion tooth profile, the circle of radius ρ (see

below).

Line of Action
Figure 13.5.4 yields that M is the current point of the line of action at the current angle
of pinion rotation determined by φ1 �= 0. The position vector PM of the line of action
is determined in Sf by the equations

x f =
(

2r1 sin
φ1

2
− ρ

)
cos

φ1

2
,

y f =
(

2r1 sin
φ1

2
− ρ

)
sin

φ1

2
(provided φ1 �= 0).

(13.5.7)

At φ1 = 0, the pinion and gear tooth profiles are in instantaneous tangency at all points
of the segment of the circle of radius ρ, where 90◦ ≤ θ ≤ −90◦. It is easy to verify that
in the case in which ρ = 0, the line of action is a circular arc of radius r1 = 0.

Gear 2 Tooth Profile
It was mentioned above that the tooth profile of gear 2 is formed by two curves, I and
II , that are represented in coordinate system S2 (Fig. 13.5.5) as follows:

(i) Curve I is the circular arc of radius ρ centered at point C(0, r2) and determined by
90◦ ≥ θ ≥ 0.
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Figure 13.5.5: Gear 2 tooth profile.

(ii) Curve II is represented by the equations

θ > 90◦, φ1 = 2(θ − 90◦), φ2 = φ1
r1

r2

r2(θ, φ1) = M21(φ1, φ2)r1(θ ). (13.5.8)

Axis y2 is the axis of symmetry of gear 2 space (Fig. 13.5.5).
Using Eqs. (13.5.8), we obtain after transformations

θ > 90◦, φ1 = 2(θ − 90◦), φ2 = φ1
r1

r2

x2 = r1 sin(φ1 + φ2) − (r1 + r2) sin φ2 − ρ sin [θ − (φ1 + φ2)]

y2 = −r1 cos(φ1 + φ2) + (r1 + r2) cos φ2 − ρ cos [θ − (φ1 + φ2)] .

(13.5.9)

Taking θ as the input parameter, we determine φ, φ2, x2, and y2. Equations (13.5.9)
represent the left-side profile of the teeth of gear 2. Similarly, we may obtain the right-side
profile of gear 2 teeth. Taking ρ = 0 in Eq. (13.5.9), we obtain equations of an epicycloid.

Rack-Cutter Tooth Profile
Gear 2 teeth are generated by a hob whose design is based on an imaginary rack-cutter
being in mesh with the pinion and the gear. The rack-cutter tooth profile is also formed
by two curves, I and II , that are represented in coordinate system St . Curve I is the
circular arc of radius ρ centered at the origin of coordinate system St (Fig. 13.5.6).
Curve I is determined with 90◦ ≥ θ ≥ 0. Curve II is determined with the equations

θ > 90◦, φ1 = 2(θ − 90◦), rt (θ, φ1) = Mt1(φ1)r1(θ ). (13.5.10)

Axis yt is the axis of symmetry of the tooth profiles for both tooth sides. Equa-
tions (13.5.10) yield

θ > 90◦, φ1 = 2(θ − 90◦)

xt = −r1(φ1 − sin φ1) − ρ sin(θ − φ1)

yt = r1(1 − cos φ1) − ρ cos(θ − φ1).
(13.5.11)
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Figure 13.5.6: Rack-cutter tooth profile.

13.6 INTERNAL PIN GEARING

Internal pin gearing is applied in reducers of large dimensions. The pin-gearing centrodes
are in internal tangency as shown in Fig. 13.6.1. Unlike in external pin gearing, gear 2
but not pinion 1 is provided with pins. This means gear 2 teeth do not have to be
manufactured by a shaper, an important advantage given the large dimensions of gear 2.
The tooth profiles of pinion 1 are generated as conjugate to the circle of radius ρ, which
is the profile of the gear 2 tooth.

Applied Coordinate Systems
Movable coordinate systems S1 and S2 are rigidly connected to pinion 1 and gear
2, respectively. The fixed coordinate system is Sf . The following investigation covers
the solution to the following problems: (i) determination of the equation of meshing,

Figure 13.6.1: Applied coordinate systems.
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Figure 13.6.2: For derivation of equation of
meshing.

(ii) derivation of equations of the line of action, (iii) determination of equations of the
pinion tooth profile, and (iv) determination of the tooth profile for the imaginary rack-
cutter to be used for generation of pinion 1 teeth. The approach applied for the solution
of the above problems is similar to the one discussed in Section 13.5. The final results
of the investigation are as follows.

Equation of Meshing
There are two solutions for determination of current point M of tangency of gear 2
tooth profile �2 and pinion tooth profile �1 (Fig. 13.6.2):

(i) Solution 1 provides any value of θ2 at the position φ2 = 0. The gear 2 pin of circle
of radius ρ2 copies the same circle in coordinate system S1.

(ii) Solution 2 provides the relation

φ2 = 2(θ2 − 90◦), θ2 > 90◦. (13.6.1)

Line of Action
The current point of the line of action is M (Fig. 13.6.2), determined in Sf by the
equations

θ2 ≥ 90◦, φ2 = 2(θ2 − 90◦)

x f = r2 sin φ2 + ρ2 sin(θ2 − φ2)

y f = r2 cos φ2 − ρ2 cos(θ2 − φ2).
(13.6.2)

It is easy to verify that if ρ2 = 0, the line of action is a circular arc of radius r2.
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Pinion Tooth Profile
The pinion tooth profile is formed by two curves, I and II :

(i) Curve I in S1 is an arc of the circle of radius ρ2 and is represented by the equations

x1 = ρ2 sin θ2, y1 = r1 − ρ2 cos θ2 (90◦ ≥ θ2 ≥ 0). (13.6.3)

(ii) Curve II is represented in S1 by the equations

θ2 ≥ 90◦, φ2 = 2(θ2 − 90◦), φ1 = r2

r1
φ2

x1 = −r2 sin(φ1 − φ2) + (r2 − r1) sin φ1 + ρ2 sin [θ2 + (φ1 − φ2)]

y1 = r2 cos(φ1 − φ2) − (r2 − r1) cos φ1 − ρ2 cos [θ2 + (φ1 − φ2)] .

(13.6.4)

Equations (13.6.4) represent the right-side profile of gear 1 teeth. Similarly, we may
obtain the left-side profile of gear 1 teeth. Taking ρ2 = 0 in Eq. (13.6.4), we obtain
equations of an epicycloid that is generated in S1 by the center of circle ρ2.

Tooth Profile of an Imaginary Rack-Cutter
Pinion 1 can be generated by a hob designed on the basis of an imaginary rack-cutter.
The tooth profile of the rack-cutter is formed in St (Fig. 13.6.2) by curves I and II :

(i) Curve I is a circular arc of radius ρ with center located at Ot .
(ii) The right-side profile of the rack-cutter tooth is represented by the matrix equation

rt (θ2, φ2) = Mt2(φ2)r2(θ2), (13.6.5)

which yields

θ2 ≥ 90◦, φ2 = 2(θ2 − 90◦)

xt = −r2(φ2 − sin φ2) + ρ2 sin(θ2 − φ2)

yt = −r2(1 − cos φ2) − ρ2 cos(θ2 − φ2).
(13.6.6)

Axis yt is the axis of symmetry of the tooth profile of the rack-cutter.

13.7 OVERCENTRODE CYCLOIDAL GEARING

Basic Idea
The term “overcentrode” means that the gear teeth are displaced with respect to the
gear centrodes. Overcentrode cycloidal gearing has found application in planetary trains
with a difference in the number of pinion-gear teeth equal to 1.

The idea of overcentrode cycloidal gearing is illustrated by Fig. 13.7.1. Here, r1 and
r2 are the radii of gear centrodes that are in internal tangency. By rolling circle 2 over
circle 1, point Bo which is rigidly connected to circle 2 will trace out in coordinate
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Figure 13.7.1: Overcentrode cycloidal gearing.

system S1 a conventional epicycloid Bo–B1. Coordinate system S1 is rigidly connected
to gear 1.

Let us imagine now that point Do instead of Bo is rigidly connected to centrode 2.
Point Do will trace out in S1 the extended epicycloid Do–D1. Theoretically, we may
consider the interaction of two “profiles”: (i) point Do as the tooth “profile” of gear 2,
and (ii) the extended epicycloid as the tooth profile of gear 1. In reality, a pin of radius
ρ2 should be chosen as the tooth profile of gear 2. The tooth profile of gear 1 is the
curve that is equidistant to the extended epicycloid Do–D1.

Relation Between Gear Tooth Numbers
The determination of the sought-for relation between the pinion-gear tooth numbers,
N1 and N2, is based on the following considerations:

(i) A full branch of the extended epicycloid is used as the tooth profile of gear 1
(Fig. 13.7.1). Gear 1 must be provided with a whole number N1 of such branches.

(ii) The generation of the extended epicycloid Do–D1 and the conventional epicycloid
Bo–B1 is performed for the same angle of rotation of centrode 2.

(iii) Consider now that while centrode 2 will make one revolution, point Bo of this
centrode will generate in S1 (N1 + 1) branches of conventional epicycloids. The
common point of tangency of centrodes 1 and 2 will trace out on these centrodes
two equal arcs determined as

L = 2πr2 = 2πr1 + mpc . (13.7.1)

Here, pc is the circular pitch, the distance between points Bo and B1 measured on
centrode 1; m ≥ 1 is a whole number.

(iv) It is evident that

pc = 2πr1

N1
. (13.7.2)
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(v) Equations (13.7.1) and (13.7.2) yield

r2 = r1

(
1 + m

N1

)
. (13.7.3)

(vi) Taking into account that

r2

r1
= N2

N1
, (13.7.4)

we obtain that

N2 = N1

(
1 + m

N1

)
(13.7.5)

where m = 1, 2, 3, . . . .
For the case when m = 1, we obtain that

N2 = N1 + 1. (13.7.6)

This means that the number N2 of pins provided for gear 2 must be at least one
larger than the number of branches N1 provided for gear 1.

(vii) Consider that the number of branches on centrode 1 is N1 and the center distance
E is chosen. Then, taking into account that

r2 = r1 + E,
r2

r1
= N2

N1
,

we obtain

r1 = EN1 (13.7.7)

r2 = EN2 = E(N1 + 1) (13.7.8)

assuming that N2 = N1 + 1.
(viii) It is easy to verify as well that

pc = 2π E . (13.7.9)

Examples of Overcentrode Cycloidal Gearing
Figure 13.7.2 illustrates that the pins are provided on gear 2, and the tooth profiles of
gear 1 are extended epicycloids. Figure 13.7.3 illustrates a gear train when gear 1 but
not gear 2 is provided with N1 pins; the profiles of the N2 teeth of gear 2 are extended
hypocycloids (N2 = N1 + 1). In both cases all the pins are in tangency with all of the
cycloidal curves (disregarding misalignment and errors of manufacture). However, only
half of them can be under the load, and less than half can be due to misalignment.

13.8 ROOT’S BLOWER

Root’s blowers are used as air dischargers for diesel engines and other equipment. Rotors
with two and three lobes are used in the industry (Fig. 13.8.1). The ratio of angular
velocities of the rotors is 1, and their centrodes are circles of the same radius (Fig.
13.8.2). The rotors are driven by two equal gears mounted on the shafts of the rotors.
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Figure 13.7.2: Overcentrode epicycloidal gear
train.

Conjugation of Profiles
The tooth profile of blower 1 is a circle of radius ρ1 centered at C; point C is located
at distance a from the center of rotation O1. Consider that the rotor centrode 1 is
rolling over centrode 2 of the other rotor. Then, point C will trace out in coordinate
system S2 the shortened epicycloid (not shown in Fig. 13.8.2); S2 is rigidly connected
to rotor 2. Theoretically, we may consider the interaction of point C of rotor 1 with the
shortened epicycloid of rotor 2. In reality, the following conjugate profiles are designed:
(i) the circular arc �1 of radius ρ1 as the tooth profile of rotor 1, and (ii) curve �2

that is equidistant to the shortened epicycloid as the tooth profile of rotor 2. Curves
�1 and �2 are the profiles of the addendum of rotor 1 and the dedendum of rotor 2,
respectively.

Figure 13.7.3: Overcentrode hypocycloidal gear
train.
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Figure 13.8.1: Root’s blowers.

The lobe element proportions can be determined with Fig. 13.8.3. The addendum
angle of �1 of a rotor with two and three lobes is equal to 90◦ and 60◦, respectively.
The design parameters are related by the equation

r 2 + a2 − 2ar cos q = ρ2. (13.8.1)

Here, q is 45◦ and 30◦ for two and three lobe rotors, respectively.

Applied Coordinate Systems
Movable coordinate systems S1 and S2 are rigidly connected to rotors 1 and 2, re-
spectively [Fig. 13.8.4(b)]. The fixed coordinate system, Sf , is rigidly connected to the
housing. Our next goals are (i) derivation of the equation of meshing, (ii) determina-
tion of the line of action, and (iii) determination of curve �2, the dedendum profile of
rotor 2.
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Figure 13.8.2: Rotor tooth profiles.

Equation of Meshing; Line of Action
The tooth profile of two-lobe rotor 1 is represented in S1 (Fig. 13.8.4) by the equations

x1 = ρ sin θ, y1 = a + ρ cos θ

− (a + ρ)2 − r 2

√
2ar

≤ tan
θ

2
≤ (a + ρ)2 − r 2

√
2ar

.

(13.8.2)

Using the approach for derivation of the equation of meshing discussed in Sections 13.5
and 13.6, we obtain

f (θ, φ) = r sin(θ − φ) − a sin θ = 0. (13.8.3)

Consider a particular case when a = r and φ = 0. It is evident that in this case center
C of the circular arc �1 coincides with the instantaneous center of rotation P , any
normal to �1 passes through P , and Eq. (13.8.3) is satisfied for any value of θ . The
relation a = r should not be applied in practical design.

The line of action is represented in Sf by the equations

r f = M f 1r1(θ ), f (θ, φ) = 0, (13.8.4)
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Figure 13.8.3: For derivation of relation between the design parameters.

Figure 13.8.4: Applied coordinate systems.
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Table 13.8.1: Properties of �2

Lobe number Convex Concave–Convex With singularities

2 0 <
a
r

< 0.5 0.5 <
a
r

< 0.9288
a
r

> 0.9288

3 0 <
a
r

< 0.5 0.5 <
a
r

< 0.9670
a
r

> 0.9670

which yield

x f = ρ sin(θ − φ) − a sin φ

y f = ρ cos(θ − φ) + a cos φ

r sin(θ − φ) − a sin θ = 0.

(13.8.5)

Equations of Dedendum Curve Σ2 of Rotor 2
Profile �2 is represented in S2 by the equations

r2 = M21r1, f (θ, φ) = 0, (13.8.6)

which yield

x2 = ρ sin(θ − 2φ) − a sin 2φ + 2r sin φ

y2 = ρ cos(θ − 2φ) + a cos 2φ − 2r cos φ

r sin(θ − φ) − a sin θ = 0.

(13.8.7)

Depending on the ratio a/r , profile �2 may be represented by (i) a convex curve, (ii) a
concave–convex curve, and (iii) a curve with singularities. The third case may be investi-
gated by considering the conditions of “nonundercutting” of �2 by �1 (see Section 6.3).
The first and second cases may be investigated by considering the relations between the
curvatures of conjugate shapes (see Section 8.3). The results of the investigations are
presented in Table 13.8.1.
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14 Involute Helical Gears with Parallel Axes

14.1 INTRODUCTION

Cycloidal gears (Chapter 13) and involute gears (Chapters 10, 11, 14, 15, and 16) have
different areas of application. This chapter covers involute gears with parallel axes,
whose design is based on the assumption that the gear tooth surfaces are in instanta-
neous contact along a line (line contact) in the case of aligned gear drives. Although the
influence of errors of alignment should be considered in the study of the real meshing
(see Chapters 15, 16, and 17), in this chapter we consider a preliminary study limited
to the theoretical study of meshing. This allows the reader to focus initially on the theo-
retical study of involute gears. However, we have to emphasize that the modern design
of helical gear drives is directed at observation of localized bearing contact (obtained
by tooth surfaces being in point contact instead of line contact), simulation of mesh-
ing of misaligned gear drives, and stress analysis (see Chapters 15, 16, and 17). The
nomenclature used in this chapter is presented in Section 14.10.

14.2 GENERAL CONSIDERATIONS

Helical gears that transform rotation between parallel axes in opposite directions are in
external meshing and are provided with screw tooth surfaces of opposite directions.

The axodes of nonstandard gears are two cylinders of radii ro1 and ro2 related as

ro2

ro1
= ω(1)

ω(2)
= m12. (14.2.1)

These cylinders are called the operating pitch cylinders as well. Henceforth, we differen-
tiate standard and nonstandard helical gears. The operating pitch cylinders (the axodes)
coincide with the pitch cylinders in the case of standard helical gears, and they differ
from the pitch cylinders for nonstandard helical gears (see below). Axodes of standard
gears are the gear pitch cylinders. The line of tangency of the axodes is the instanta-
neous axis of rotation of the gears in relative motion. The cylinders of radii ro1 and ro2

roll over each other without sliding. The helices on the operating pitch cylinders are of
opposite direction but the magnitude of the lead angle (or the helix angle) is the same
for both helices.

375
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The tooth surface of a helical gear is a helicoid that is represented by Eq. (1.7.5).
It was assumed in the derivation of this equation that the helicoid is generated by the
screw motion of a cross profile about the gear axis. The cross profile is represented in a
plane that is perpendicular to the gear axis. However, a helicoid may also be generated
by the screw motion of the axial profile, which is a curve represented in the plane drawn
through the axis of the helical gear.

Consider that the tooth surface is represented by the vector equation

r1 = x1(u, θ ) i1 + y1(u, θ ) j1 + z1(u, θ, p) k1 (14.2.2)

where (u, θ ) are the surface parameters (Gaussian coordinates); p is the screw parameter
in the screw motion about the z1 axis. The normal to the surface is represented as

N1 = ∂r1

∂θ
× ∂r1

∂u
, (14.2.3)

and N1 �= 0 is for a regular surface. The requirement for surface (14.2.2) to be a helicoid
is expressed by the equation

x1Ny1 − y1Nx1 + pNz1 = x1ny1 − y1nx1 + pnz1 = 0. (14.2.4)

Here, the screw parameter p in Eq. (14.2.4) is considered as an algebraic value;

n1 = N1

|N1|
is the surface unit normal; p > 0 for a right-hand gear.

Figure 14.2.1(a) shows a helicoid, an involute screw surface, which is generated by the
screw motion of an involute curve; rb is the radius of the base cylinder. The intersection
of the helicoid by a cylinder of radius ρ is a helix [Fig. 14.2.1(b)]; H is the lead of the
helicoid; λρ is the lead angle on the cylinder of radius ρ.

Figure 14.2.1(c) shows that the cylinder of radius ρ and the helix have been developed
on a plane. It is easy to verify that

tan λρ = cot βρ = H
2πρ

(14.2.5)

where λρ and βρ are the lead angle and the helix angle, respectively. The ratio H/2π = p
is the screw parameter, which is the axial displacement in screw motion corresponding
to rotation through the angle of one radian. Equation (14.2.5) yields that the product

ρ tan λρ = p (14.2.6)

is an invariant with respect to the radius ρ of the cylinder that intersects the helicoid
being considered.

The investigation of meshing of helical gears with parallel axes requires solutions
to the following problems (see Section 14.5): (i) determination of surface �2 that is
conjugate to given surface �1, (ii) determination of the lines of contact between �1 and
�2, and (iii) determination of the surface of action.
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Figure 14.2.1: Development of a cylinder and its helix.

14.3 SCREW INVOLUTE SURFACE

An involute helical gear may be considered as a multi-thread involute worm. Equations
of tooth surfaces of an involute helical gear are the same as for an involute worm (see
Section 19.6). The equations below describe tooth side I and II surfaces for right-hand
and left-hand gears. Equations of the gear tooth surfaces are presented separately for
the driving gear 1 and driven gear 2, in coordinate systems S1 and S2, respectively. A
right-hand helical gear 1 is shown in Fig. 14.3.1.

Figure 14.3.2 shows the cross section of tooth surfaces of gear 1 obtained by intersec-
tion by plane z1 = 0. Axis x1 is the axis of symmetry of the space. Half of the angular
width of the space on the base circle is formed by axis x1 and the position vector O1B1

(k)

(k = I, II ) and is determined with angle µ1. Here (Fig. 14.3.2),

µ1 = wt1

2r p1
− invαt1 (14.3.1)
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Figure 14.3.1: Right-hand helical gear.

Figure 14.3.2: Cross section of helical gear 1.
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Figure 14.3.3: Cross section of helical gear 2.

where wt1 is the nominal value of space width on the pitch circle and αt1 is the profile
angle in the cross section, at the point of intersection of the profile with the pitch circle.

The tooth surface equations are represented in terms of surface parameters (u1, θ1)
(see Section 19.6). Parameter θ1 is measured from position vector O1 B1

(k)
(k = I, II )

in the direction shown in Fig. 14.3.2. The direction of measurements of θ1 and µ1

is clockwise for surface I and counterclockwise for surface II. It is assumed that the
observer is located on the negative axis z1.

Figure 14.3.3 shows the tooth profiles in the cross section of tooth surfaces of gear 2.
The surface equations are represented in S2 in terms of surface parameters u2 and θ2.
The concept of parameters u2 and θ2 is based on considerations similar to those used in
Section 19.6 for u1 and θ1. Parameter θ2 is measured from the position vector O2 B(k)

2
(k = I, II ), clockwise for surface I and counterclockwise for surface II, as shown in
Fig. 14.3.3. Recall that the observer is located on the negative axis z2. Half of the
angular tooth thickness on the base circle is represented by angle η2 where

η2 = st2

2r p2
+ invαt2. (14.3.2)
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Here, st2 is the nominal value of tooth thickness on the pitch circle, and αt2 is the
profile angle in the cross section, at the point of intersection of the profile with the pitch
circle. The direction of measurements of η2 is opposite to the direction of measurements
of θ2.

The gear tooth surfaces are represented in Si by the vector function

ri (ui , θi ) (i = 1, 2). (14.3.3)

The unit normals to the tooth surfaces of gear 1 are represented as

n1 = ∓
∂r1

∂u1
× ∂r1

∂θ1∣∣∣∣ ∂r1

∂u1
× ∂r1

∂θ1

∣∣∣∣ . (14.3.4)

The upper and lower signs correspond to surfaces of gear 1 for a right-hand and left-
hand orientation, respectively. The direction chosen below of the surface unit normal n2

enables us to provide the coincidence of n1 and n2 when the tangency of tooth surfaces
of gears 1 and 2 is considered.

The ui coordinate line on gear tooth surface (14.3.3) (θi is fixed) is a straight line,
which generates the gear tooth surface while performing a screw motion (see Section
19.6). The θi line (ui is fixed) is a helix on the gear tooth surface. The screw parameters
p1 and p2 in the equations below are always considered as positive values for either
right-hand gears or left-hand gears.

Here are the derived equations of gear tooth surfaces and the surface unit normals:

(i) Right-hand gear 1, side surface I (Fig. 14.3.2):

x1 = rb1 cos(θ1 + µ1) + u1 cos λb1 sin(θ1 + µ1)

y1 = rb1 sin(θ1 + µ1) − u1 cos λb1 cos(θ1 + µ1)

z1 = −u1 sin λb1 + p1θ1

(14.3.5)

n1 = [− sin λb1 sin(θ1 + µ1) sin λb1 cos(θ1 + µ1) − cos λb1 ]T. (14.3.6)

Angle θ1 and µ1 are measured clockwise.
(ii) Right-hand gear 1, side surface II (Fig. 14.3.2):

x1 = rb1 cos(θ1 + µ1) + u1 cos λb1 sin(θ1 + µ1)

y1 = −rb1 sin(θ1 + µ1) + u1 cos λb1 cos(θ1 + µ1)

z1 = u1 sin λb1 − p1θ1

(14.3.7)

n1 = [− sin λb1 sin(θ1 + µ1) − sin λb1 cos(θ1 + µ1) cos λb1 ]T. (14.3.8)

Angles θ1 and µ1 are measured counterclockwise.
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(iii) Left-hand gear 1, side surface II (Fig. 14.3.2):

x1 = rb1 cos(θ1 + µ1) + u1 cos λb1 sin(θ1 + µ1)

y1 = −rb1 sin(θ1 + µ1) + u1 cos λb1 cos(θ1 + µ1)

z1 = −u1 sin λb1 + p1θ1

(14.3.9)

n1 = [− sin λb1 sin(θ1 + µ1) − sin λb1 cos(θ1 + µ1) − cos λb1 ]T. (14.3.10)

Angles θ1 and µ1 are measured counterclockwise.
(iv) Left-hand gear 1, side surface I (Fig. 14.3.2):

x1 = rb1 cos(θ1 + µ1) + u1 cos λb1 sin(θ1 + µ1)

y1 = rb1 sin(θ1 + µ1) − u1 cos λb1 cos(θ1 + µ1)

z1 = u1 sin λb1 − p1θ1

(14.3.11)

n1 = [− sin λb1 sin(θ1 + µ1) sin λb1 cos(θ1 + µ1) cos λb1 ]T. (14.3.12)

Angles θ1 and µ1 are measured clockwise.

Similarly, we represent equations of tooth surfaces of gear 2. We remind the reader
that angle η2 is measured in a direction opposite to the direction of measurements of θ2

(Fig. 14.3.3).

(i) Right-hand gear 2, side-surface I (Fig. 14.3.3):

x2 = rb2 cos(θ2 − η2) + u2 cos λb2 sin(θ2 − η2)

y2 = rb2 sin(θ2 − η2) − u2 cos λb2 cos(θ2 − η2)

z2 = −u2 sin λb2 + p2θ2

(14.3.13)

n2 = [sin λb2 sin(θ2 − η2) − sin λb2 cos(θ2 − η2) cos λb2]T. (14.3.14)

Angle θ2 is measured clockwise.
(ii) Right-hand gear 2, side-surface II (Fig. 14.3.3):

x2 = rb2 cos(θ2 − η2) + u2 cos λb2 sin(θ2 − η2)

y2 = −rb2 sin(θ2 − η2) + u2 cos λb2 cos(θ2 − η2)

z2 = u2 sin λb2 − p2θ2

(14.3.15)

n2 = [sin λb2 sin(θ2 − η2) sin λb2 cos(θ2 − η2) − cos λb2]T. (14.3.16)

Angle θ2 is measured counterclockwise.
(iii) Left-hand gear 2, side-surface II (Fig. 14.3.3):

x2 = rb2 cos(θ2 − η2) + u2 cos λb2 sin(θ2 − η2)

y2 = −rb2 sin(θ2 − η2) + u2 cos λb2 cos(θ2 − η2)

z2 = −u2 sin λb2 + p2θ2

(14.3.17)

n2 = [sin λb2 sin(θ2 − η2) sin λb2 cos(θ2 − η2) cos λb2]T. (14.3.18)

Angle θ2 is measured counterclockwise.



P1: GDZ/SPH P2: GDZ

CB672-14 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:39

382 Involute Helical Gears with Parallel Axes

(iv) Left-hand gear 2, side-surface I (Fig. 14.3.3):

x2 = rb2 cos(θ2 − η2) + u2 cos λb2 sin(θ2 − η2)

y2 = rb2 sin(θ2 − η2) − u2 cos λb2 cos(θ2 − η2)

z2 = u2 sin λb2 − p2θ2

(14.3.19)

n2 = [sin λb2 sin(θ2 − η2) − sin λb2 cos(θ2 − η2) − cos λb2]T. (14.3.20)

Angle θ2 is measured clockwise.

14.4 MESHING OF A HELICAL GEAR WITH A RACK

We may consider the meshing of a screw involute gear, say gear 1, with the respective
rack in plane z1 = 0 that is perpendicular to the z1 gear axis. The cross section of the
gear tooth surface by plane z1 = 0 is an involute curve. Then, we may consider that a
spur gear with an infinitesimally small tooth length is in mesh with a rack whose tooth
length is also infinitesimally small. It is known that the profile of such a rack is a straight
line (see Chapter 10).

The derivation of tooth surface �r of the rack is represented as the determination
of the envelope to the family of screw involute surfaces �1. Consider that movable
coordinate systems S1 and Sr are rigidly connected to the gear and the rack; coordinate
system Sf is the fixed one (Fig. 14.4.1). The gear and the rack perform rotational and
translational motions, respectively. The velocities of these motions are related as follows:

v
ω

= ρ. (14.4.1)

Figure 14.4.1: For investigation of meshing of a
helical gear with a rack.
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The gear axode is the cylinder of radius ρ; the rack axode is the plane that is tangent
to the cylinder mentioned above and is parallel to vector v. The instantaneous axis of
rotation, P–P , is parallel to the gear axis and is represented in Sf as

Xf = ρ, Yf = 0, Zf = l (14.4.2)

where (Xf , Yf , l ) determine a current point of P–P ; l is a varied parameter. The in-
stantaneous axis of rotation is represented in coordinate system S1 by the equation

[ X1 Y1 Z1 ]T = M1 f [ Xf Yf Zf ]T (14.4.3)

which yields

X1 = ρ cos φ, Y1 = ρ sin φ, Z1 = l . (14.4.4)

We consider in the following derivations that �1 is surface I of a right-hand helical
gear and is represented by Eqs. (14.3.5). Our goal is to derive the equations of the rack
tooth surface �r that is conjugate to �1. The derivation of �r and its visualization is
based on the following procedure.

Equation of Meshing
We derive the equation of meshing considering that the normal to the screw involute
surface �1 at any point of the line of contact between �1 and �r passes through the
instantaneous axis of rotation P–P . Thus,

X1 − x1(u, θ )
nx1(θ )

= Y1 − y1(u, θ )
ny1(θ )

= Z1 − z1(u, θ )
nz1(θ )

. (14.4.5)

Here, x1(u, θ ), y1(u, θ ), z1(u, θ ) are the coordinates of a point of screw involute surface
�1; (nx1, ny1, nz1) are the components of the unit normal to �1 at this point [see Eqs.
(14.3.6)]. The subscript “1” in designations for u1, θ1, rb1, ρ1, αt1, and φ1 has been
dropped. Equations (14.3.5), (14.3.6), (14.4.4), and (14.4.5) yield

cos(θ + µ − φ) = rb

ρ
= cos αt (14.4.6)

where αt is the pressure angle in plane z1 = 0 (see Chapter 10). Equation (14.4.6)
provides two solutions for (θ + µ − φ) considering αt and µ as given. We choose the
solution

θ + µ − φ − αt = f (θ, φ) = 0. (14.4.7)

Equation (14.4.7) is the equation of meshing.

Rack Surface Σr

The sought-for surface �r is represented by the equations

rr (θ, φ) = Mr 1r1(θ ), f (θ, φ) = 0 (14.4.8)
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Here,

Mr 1 =


cos φ sin φ 0 −ρ

− sin φ cos φ 0 ρφ

0 0 1 0

0 0 0 1

 . (14.4.9)

Equations (14.3.5), (14.4.7), and (14.4.9) yield the following equations of �r :

xr = rb cos αt + u cos λb sin αt − ρ

yr = rb sin αt − u cos λb cos αt + ρφ

zr = p(αt − µ + φ) − u sin λb

(14.4.10)

where (u, φ) are the surface parameters. The unit normal to surface �r is represented
by the equation

nr =
∂rr

∂φ
× ∂rr

∂u∣∣∣∣∂rr

∂φ
× ∂rr

∂u

∣∣∣∣ = [− sin λb sin αt sin λb cos αt − cos λb ]T. (14.4.11)

Interpretation of Σr

Surface �r of the rack is a plane because Eqs. (14.4.10) are represented in the surface
parameters (u, φ) of the first order. We may represent this plane by the equation

xr nxr + yr nyr + zr nzr − m = 0. (14.4.12)

Here,

nr = [nxr nyr nzr ]T (14.4.13)

is the unit normal to plane �r represented by Eqs. (14.4.11); m is the magnitude of the
perpendicular that is drawn from the origin Or of Sr to plane �r . Further derivations do
not require the determination of m. However, m can be easily determined, if necessary,
considering the following system of three linear equations in three unknowns (u, φ,
and m):

a11u + a13m = b1

a21u + a22φ + a23m = b2

a31u + a32φ + a33m = b3.

(14.4.14)
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Here, 
a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3

 =


cos λb sin αt 0 −nxr rb sin αt tan αt

− cos λb cos αt ρ −nyr −rb sin αt

− sin λb p −nzr −p(αt − µ)

 . (14.4.15)

The derivation of Eqs. (14.4.14) from (14.4.10) is based on the following considera-
tions:

(i) We have considered in Eqs. (14.4.10) that

xr = m nxr , yr = m nyr , zr = m nzr (14.4.16)

are the coordinates of the point of intersection of the surface normal with �r . This
normal is drawn to �r from the origin Or of coordinate system Sr .

(ii) The screw parameter p can be expressed as

p = ρ tan λρ = rb tan λb (14.4.17)

where λk (k = ρ, b) are the lead angles on cylinders of radii ρ and rb.

Sections of Σr

Using Eq. (14.4.12), we are able to determine the profile angles of the rack surface
�r in the sections of �r by plane zr = 0, plane xr = 0, and the normal section of �r .
Intersection of �r by plane zr = 0 represents a straight line that is determined by the
equation

xr nxr + yr nyr − m = 0. (14.4.18)

The unit vector of this straight line is determined as

1(
dx2

r + dy2
r

)0.5 [ dxr dyr 0 ]T.

The profile angle αt of the rack is determined as [Fig. 14.4.2(a)]

tan αt = dyr

dxr
= −nxr

nyr

where

cos αt = rb

ρ
= tan λρ

tan λb
. (14.4.19)

We consider now the intersection of �r by plane xr = 0 that is tangent to the cylinder
of radius ρ (Fig. 14.4.1). The intersection results in a straight line represented by the
equation

yr nyr + zr nzr − m = 0. (14.4.20)
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Figure 14.4.2: Profile angles and rack-cutter sur-
face.

The unit vector of this straight line is represented as

1(
dy2

r + dz2
r

)0.5 [ 0 dyr dzr ]T.

The orientation of this unit vector in plane xr = 0 is determined by angle λρ [Fig.
14.4.2(b)], where

tan λρ = dzr

dyr
= −nyr

nzr
= tan λb cos αt . (14.4.21)

We consider now the normal section of rack tooth surface �r as the intersection of
�r by the plane that passes through the normal to �r and is perpendicular to plane
xn = 0 [Fig. 14.4.2(b)]. Coordinate system Sn is rigidly connected to the normal plane,
and the origin of coordinate system Sn is located on the rack tooth surface �r (recall
that �r is a plane represented by Eq. (14.4.12)). Plane �r is represented in coordinate
system Sn by the equation

xnnxn + ynnyn = 0 (14.4.22)
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because the origin On lies in plane �r and nzn = 0 because the normal to �r is perpen-
dicular to zn [Fig. 14.4.2(c)].

Equation (14.4.22) represents a straight line and the profile angle of the rack tooth
surface in the normal plane is represented by the equation

tan αn = yn

xn
= −nxn

nyn
. (14.4.23)

Using coordinate transformation from Sr to Sn, we obtain [see Eqs. (14.4.11)]

nxn = nxr = − sin λb sin αt , nyn = nyr sin λρ − nzr cos λρ

= sin λb cos αt sin λρ + cos λb cos λρ = sin λb cos αt

sin λρ

. (14.4.24)

(Recall that tan λb = tan λρ/cos αt .)
Equations (14.4.23) and (14.4.24) yield

tan αn = tan αt sin λρ. (14.4.25)

Lines of Contact on Σr

An instantaneous line L1r of contact between �1 and �r is represented in Sr with
Eqs. (14.4.10), taking φ as constant. Line L1r is a straight line whose unit vector a is
represented in Sr as

ar = ∂rr

∂u
= [ cos λb sin αt − cos λb cos αt − sin λb ]T. (14.4.26)

Using coordinate transformation from Sr to Sn, we represent the unit vector an as
follows: 

axn

ayn

azn

 =


1 0 0

0 sin λρ − cos λρ

0 cos λρ sin λρ




axr

ayr

azr

 . (14.4.27)

Angle q (Fig. 14.4.3) is determined by the equation

cos q = −an · kn = cos αt

cos αn
. (14.4.28)

Figure 14.4.3: Contact lines on rack
tooth surface.
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Contact lines L1r represent in plane �r (the surface of the rack tooth) a family of parallel
straight lines that form with axis zn the angle q (Fig. 14.4.3).

Lines of Contact L1r on Surface Σ1

Lines L1r on surface �1 of the helical gear are represented by surface Eqs. (14.3.5) and
the equation of meshing (14.4.7) taking φ as a sequence of constant values. Lines of
contact L1r are represented in S1 by the vector function r1(u, θ (φ)).

The equation of meshing (14.4.7) yields that θ is constant if φ is a constant value.
Thus the instantaneous line of contact on �1 is the u coordinate line that is tangent to
the helix on the base cylinder of radius rb [Fig. 14.4.4(a)]. We remind the reader that
contact lines on the tooth surface of a spur gear are straight lines that are parallel to the
gear axis [Fig. 14.4.4(b)].

Figure 14.4.4: Contact lines on tooth surfaces of a helical gear and a spur gear.
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Surface of Action
The surface of action is the family of contact lines L1r that are represented in the fixed
coordinate system Sf . The family of L1r is represented in Sf by the equations

rf = M f 1r1(u, θ ), f (θ, φ) = 0. (14.4.29)

Equations (14.3.5), (14.4.7), and (14.4.29) yield the following equations of the surface
of action:

xf = rb cos αt + u cos λb sin αt

yf = rb sin αt − u cos λb cos αt

z f = −u sin λb + p(αt + φ − µ)

(14.4.30)

where u and φ are the surface parameters. Obviously, the surface of action is a plane.
The instantaneous line of contact is determined by Eqs. (14.4.29) considering that φ

is a fixed value. The family of contact lines on the surface of action is represented by
parallel straight lines that belong to plane � (Fig. 14.4.5). This plane is tangent to the
base cylinder of radius rb, and AB is the line of tangency of � and the base cylinder.
The position vector Of M of current point M in the plane of action is represented as

Figure 14.4.5: Plane of action when a helical gear is in mesh with a rack.
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follows (Fig. 14.4.5):

Of M = Of A + AB + BM. (14.4.31)

Here,

Of A = [ rb cos αt rb sin αt 0 ]T, AB = p(αt + φ − µ)kf

BM = [ u cos λb sin αt −u cos λb cos αt −u sin λb ]T

Of M = [ x f y f z f ]T (14.4.32)

where φ is taken as constant.

Relations Between Design Parameters
Henceforth, we consider that in the process of generation of a helical gear the gear
axode is the pitch cylinder of radius rp = ρ. We designate the lead angle and the helix
angle on the gear pitch cylinder by λp and βp, respectively.

Figure 14.4.6 illustrates the tooth profiles, design parameters, and tooth element pro-
portions for two sections of an imaginary rack-cutter: the normal section B–B and
the transverse section A−A, respectively (Fig. 14.4.7). The designations k = n, t in
Fig. 14.4.6 correspond to these sections, respectively. We emphasize that the tooth
height 2b for the rack-cutter is the same for both sections. The tooth height for an
ordinary rack (but not a rack-cutter) is (a + b). The designation p(k)

b (k = n, t) indi-
cates that the distance between the neighboring teeth of a rack is equal to the base
circular pitch for a spur gear (k = n) and for the helical gear (k = n, t) in its cross
section.

The design parameters of the normal section of the cutter are standardized. A standard
helical gear is generated when the middle line a–a of the rack-cutter lies in the plane
that is tangent to the gear pitch cylinder. The input data for computation of the design
parameters of a standard helical gear are αn, Pn, λp, N , a = 1/Pn, and b = 1.25/Pn.
The computation of design parameters is based on the following procedure:

Step 1: Determination of profile angle αt :

tan αt = tan αn

sin λp
= tan αn

cos βp
. (14.4.33)

-

Figure 14.4.6: Design parameters of a rack-cutter in normal and transverse sections (k = n, t).
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Figure 14.4.7: Sections of a rack-cutter for a helical gear.

Step 2: Determination of pt and Pt :

pt = pn

sin λp
, Pt = Pn sin λp. (14.4.34)

Step 3: Determination of radius rp of the pitch cylinder:

rp = N
2Pt

= N
2Pn sin λp

. (14.4.35)

Step 4: Determination of radius rb of the base cylinder:

rb = rp cos αt = N cos αt

2Pn sin λp
. (14.4.36)

Step 5: Determination of the lead angle λb on the base cylinder:

tan λb = p
rb

= rp tan λp

rb
. (14.4.37)

An alternative equation for λb is

cos λb = cos λp cos αn. (14.4.38)
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The derivation of Eq. (14.4.38) is based on application of Eqs. (14.4.17) and (14.4.33)
with ρ = rp.

Step 6: Determination of the addendum and dedendum cylinder radii:

ra = rp + a = N + 2 sin λp

2Pn sin λp
(14.4.39)

rd = rp − b = N − 2.5 sin λp

2Pn sin λp
. (14.4.40)

Step 7: The nominal values of tooth thickness and space width on the pitch circle (in
the cross section) are determined as

st = wt = pt

2
= pn

2 sin λp
= π

2Pn sin λp
. (14.4.41)

14.5 MESHING OF MATING HELICAL GEARS

We apply movable coordinate systems S1 and S2 that are rigidly connected to gears 1
and 2, and the fixed coordinate system Sf (Fig. 14.5.1). The gear ratio m12 is constant
and the rotation angles φ1 and φ2 are related as follows:

m12 = ω(1)

ω(2)
= ρ2

ρ1
= φ1

φ2
. (14.5.1)

The shortest distance between the gear axes is E . The instantaneous axis of rotation
P–P is parallel to the gear axis of rotation (Fig. 14.5.1), and its location in Sf is
determined as

|Of P | = ρ1 = E
1

1 + m12
. (14.5.2)

We consider that surface �1 of helical gear 1 is a screw involute surface and our goals
are to determine (i) surface �2 as conjugate to �1, (ii) lines of contact between surfaces
�1 and �2, and (iii) the surface of action for conjugate surfaces �1 and �2. We assume
for further derivations that surface �1 and its unit normal are given by Eqs. (14.3.5)
and (14.3.6).

Equation of Meshing
The derivation of the equation of meshing is based on the following theorem: The
normal to surfaces �1 and �2 at the current point of their tangency must intersect the
instantaneous axis of rotation P–P .

Derivations similar to that described in Section 14.4 result in the equation of meshing

cos(θ1 + µ1 − φ1) = rb1

ρ1
= cos αo (14.5.3)
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Figure 14.5.1: Coordinate systems applied for a pair of helical gears.

where αo is the pressure angle of helical gears. Equation (14.5.3) provides two solutions.
We choose the solution

θ1 + µ1 − φ1 − αo = f (θ1, φ1) = 0, (14.5.4)

which represents the equation of meshing.

Derivation of Surface Σ2

Surface �2 is determined with the equations

r2(u1, θ1, φ1) = M21(φ1)r1(u1, θ1), f (θ1, φ1) = 0. (14.5.5)

Here,

f (θ1, φ1) = 0

is the equation of meshing represented by (14.5.4). Matrix M21 represents the coordinate
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transformation from S1 to S2 (Fig. 14.5.1) and is represented as

M21 =


− cos(φ1 + φ2) − sin(φ1 + φ2) 0 E cos φ2

sin(φ1 + φ2) − cos(φ1 + φ2) 0 −E sin φ2

0 0 1 0

0 0 0 1

 (14.5.6)

where φ1 and φ2 are related by Eq. (14.5.1).
Figure 14.5.1 shows the radii ρ1 and ρ2 of two axodes of helical gears. Taking into

account that

E = ρ1 + ρ2, m12 = ω(1)

ω(2)
= ρ2

ρ1
, ρ1 = rb1

cos αo
(14.5.7)

and using Eqs. (14.5.4), (14.5.5), (14.5.6), and (14.3.5), we obtain the following equa-
tions of �2:

x2 = rb1

cos αo
(m12 cos φ2 − sin αo sin(φ2 − αo))

+ u1 cos λb1 sin(φ2 − αo) (14.5.8)

y2 = − rb1

cos αo
(m12 sin φ2 + sin αo cos(φ2 − αo))

+ u1 cos λb1 cos(φ2 − αo) (14.5.9)

z2 = − u1 sin λb1 + p1(m12φ2 + αo − µ1). (14.5.10)

Equations (14.5.8) to (14.5.10) represent surface �2 in terms of surface parameters
(u1, φ2). The surface unit normal is represented as

n2 = N2

|N2| , N2 = ∂r2

∂φ2
× ∂r2

∂u1
(14.5.11)

We obtain after derivations that

n2 = −[ sin λb1 sin(φ2 − αo) sin λb1 cos(φ2 − αo) cos λb1 ]T

(provided that rb1 tan αo(1 + m12) − u1 cos λb1 �= 0). (14.5.12)

An alternative approach for derivation of n2 is based on application of the equation

n2 = L21n1 (14.5.13)

and the equation of meshing (14.5.4). Here, L21 is the (3 × 3) submatrix of M21. Surface
�2 is a helicoid because the equation

y2nx2 − x2ny2 − p2nz2 = 0 (14.5.14)
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is satisfied. Here,

p2 = −p1m12. (14.5.15)

This surface is a developed ruled helicoid because the orientation of the unit normal
does not depend on the surface parameter u1. It is easy to verify that �2 is a screw
involute surface, and this conclusion is based on the following considerations:

(i) The cross section of �1 by plane � that is perpendicular to the gear axis is an
involute curve.

(ii) The meshing of gears in plane � can be represented as the meshing of two conjugate
curves. Because one of these curves is an involute one, the other one is an involute
curve as well (see Chapter 10).

(iii) The gear ratio of two involute gears is

m12 = ω(1)

ω(2)
= rb2

rb1
. (14.5.16)

Equations (14.5.15) and (14.5.16) yield that the direction of screw teeth for gear 2 is
opposite to the direction of the screw teeth of gear 1. However, the magnitudes of lead
angles λb1 and λb2 of the two gears are equal.

Surface of Action
The surface of action is represented in Sf by the equations

r f = M f 1r1(u1, θ1), f (θ1, φ1) = θ1 + µ1 − φ1 − αo = 0. (14.5.17)

Equations (14.3.5) and (14.5.17) yield the following representation of the surface of
action:

x f = rb1 cos αo + u1 cos λb1 sin αo

y f = rb1 sin αo − u1 cos λb1 cos αo

z f = −u1 sin λb1 + p1(αo − µ1 + φ1).

(14.5.18)

Equations (14.5.18) verify that the surface of action is a plane that is tangent to the base
cylinders of radii rb1 and rb2, oriented as shown in Fig. 14.5.2(a), and passes through
the instantaneous axis of rotation P–P .

Equations (14.5.18) with the fixed value of parameter φ1 represent in Sf the instan-
taneous line of contact L12 between surfaces �1 and �2. Contact lines L12 in the plane
of action are represented as parallel straight lines. Position vector Of M of current
point M of contact is represented as

Of M = Of A + AB + BM. (14.5.19)
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Figure 14.5.2: Plane of action of helical gears.

Here,

Of A = [ rb1 cos αo rb1 sin αo 0 ]T (14.5.20)

AB = p1(αo − µ1 + φ1)k f (14.5.21)

BM = [ u1 cos λb1 sin αo −u1 cos λb1 cos αo −u1 sin λb1 ]T. (14.5.22)

Analysis similar to that performed in Section 14.4 shows that the instantaneous line of
contact L12 is represented in coordinate system Si (i = 1, 2) as the tangent to the helix
on the base cylinder of radius rbi [Fig. 14.4.4(a)].

The pressure angle αo for helical gears depends on the profile angle αt of the rack-
cutter and the shortest distance E . It is easy to verify that

cos αo = rb1 + rb2

E
= (rp1 + rp2) cos αt

E
= (Np1 + Np2) cos αt

2Pt E
. (14.5.23)

In the case of standard gears, we have

E = rp1 + rp2, αo = αt . (14.5.24)

14.6 CONDITIONS OF NONUNDERCUTTING

Helical involute gears in comparison with spur involute gears are less sensitive to un-
dercutting. The conditions of nonundercutting can be determined by considering the
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Figure 14.6.1: For derivation of conditions of nonundercutting of helical involute gears.

meshing of a planar involute gear with the respective rack-cutter in a plane that is per-
pendicular to the axis of the helical gear (Fig. 14.6.1). The profile angle of the rack-cutter
is αt . The centrode of the planar gear is the pitch circle with the radius

rp = N
2Pt

= N
2Pn cos βp

. (14.6.1)

In the case of a standard helical gear, the middle line m–m of the rack-cutter is tangent
to the pitch circle. Undercutting is avoided if

1
Pn

≤ PC (14.6.2)

PC = rp sin2 αt = N
2Pt

sin2 αt = N
2Pn cos βp

sin2 αt . (14.6.3)

Then, we obtain that undercutting is avoided if

N ≥ 2 cos βp

sin2 αt
= 2 cos βp(cos2 βp + tan2 αn)

tan2 αn
. (14.6.4)

In the case of a spur gear, we have βp = 0 and

N ≥ 2

sin2 αn
. (14.6.5)

A numerical example is considered for a helical gear with the following input data:
βp = 45◦, αn = 20◦. Inequality (14.6.4) yields that

N ≥ 7.

Obviously, the number of gear teeth is considered as a whole number. We recall that
for the case of a spur gear with αn = 20◦, we have that

N ≥ 17.
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14.7 CONTACT RATIO

The contact ratio is determined as the sum of two components,

mc = m(c)
c + m(l )

c (14.7.1)

where the superscripts “c” and “l” indicate that the meshing is considered in the cross
section and in the longitudinal direction, respectively. The contact ratio m(c)

c is deter-
mined in a manner similar to that for the contact ratio for respective spur gears but
taking into account the specific relations between the design parameters for helical
gears (see Section 14.4). The contact ratio m(l )

c is represented by the following equation
[Fig. 14.7.1(a)]:

m(l )
c =

�
AB
pt

. (14.7.2)

Figure 14.7.1(b) shows the development of the pitch cylinder on a plane. It is easy to
verify that

�
AB= AB = l tan βp (14.7.3)

Figure 14.7.1: For derivation of contact ratio.
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where segment AB is the development of the arc
�

AB, and l is the axial dimension of
the helical gear. Equations (14.7.2) and (14.7.3) yield

m(l )
c = l tan βp

pt
= Ptl tan βp

π
= Pnl sin βp

π
. (14.7.4)

The contact ratio of helical gears is larger in comparison to that of respective spur
gears.

14.8 FORCE TRANSMISSION

The goal is to determine the components of the contact force at the mean tangency
point P considering as given the resisting moment Mr applied to the driven gear. The
derivations are based on the following procedure:

Step 1: Recall the derivation of a surface unit normal. Consider a surface � and two
lines L1 and L2 on � (Fig. 14.8.1). Lines L1 and L2 intersect each other at point P ;
vectors a and b are the tangents to these lines at P and form the tangent plane � to �

at point P . The surface unit normal is determined with the following equations:

n = N
|N| , N = a × b. (14.8.1)

Step 2: The tooth surfaces of helical gears contact each other along a line at every
instant. We consider such an instantaneous position of gear tooth surfaces when the in-
stantaneous contact line passes through point P , the middle point of the line of tangency
of the gear pitch cylinder (Fig. 14.8.2). Plane � (not shown in Fig. 14.8.2) is tangent to
the surface of gear 2 at the pitch cylinder. Vector a lies in plane � and is tangent to the
helix on the pitch cylinder with the radius rp2; βp is the helix angle; d–d is the trace of
the plane that is perpendicular to vector a and passes through point P . The intersection
of plane d–d with the pitch cylinder is an ellipse with axes 2rp2 and 2rp2/cos βp. Figure
14.8.2 also shows the normal section of the gear tooth surface �2. Vector b is tangent
to the surface �2 normal section at point P .

Figure 14.8.1: For derivation of surface normal.
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Figure 14.8.2: Derivation of components of contact force.

Step 3: Vectors a and b are represented in Sf as follows:

a = [0 − sin βp cos βp]T (14.8.2)

b = [cos αn sin αn cos βp sin αn sin βp]T. (14.8.3)

Equations (14.8.1) to (14.8.3) yield

n = [− sin αn cos αn cos βp cos αn sin βp]T. (14.8.4)

Step 4: The normal component of contact force F(12,n) transmitted from gear 1 to
gear 2 at point P is directed along the normal to the contacting surfaces. The tangential
component, the force of friction, is neglected. Here,

F(12,n) = F (12,n)n (14.8.5)

where

F (12,n) = |F(12,n)|.

Projections of F(12,n) on the coordinate axes of Sf are designated as X(12)
f , Y (12)

f , and
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Figure 14.8.3: Components of contact
force.

Z(12)
f (Fig. 14.8.3) and are shown in Fig. 14.8.3. Here,

X(12)
f = −F (12,n) sin αn

Y (12)
f = F (12,n) cos αn cos βp

Z(12)
f = F (12,n) cos αn sin βp.

(14.8.6)

It is evident that the force transmission is accompanied with an axial load and therefore
at least one of the pair of bearings for each gear must be designed to be able to accept
an axial load (Fig. 14.8.3).

Step 5: Considering the conditions of equilibrium of gear 2, we can determine the
magnitude of the transmission force Y (12)

f as follows:

Y (12)
f = Mr

rp2
. (14.8.7)

Equations (14.8.7) and (14.8.6) yield

F (12,n) = Mr

rp2 cos αn cos βp
(14.8.8)

X(12)
f = − Mr tan αn

rp2 cos βp
(14.8.9)

Z(12)
f = Mr tan βp

rp2
. (14.8.10)

The axial component of contact force becomes equal to zero by application of herring-
bone teeth [Fig. 14.8.4(a)] or when each of the mating gears is designed as a combination
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Figure 14.8.4: Helical gears with zero ax-
ial load.

of two helical gears made from one piece and provided with helical teeth of opposite
directions [Fig. 14.8.4(b)].

14.9 RESULTS OF TOOTH CONTACT ANALYSIS (TCA)

The results of computation show that the gears are very sensitive to angular errors
of misalignment such as the crossing angle �γ , the lead angle �λpi (i = 1, 2) on the
pinion (gear) pitch cylinder, and the error �αn of the profile angle of the hob; �αn

means the difference of profile angles of two hobs that are used for generation of
mating helical gears. The errors �γ and �λpi cause an edge contact and a piecewise
almost-linear function of transmission errors similar to that shown in Fig. 9.2.1. The
vibration of gears caused by �γ and �λpi is inevitable. The error �αn causes the edge
contact.

To avoid the edge contact and reduce the vibration, a new topology of helical gears
should be applied [Litvin et al., 2003]. The modification of gear tooth surfaces should
be based on the following principles: (i) point contact of tooth surfaces with controlled
dimensions of the instantaneous contact ellipse instead of surface line contact should be
provided; (ii) conjugation of double-crowned pinion with a conventional helical gear
should be applied. Double crowning of the pinion means deviation of the cross profile
from an involute curve and deviation of the surface in longitudinal direction from a
helicoid surface [Litvin et al., 2003]. The proposed modification enables us to obtain a
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parabolic function of transmission errors that is able to absorb the linear functions of
transmission errors caused by misalignments.

14.10 NOMENCLATURE

αn rack profile angle in normal section (Fig. 14.4.7)
αt rack profile angle in transverse section (Fig. 14.4.7)
βk (k = p, ρ) helix angle on pitch cylinder (k = p), on cylinder of

radius ρ (k = ρ) (Figs. 14.2.1 and 14.4.7)
λi (i = p, b, ρ) lead angle on the pitch cylinder (i = p), on the base cylinder

(i = b), and on the cylinder of radius ρ (Figs. 14.2.1, 14.4.5
and 14.4.7)

µ1 half of the angular width of the tooth space on the base circle of
gear 1 (Fig. 14.3.2)

θ , θ1, and θ2 surface parameter of the screw involute surface (Figs. 14.3.2
and 14.3.3)

φ, φ1, and φ2 angle of gear rotation (Figs. 14.4.1 and 14.5.1)
η2 half of the angular tooth thickness on pitch circle of gear 2
E shortest axes distance (Fig. 14.5.1)
F(12,n) normal component of contact force (Fig. 14.8.2)
H lead (Fig. 14.2.1)
l axial dimension of helical gear [Fig. 14.7.1(b)]
m12 gear ratio
mc gear contact ratio
N surface normal
n surface unit normal
pn circular pitch measured perpendicular to the direction of skew

teeth of the rack [Fig. 14.4.7(c)]
pt circular pitch in the cross section [Fig. 14.4.7(c)]
Pn and Pt diametral pitches that correspond to pn and pt

p = H/2π screw parameter
q orientation angle of straight contact lines on rack tooth surface

(Fig. 14.4.3)
rb radius of base cylinder (Fig. 14.4.4)
ro radius of operating pitch cylinder, axode
rpi radius of pitch cylinder i (Figs. 14.3.2 and 14.3.3)
s rack displacement (Fig. 14.4.1)
st tooth thickness on the pitch circle in the cross section
u surface parameter of a screw involute surface
wt space width measured on the pitch circle in cross section
X(12)

f , Y (12)
f , Z(12)

f components of contact force (Figs. 14.8.2 and 14.8.3)
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15.1 INTRODUCTION

Involute gears, spur and helical ones, are widely used in reducers, planetary gear trains,
transmissions, and many other industrial applications. The level of sophistication in the
design and manufacture of such gears (by hobbing, shaping, and grinding) is impressive.
The geometry, design, and manufacture of helical gears was the subject of research
presented in the works of Litvin et al. [1995, 1999, 2001a, 2003], Stosic [1998], and
Feng et al. [1999].

The advantage of involute gearing in comparison with cycloidal gearing is that the
change of center distance does not cause transmission errors. However, the practice
of design and the test of bearing contact and transmission errors show the need for
modification of involute gearing, particularly of helical gears. Figure 15.1.1 shows a 3D
model of a modified involute helical gear drive.

The existing design and manufacture of involute helical gears provide instantaneous
contact of tooth surfaces along a line. The instantaneous line of contact of conjugated
tooth surfaces is a straight line L0 that is the tangent to the helix on the base cylinder
(Fig. 15.1.2). The normals to the tooth surface at any point of line L0 are collinear and
they intersect in the process of meshing with the instantaneous axis of relative motion
that is the tangent to the pitch cylinders. The concept of pitch cylinders is discussed in
Section 15.2.

The involute gearing is sensitive to the following errors of assembly and manufacture:
(i) the change �γ of the shaft angle, and (ii) the variation of the screw parameter (of one
of the mating gears). Angle �γ is formed by the axes of the gears when they are crossed,
but not parallel, due to misalignment (see Fig. 15.4.4). Such errors cause discontinuous
linear functions of transmission errors which result in vibration and noise, and these
errors may also cause edge contact wherein meshing of a curve and a surface occurs
instead of surface-to-surface contact (see Section 15.9). In a misaligned gear drive, the
transmission function varies in each cycle of meshing (a cycle for each pair of meshing
teeth). Therefore the function of transmission errors is interrupted at the transfer of
meshing between two pairs of teeth [see Fig. 15.4.6(a)].

This chapter covers (i) computerized design, (ii) methods for generation, (iii) simu-
lation of meshing, and (iv) enhanced stress analysis of modified involute helical gears.

404
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Figure 15.1.1: Modified involute helical gear
drive.

The approaches proposed for modification of conventional involute helical gears are
based on the following basic ideas:

(i) Line contact of tooth surfaces is substituted by instantaneous point contact.
(ii) The point contact of tooth surfaces is achieved by crowning of the pinion in the

profile and longitudinal directions. The tooth surface of the gear is a conventional
screw involute surface.

Contact lines L0

Base cylinder helix

Figure 15.1.2: Contact lines on an involute
helical tooth surface.
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Screw Involute
surface

Profile-crowned pinion
tooth surface

Screw Involute
surface

Double-crowned pinion
tooth surface

(a)

(b)

Figure 15.1.3: Crowning of pinion tooth surface.

(iii) Profile crowning provides localization of bearing contact, and the path of contact
on the tooth surface of the pinion or the gear is oriented longitudinally (see Section
15.4).

(iv) Longitudinal crowning enables us to provide a parabolic function of transmission
errors of the gear drive. Such a function absorbs discontinuous linear functions
of transmission errors caused by misalignment and therefore reduces noise and
vibration (see Section 15.7). Figures 15.1.3(a) and 15.1.3(b) illustrate the profile-
crowned and double-crowned pinion tooth surface.

(v) Profile crowning of the pinion tooth surface is achieved by deviation of the gener-
ating tool surface in the profile direction (see Section 15.2). Longitudinal crown-
ing of the pinion tooth surface can be achieved by: (i) plunging of the tool, or
(ii) application of modified roll (see Sections 15.5 and 15.6).

(vi) The effectiveness of the procedure of stress analysis is enhanced by automatization
of development of the contacting model of several pairs of teeth. The derivation
of the model is based on application of the equations of the tooth surfaces; CAD
codes for building the model are not required. Details of application of the proposed
approaches are presented in Section 15.9.
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-

Figure 15.2.1: Axodes of pinion, gear, and rack-cutter: (a) axodes; (b) tooth surfaces of two skew
rack-cutters.

15.2 AXODES OF HELICAL GEARS AND RACK-CUTTERS

The concept of generation of pinion and gear tooth surfaces is based on application of
rack-cutters. The idea of the rack-cutters is the basis for design of such generating tools
as disks and worms. The concept of axodes is applied when the meshing and generation
of helical gears are considered.

Figure 15.2.1(a) shows the case wherein gears 1 and 2 perform rotation about parallel
axes with angular velocities ω(1) and ω(2) with the ratio ω(1)/ω(2) = m12 where m12 is
the constant gear ratio. The axodes of the gears are two cylinders of radii rp1 and rp2,
and the line of tangency of the cylinders designated as P1–P2 is the instantaneous axis
of rotation (see Chapter 3). The axodes roll over each other without sliding.

The rack-cutter and the gear being generated perform related motions:

(i) translational motion with velocity

v = ω(1) × O1 P = ω(2) × O2 P (15.2.1)

where P belongs to P1–P2

(ii) rotation with angular velocity ω(i ) (i = 1, 2) about the axis of the gear.
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The axode of the rack-cutter that is meshing with gear i is plane � that is tangent to
the gear axodes.

In the existing design, one rack-cutter with a straight-line profile is applied for gen-
eration of pinion and gear tooth surfaces. Then, the tooth surfaces contact each other
along a line and edge contact in a misaligned gear drive is inevitable.

Point contact in the proposed design (instead of line contact) is provided by applica-
tion of two mismatched rack-cutters, as shown in Fig. 15.2.1(b), one of a straight-line
profile for generation of the gear and the other of a parabolic profile for generation of
the pinion. This method of generation provides a profile-crowned pinion.

It is shown below (see Sections 15.5 and 15.6) that the pinion in the proposed new de-
sign is double-crowned (longitudinal crowning is provided in addition to profile crown-
ing). Double-crowning of the pinion (proposed in Litvin et al. [2001c]) allows edge
contact to be avoided and provides a favorable function of transmission errors.

Normal and Transverse Sections
The normal section a−a of the rack-cutter is obtained by a plane that is perpendicular to
plane � and whose orientation is determined by angle β [Fig. 15.2.1(b)]. The transverse
section of the rack-cutter is determined as a section by a plane that has the orientation
of b–b [Fig. 15.2.1(b)].

Mismatched Rack-Cutters
Figure 15.2.2(a) shows the profiles of the normal sections of the mismatched rack-
cutters. The profiles of the pinion and gear rack-cutters are shown in Figs. 15.2.2(b)
and 15.2.2(c), respectively. Dimensions s1 and s2 are related by module m and parameter
b as follows:

s1 + s2 = πm (15.2.2)

s12 = s1

s2
. (15.2.3)

Parameter s12, which might be chosen in the process of optimization, relates pinion and
gear tooth thicknesses and it allows modification of the relative rigidity. In a conventional
case of design, we choose s12 = 1.

The rack-cutter for gear generation is a conventional one and has a straight-line
profile in the normal section. The rack-cutter for pinion generation is provided with
a parabolic profile. The profiles of the rack-cutters are in tangency at points Q and
Q∗ [Fig. 15.2.2(a)] that belong to the normal profiles of the driving and coast sides of
the teeth, respectively. The common normal to the profiles passes through point P that
belongs to the instantaneous axis of rotation P1–P2 [Fig. 15.2.1(a)].

Pinion Parabolic Rack-Cutter
The parabolic profile of the pinion rack-cutter is represented in parametric form in an
auxiliary coordinate system sa (xa , ya ) as (Fig. 15.2.3)

xa = acu2
c , ya = uc (15.2.4)

where ac is the parabola coefficient. The origin of sa coincides with Q.
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Figure 15.2.2: Normal sections of pinion and gear rack-cutters: (a) mismatched profiles; (b) profiles of
pinion rack-cutter in coordinate systems sa and Sb; (c) profiles of gear rack-cutter in coordinate systems
Se and Sk.

The surface of the rack-cutter is denoted by �c and is derived as follows:

(i) The mismatched profiles of pinion and gear rack-cutters are represented in Fig.
15.2.2(a). The pressure angles are αd for the driving profile and αc for the coast
profile. The locations of points Qand Q∗ are denoted by |QP | = ld and |Q∗ P | = lc

where ld and lc are defined as

ld = πm
1 + s12

· sin αd cos αd cos αc

sin(αd + αc )
(15.2.5)

lc = πm
1 + s12

· sin αc cos αc cos αd

sin(αd + αc )
. (15.2.6)

(ii) Coordinate systems sa (xa , ya ) and Sb(xb, yb) are located in the plane of the normal
section of the rack-cutter [Fig. 15.2.2(b)]. The normal profile is represented in Sb

by the matrix equation

rb(uc ) = Mba ra (uc ) = Mba [acu2
c uc 0 1]T (15.2.7)



P1: GDZ/SPH P2: GDZ

CB672-15 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:44

410 Modified Involute Gears

Figure 15.2.3: Parabolic profile of pinion rack-cutter in normal section.

(iii) The rack-cutter surface �c is represented in coordinate system Sc (Fig. 15.2.4)
wherein the normal profile performs translational motion along c–c. Then we
obtain that surface �c is determined by vector function

rc (uc , θc ) = Mcb(θc )rb(uc ) = Mcb(θc )Mba ra (uc ). (15.2.8)

Gear Rack-Cutter
We apply coordinate systems Se and Sk [Fig. 15.2.2(c)] and coordinate system St [Fig.
15.3.1(b)]. The straight-line profile of the gear rack-cutter is represented in parametric

Figure 15.2.4: For derivation of pinion rack-cutter.
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form in coordinate system Se (xe , ye ) as:

xe = 0, ye = ut . (15.2.9)

The coordinate transformation from Sk to St is similar to the transformation from Sb to
Sc (Fig. 15.2.4), and the gear rack-cutter surface is represented by the following matrix
equation:

rt (ut , θt ) = Mtk(θt )Mkere (ut ). (15.2.10)

15.3 PROFILE-CROWNED PINION AND GEAR TOOTH SURFACES

Profile-crowned pinion and gear tooth surfaces are designated as �σ and �2, respectively,
wherein �1 indicates the pinion double-crowned surface.

Generation of Σσ

Profile-crowned pinion tooth surface �σ is generated as the envelope to the pinion
rack-cutter surface �c . The derivation of �σ is based on the following considera-
tions:

(i) Movable coordinate systems Sc (xc , yc ) and Sσ (xσ , yσ ) are rigidly connected to the
pinion rack-cutter and the pinion, respectively (Fig. 15.3.1(a)). The fixed coordinate
system Sm is rigidly connected to the cutting machine.

(ii) The rack-cutter and the pinion perform related motions, as shown in Fig. 15.3.1(a),

Figure 15.3.1: Generation of profile-crowned tooth surfaces by application of rack-cutters: (a) for
pinion generation by rack-cutter �c ; (b) for gear generation by rack-cutter �t .
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where sc = rp1ψσ is the displacement of the rack-cutter in its translational motion,
and ψσ is the angle of rotation of the pinion.

(iii) Using coordinate transformation from coordinate system Sc to coordinate system
Sσ we obtain a family of generating surfaces �σ represented in Sσ by the following
matrix equation:

rσ (uc , θc , ψσ ) = Mσc (ψσ )rc (uc , θc ). (15.3.1)

(iv) The pinion tooth surface �σ is determined as the envelope to the family of sur-
faces rσ (uc , θc , ψσ ) and requires simultaneous application of vector function rσ (uc ,

θc , ψσ ) and the equation of meshing represented as follows (see Zalgaller [1975],
Litvin [1994], and Litvin et al. [1995]):(

∂rσ

∂uc
× ∂rσ

∂θc

)
· ∂rσ

∂ψσ

= fcσ (uc , θc , ψσ ) = 0. (15.3.2)

Equation fcσ = 0 may be determined applying an alternative approach:

Nc · v(cσ )
c = 0. (15.3.3)

Here, Nc is the normal to �c represented in Sc ; v(cσ )
c is the relative velocity repre-

sented in Sc .

The coordinate transformation discussed above is based on application of homogeneous
coordinates and 4x4 matrices (Chapter 1).

Generation of Gear Tooth Surface Σ2

The schematic of generation of �2 is shown in Fig. 15.3.1(b). Surface �2 is represented
by the following two equations considered simultaneously:

r2(ut , θt , ψ2) = M2t (ψ2)rt (ut , θt ) (15.3.4)

ft2(ut , θt , ψ2) = 0. (15.3.5)

Here, vector equation rt (ut , θt ) represents the gear rack-cutter surface �t ; (ut , θt ) are
the surface parameters of �t ; matrix M2t (ψ2) represents the coordinate transformation
from St to S2; ψ2 is the generalized parameter of motion. It may be verified that the
generated surface is a screw involute one. Equations (15.3.4) and (15.3.5) represent
surface �2 by three related parameters. The gear tooth surface may be represented as
well in two-parameter form describing it as a ruled surface generated by a tangent to
the helix on the base cylinder.

Necessary and Sufficient Conditions of Existence of an Envelope
to a Parametric Family of Surfaces
Such conditions in the case of profile-crowned pinion tooth surface �σ are formulated
as follows (see Zalgaller [1975] and Litvin [1989, 1994]):

(i) Vector function rσ (uc , θc , ψσ ) of class C2 is considered.
(ii) We designate by point M(u(0)

c , θ
(0)
c , ψ (0)

σ ) the set of parameters that satisfies the
equation of meshing (15.3.2) at M and satisfies as well the following conditions
[see items (iii)–(v)].
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(iii) Generating surface �c of the rack-cutter is a regular one, and we have at M
that

∂rc

∂uc
× ∂rc

∂θc
�= 0. (15.3.6)

Vectors ∂rc/∂uc and ∂rc/∂θc represent in coordinate systems Sσ tangents to coor-
dinate lines of rack-cutter surface �c . Inequality (15.3.6) means that normal N(c)

σ

to surface �c differs from zero. The designations of N(c)
σ indicate that the normal

to �c is represented in coordinate system Sσ .
(iv) Partial derivatives of the equation of meshing (15.3.2) satisfy at M the inequa-

lity ∣∣∣∣∂ fcσ

∂uc

∣∣∣∣+ ∣∣∣∣∂ fcσ

∂θc

∣∣∣∣ �= 0. (15.3.7)

(v) Singularities of surface �σ are avoided by using the procedure described in Section
15.8.

By observation of conditions (i)–(v), the envelope �σ is a regular surface, it con-
tacts the generating surface �c along a line, and the normal to �σ is collinear to
the normal of �c . Vector function rσ (uc , θc , ψσ ) and Eq. (15.3.2) considered simul-
taneously represent surface �σ in three-parameter form, by three related parameters
(uc , θc , ψσ ).

Representation of Envelope Σσ in Two-Parameter Form
The profile-crowned surface �σ may also be represented in two-parameter form, taking
into account the following considerations:

(i) Assume that inequality (15.3.7) is observed, say, because

∂ fcσ

∂θc
�= 0. (15.3.8)

(ii) The theorem of implicit function system existence [Korn & Korn, 1968] yields that
due to observation of inequality (15.3.8), equation of meshing (15.3.2) may be
solved in the neighborhood of point M by function

θc = θc (uc , ψσ ). (15.3.9)

(iii) Then, surface �σ can be represented as

Rσ (uc , ψσ ) = rσ (uc , θc (uc , ψσ ), ψσ ). (15.3.10)

Similar representations of pinion tooth surfaces may be obtained for the case wherein
inequality (15.3.7) is observed if ∂ fcσ /∂uc �= 0 instead of inequality (15.3.8). The pinion
profile-crowned tooth surface in this case may be represented as

Rσ (θc , ψσ ) = rσ (uc (θc , ψσ ), θc , ψσ ). (15.3.11)
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Base circles

Common normal

Centrodes

Figure 15.4.1: Illustration of cross-profiles of profile-crowned helicoids.

15.4 TOOTH CONTACT ANALYSIS (TCA) OF PROFILE-CROWNED
PINION AND GEAR TOOTH SURFACES

Meshing of Profile-Crowned Helicoids: Conceptual Considerations
Two profile-crowned helicoids are considered. The concept of the meshing is based on
the following considerations discussed in Litvin [1962, 1989] and Litvin & Tsay [1985]:

(1) The helicoids transform rotation between parallel axes.
(2) The helicoid tooth surfaces are in point contact and this is achieved by the modifi-

cation of the cross-profile of the pinion tooth surface. This statement is illustrated
for the example in Fig. 15.4.1 in which an involute helicoid of the gear and pinion
modified helicoid are shown. Profile crowning of the pinion is provided because
the cross-profile deviates from the involute profile. The gear and the pinion tooth
surfaces are in point contact provided by mismatched crossed profiles.

(3) The formation of each of the mating helicoids may be represented as the result of
screw motion of the cross-profile. Figure 15.4.2 shows the formation of a helicoid
by a family of planar curves that perform a screw motion about the axis of the
helicoid.

(4) The screw parameters p1 and p2 of the profile-crowned helicoids have to be related
as

p1

p2
= ω(2)

ω(1)
(15.4.1)

where ω(i ) (i = 1, 2) is the angular velocity of the helicoid.
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Planar curves

Figure 15.4.2: Illustration of formation of helicoid surface by screw motion of a cross-profile of the
helicoid.

(5) The common normal to the cross-profiles at point M of tangency of profiles passes
through point I of tangency of the centrodes (Fig. 15.4.1).

(6) It is easy to verify that during the process of meshing, point M of tangency of
cross-profiles performs in the fixed coordinate system a translational motion along
a straight line that passes through M and is parallel to the axes of aligned gears.
The motion of a contact point along line M–M may be represented by two com-
ponents:
(i) transfer motion with gear i (i = 1, 2) that is performed as rotation about the

gear axis
(ii) relative motion with respect to the helicoid surface that is a screw motion with

parameter pi .
The screw motion by its nature represents a combination of rotation about the
gear axis with angular velocity designated as �(i ) and translational motion with
the velocity pi �

(i ). The resulting motion of the contact point in the fixed coordinate
system is a translational motion with the velocity pi �

(i ) along line M–M because
rotations in transfer and relative motions are performed with Ω(i ) = −ω(i ).

(7) It is easy to verify that the contact point moves over the helicoid surface along
a helix that is generated by point M while it performs a screw motion over the
surface of the helicoid. The path of contact on the surface of the helicoid is a helix
in which radius ρi and the lead angle λi are related by pi = ρi tan λi (i = 1, 2).

(8) The meshing of the mating helicoids is not sensitive to the change of the center
distance. Using Fig. 15.4.3, it is easy to verify that the change of the center distance
does not cause transmission errors. We may assume that the crossing profiles form
a center distance E∗ �= E . This involves that the point of tangency will be M∗

instead of M and the pressure angle will be α∗ instead of α. The new radii of
centrodes will be r ∗

i (i = 1, 2). However, the line of action in the fixed coordinate
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Figure 15.4.3: Operating circles in an aligned gear drive: (a) change of center distance �E = 0 when
no errors are applied; (b) �E �= 0.

system is again a straight line but now passes through point M∗ instead of M.
The line of action is the set of points of tangency of meshing surfaces in a fixed
coordinate system.

(9) Considering the contact of helicoid surfaces in the 3D space, we find out that the
surfaces have a common normal and common position vectors at any point of
surface tangency. The normal does not change its orientation during the process
of meshing in a fixed coordinate system.

(10) Although profile-crowned helicoids are not sensitive to the change of center dis-
tance and have localized surface contact, this type of gearing should not be applied
because the change of the shaft angle and the difference of lead angles will cause a
discontinuous linear function of transmission errors (see below). Then, vibration
and noise become inevitable. This is the reason why a double-crowned pinion has
to be applied instead of a profile-crowned one. Application of a double-crowned
pinion provides a predesigned parabolic function of transmission errors, and the
linear function of transmission errors caused by errors of assembly and manufac-
ture is absorbed (see Section 15.7).

(11) The conceptual considerations for meshing for profile-crowned helicoids are true
for all types of Novikov–Wildhaber gears, including the meshing of profile-
crowned involute helical gears.

(12) The analytical investigation of profile-crowned modified helical gears is accom-
plished by application of TCA (Tooth Contact Analysis) (see below).

Algorithm of Analytical Simulation
Simulation of meshing and contact have been performed for two cases of design
wherein: (i) the pinion of the gear drive is profile-crowned, and (ii) the pinion is double-
crowned (see Sections 15.5, 15.6, and 15.7). Comparison of the output for both cases
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Figure 15.4.4: Illustration of installment of coordinate systems for simulation of misalignment.

(Sections 15.4 and 15.7) shows that double-crowning of the pinion reduces transmission
errors and noise and vibration of the gear drive.

The algorithm of simulation of meshing and contact is based on conditions of con-
tinuous tangency of contacting tooth surfaces of the pinion and the gear (see Section
9.4). The algorithm for profile-crowned involute gears is applied as follows. Know-
ing the representation of tooth surfaces �σ and �2 in coordinate systems Sσ and S2

that are rigidly connected to the pinion and the gear, we may represent surfaces �σ

and �2 in fixed coordinate system Sf taking into account the errors of alignment (see
Fig. 15.4.4). We use for this purpose the coordinate transformation from Sσ and S2 to
Sf (Fig. 15.4.4).

We recall that tooth surfaces �σ and �2 are profile-crowned and therefore they are
in point tangency. Tangency of �σ and �2 at common point M means that they have at
M the same position vector and the surface normals are collinear. Then we obtain the
following system of vector equations:

r(σ )
f (uc , θc , ψσ , φσ ) − r(2)

f (ut , θt , ψ2, φ2) = 0 (15.4.2)

N(σ )
f (uc , ψσ , φσ ) − νN(2)

f (ut , ψ2, φ2) = 0 (15.4.3)

fcσ (uc , θc , ψσ ) = 0 (15.4.4)

ft2(ut , θt , ψ2) = 0. (15.4.5)

Here, fcσ = 0 and ft2 = 0 are the equations of meshing of the pinion and gear with the
respective generating rack-cutters �c and �t ; φσ and φ2 are the angles of rotation of the
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profile-crowned pinion and gear; ν �= 0 is a scalar factor in the equation of collinearity
of surface normals.

One of the parameters, say φσ , is chosen as the input one. The Jacobian D of the system
of scalar equations obtained from Eqs. (15.4.2)–(15.4.5) has to differ from zero as the
precondition of point tangency of surfaces �σ and �2. In accordance with the theorem
of implicit function system existence [Korn & Korn, 1968], observation of inequality
D �= 0 enables us to solve the system of equations (15.4.2)–(15.4.5) by functions

{uc (φσ ), θc (φσ ), ψσ (φσ ), ut (φσ ), θt (φσ ), ψ2(φσ ), φ2(φσ )} ∈ C1. (15.4.6)

Solution of system of nonlinear equations (15.4.2)–(15.4.5) is an iterative computerized
process based on application of the Newton–Raphson method [Visual Numerics, Inc.,
1998].

The computational procedure provides the paths of contact on pinion and gear tooth
surfaces and the function of transmission errors. We have applied for the simulation of
meshing the following coordinate systems (Fig. 15.4.4):

(i) Movable coordinate systems Sσ and S2 that are rigidly connected to the pinion and
the gear, respectively [Figs. 15.4.4(a) and 15.4.4(c)].

(ii) The fixed coordinate system Sf where the meshing of tooth surfaces �σ and �2

of the pinion and gear is considered.
(iii) All errors of assembly are referred to the gear. An additional fixed coordinate system

Sc [Figs. 15.4.4(c) and 15.4.4(b)] is applied to simulate the errors of installment
�E and �γ as parameters of installment of coordinate system Sc with respect to
Sf . Rotation of the gear is considered as rotation of coordinate system S2 with
respect to Sc .

(iv) Errors of �E and �γ are illustrated in Fig. 15.4.4(b). Parameter L shown in
Fig. 15.4.4(b) is applied to simulate an error �γ of the shaft angle such that the
shortest distance between the crossed axes zσ and z2 does not coincide with yf .

An example of meshing of profile-crowned pinion and gear tooth surfaces has been
investigated for the following data: N1 = 21, N2 = 77, m = 5.08 mm, s12 = 1, β = 30◦,
αd = αc = 25◦, and the parabola coefficient ac = 0.002 mm−1. The following errors of
alignment have been simulated: (i) change of center distance �E = 1 mm, (ii) error
�λ = 3 arcmin of the lead angle, (iii) change of shaft angle �γ = 3 arcmin and L = 0,
and (iv) change of �γ = 15 arcmin and L = 15 mm.

The results of computation are as follows:

(1) Figure 15.4.5 illustrates the shift of bearing contact caused by error �E .
(2) The path of contact is indeed oriented longitudinally (Figs. 15.4.5, 15.4.6(b), and

15.4.6(c)).
(3) Error �E of shortest center distance does not cause transmission errors. The gear

ratio m12 remains constant and of the same magnitude:

m12 = ω(1)

ω(2)
= N2

N1
. (15.4.7)
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Figure 15.4.5: Shift of bearing contact caused by �E for the following cases: (a) path of contact
on pinion surface when no error of center distance is applied and (b) when an error �E = 1 mm is
applied; (c) path of contact on gear surface when no error is applied and (d) when an error �E = 1
mm is applied.

However, change of �E is accompanied with change in the radii of operating pitch
cylinders and in the operating pressure angle of cross-profiles (Fig. 15.4.3).

(4) The main disadvantage of meshing of profile-crowned tooth surfaces is that �γ

and �λ cause a discontinuous linear function of transmission errors as shown in
Fig. 15.4.6(a). Such functions cause vibration and noise and this is the reason why
a double-crowned pinion instead of a profile-crowned one is applied. Errors �γ

and �λ also cause the shift of the bearing contact on the pinion and gear tooth
surfaces. Our investigation shows that the main defects of the gear drive for the case
in which L �= 0 [see parameter L in Fig. 15.4.4(b)] and �γ �= 0 are the unfavorable
functions of transmission errors, similar to the one shown in Fig. 15.4.6.

15.5 LONGITUDINAL CROWNING OF PINION BY A PLUNGING DISK

We remind the reader that errors of shaft angle and lead angle cause a discontinuous
linear function of transmission errors (see Section 15.4), and high acceleration and
vibration of the gear drive become inevitable. Longitudinal crowning of the pinion tooth
surface, in addition to profile-crowning, is provided for transformation of the shape of
the function of transmission errors and reduction of noise and vibration. This section
covers longitudinal crowning of the pinion by application of a plunging generating disk.
The same goal (double-crowning) may be achieved by application of a generating worm
(see Section 15.6).

Application of a Plunging Disk
The approach is based on the following ideas:

(i) The profile-crowned surface �σ of the pinion is considered as given.
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(arc sec)

(rad)

φ

φ

Figure 15.4.6: Illustration of transmission errors and shift of bearing contact on the pinion tooth
surface of a profile-crowned gear drive caused by �γ : (a) function of transmission errors with error
�γ = 3 arcmin; (b) path of contact when no errors are applied; (c) path of contact with error �γ = 3
arcmin.

(ii) A disk-shaped tool �D that is conjugated to �σ is determined (Fig. 15.5.1). The
axes of the disk and pinion tooth surface �σ are crossed and the crossing angle γDp

is equal to the lead angle on the pinion pitch cylinder [Fig. 15.5.2(b)]. The center
distance EDp [Fig. 15.5.2(a)] is defined as

EDp = rd1 + ρD (15.5.1)

where rd1 is the dedendum radius of the pinion and ρD is the grinding disk radius.
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Figure 15.5.1: Generation of pinion by grinding disk.

(iii) Determination of disk surface �D is based on the following procedure [Litvin,
1989, 1994]:
Step 1: Disk surface �D is a surface of revolution. Therefore, there is such a line
Lσ D [Fig. 15.5.2(c)] of tangency of �σ and �D that the common normal to �σ and
�D at each point of Lσ D passes through the axis of rotation of the disk [Litvin,
1989, 1994]. Figure 15.5.2(c) shows line Lσ D obtained on surface �D. Rotation
of Lσ D about the axis of �D enables representation of surface �D as the family of
lines Lσ D.
Step 2: It is obvious that screw motion of disk �D about the axis of pinion tooth
surface �σ provides surface �τ that coincides with �σ [Fig. 15.5.2(d)].
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Figure 15.5.2: Determination of disk surface �D: (a) and (b) installment of grinding disk; (c) line Lσ D

of tangency of surfaces �σ and �D; (d) illustration of generation of surface �τ by disk surface �D.

(iv) The goal of obtaining a double-crowned surface �1 of the pinion is accomplished
by providing a combination of screw and plunging motions of the disk and the
pinion. The generation of a double-crowned pinion tooth surface is illustrated in
Fig. 15.5.3 and is accomplished as follows:
(1) Figures 15.5.3(a) and 15.5.3(b) show two positions of the generated double-

crowned pinion with respect to the disk. One of the two positions with center
distance E (0)

Dp is the initial one; the other with EDp(ψ1) is the current position.

The shortest distance E (0)
Dp is defined by Eq. (15.5.1).

(2) Coordinate system SD is rigidly connected to the generating disk [Fig.
15.5.3(c)] and is considered fixed.
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Figure 15.5.3: Generation of double-crowned pinion surface �1 by a plunging disk: (a) initial positions
of pinion and disk; (b) schematic of generation; (c) applied coordinate systems.

(3) Coordinate system S1 of the pinion performs a screw motion and is plunged
with respect to the disk. Auxiliary systems Sh and Sq are used for a better
illustration of these motions in Fig. 15.5.3(c). Such motions are described as
follows:

Screw motion is accomplished by two components: (a) translational dis-
placement l p that is collinear to the axis of the pinion, and (b) rotational
motion ψ1 about the axis of the pinion [Figs. 15.5.3(b) and (c)]. The mag-
nitudes l p and ψ1 are related through the screw parameter p of the pinion
as

l p = pψ1. (15.5.2)

Plunging motion is accomplished by a translational displacement apl l 2
p along

the shortest distance direction [Fig. 15.5.3(c)]. Such motion allows defini-
tion of the shortest distance EDp(ψ1) [Fig. 15.5.3(b) and (c)] as a parabolic
function

EDp(ψ1) = E (0)
Dp − apl l 2

p. (15.5.3)

The translational motions l p and apl l 2
p are represented as displacement of

system Sq with respect to system Sh. The same translational motions are
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performed by system S1 which performs rotational motion of angle ψ1 with
respect to system Sq .

(4) The pinion tooth surface �1 is determined as the envelope to the family of disk
surface �D generated in the relative motion between the disk and the pinion.

15.6 GRINDING OF DOUBLE-CROWNED PINION BY A WORM

Worm Installment
The installment of the grinding worm with respect to the pinion may be represented on
the basis of the meshing of the two helicoids. Figure 15.6.1 illustrates the meshing of
two left-hand helicoids, which represent the grinding worm and the pinion generated
by the worm. Figure 15.6.2 yields that the crossing angle is

γwp = λp + λw (15.6.1)

where λp and λw are the lead angles on the pitch cylinders of the pinion and the worm.

Figure 15.6.1: Generation of pinion by grinding worm.
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Figure 15.6.2: Installment of grinding (cutting) worm.

Figure 15.6.2 shows that the pitch cylinders of the worm and the pinion are in tan-
gency at point M that belongs to the shortest distance between the crossed axes. The
velocity polygon at M satisfies the relation

v(w) − v(p) = µit . (15.6.2)

Here, v(w) and v(p) are the velocities of the worm and the pinion at M; it is the unit
vector directed along the common tangent to the helices; µ is the scalar factor. Equation
(15.6.2) indicates that the relative velocity at point M is collinear to the unit vector it .

Determination of Worm Thread Surface Σw

In order to get the same pinion tooth surface �σ that is generated by rack-cutter surface
�c (Section 15.3), the generation of �w can be accomplished considering that the three
surfaces �c , �σ , and �w are simultaneously meshing. Figure 15.6.3 shows the axodes
of these three surfaces wherein the shortest distance between pinion and worm axodes
is extended. Plane � represents the axode of the rack-cutter. Surface �w is obtained
using the following steps:

Step 1: The parabolic tooth surface �c of the rack-cutter is considered as given.
Step 2: A translational motion of rack-cutter surface �c , which is perpendicular to

the axis of the pinion, and rotational motion of the pinion provide surface �σ as an
envelope to the family of surfaces of �c (see Section 15.3). Velocity v1 (Fig. 15.6.3) is
applied to the rack-cutter while the pinion is rotated with angular velocity ω(p). The
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Figure 15.6.3: For illustration of axodes of worm, pinion, and rack-cutter.

relation between v1 and ω(p) is defined as

v1 = ω(p)rp (15.6.3)

where rp is the radius of the pinion pitch cylinder.
Step 3: An additional motion of surface �c with velocity vaux along direction t−t of

skew rack-cutter teeth (Fig. 15.6.3) is performed, and this motion does not affect surface
�σ . Vector equation v2 = v1 + vaux allows us to obtain velocity v2 of rack-cutter �c in
a direction that is perpendicular to the axis of the worm. Then, we may represent
the generation of worm surface �w by rack-cutter �c considering that the rack-cutter
performs translational motion v2 while the worm is rotated with angular velocity ω(w).
The relation between v2 and ω(w) is defined as

v2 = ω(w)rw (15.6.4)

where rw is the radius of the worm pitch cylinder. Worm surface �w is generated as the
envelope to the family of rack-cutter surfaces �c .
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Figure 15.6.4: Contact lines Lcσ and Lcw corresponding to meshing of rack-cutter �c with pinion and
worm surfaces �σ and �w , respectively.

Step 4: The discussion above enables us to verify the simultaneous generation of
profile-crowned pinion tooth surface �σ and worm thread surface �w by rack-cutter
surface �c . Each of the two generated surfaces �σ and �w are in line contact with rack-
cutter surface �c . However, the contact lines Lcσ and Lcw do not coincide but intersect
each other as shown in Fig. 15.6.4. Here, Lcσ and Lcw represent the lines of contact
between �c and �σ , and �c and �w, respectively. Lines Lcσ and Lcw are obtained for
any chosen value of related parameters of motion between �c , �σ , and �w. Point N
of intersection of lines Lcw and Lcσ (Fig. 15.6.4) is the common point of tangency of
surfaces �c , �σ , and �w.

Profile Crowning of Pinion
Profile-crowned pinion tooth surface �σ was obtained above by using rack-cutter sur-
face �c . Direct derivation of generation of �σ by the grinding worm �w may be accom-
plished as follows:

(a) Consider that worm surface �w and pinion tooth surface �σ perform rotation
between their crossed axes with angular velocities ω(w) and ω(p). It follows from
the discussion above that �w and �σ are in point contact and N is one of the
instantaneous points of contact of �w and �σ (Fig. 15.6.4).

(b) The concept of direct derivation of �σ by �w is based on the two-parameter en-
veloping process. The process of such enveloping is based on application of two
independent sets of parameters of motion [Litvin, 1994; Litvin & Seol, 1996]:
(i) One set of parameters relates the angles of rotation of the worm and the pinion

as

mwp = ω(w)

ω(p)
= Np

Nw
= Np (15.6.5)

where the number Nw of worm threads is considered as Nw = 1, and Np is
the teeth number of the pinion.

(ii) The second set of parameters of motion is provided as a combination of two
components: (1) translational motion �sw of the worm that is collinear to the
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Figure 15.6.5: Schematic of generation: (a) without worm plunging; (b) with worm plunging.

axis of the pinion [Fig. 15.6.5(a)]; (2) small rotational motion of the pinion
about the pinion axis that is determined as

�ψp = �sw

p
(15.6.6)

where p is the screw parameter of the pinion.

Analytical determination of a surface generated as the envelope to a two-parameter
enveloping process is presented in Section 6.10. The schematic of generation of �σ

by �w is shown in Fig. 15.6.5(a) in which the shortest center distance is shown as an
extended one for the purpose of better illustration. In the process of meshing of �w

and �σ , the worm surface �w and the profile-crowned pinion surface perform rotation
about crossed axes. The shortest distance is executed as

Ewp = rp + rw. (15.6.7)

Surfaces �w and �σ are in point tangency. Feed motion of the worm is provided as a
screw motion with the screw parameter of the pinion. Designations in Fig. 15.6.5(a)
indicate (1) M1 and M2 points on pitch cylinders (these points do not coincide with
each other because the shortest distance is illustrated as extended), (2) ω(w) and ω(p) are
the angular velocities of the worm and profile-crowned pinion in their rotation about
crossed axes, (3) �sw and �ψp are the components of the screw motion of the feed
motion; and (4) rw and rp are the radii of pitch cylinders.
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Double Crowning of Pinion
We have presented above the generation by a worm of a profile-crowned surface �σ

of a pinion. However, our final goal is the generation by a worm of a double-crowned
surface �1 of a pinion. Two approaches are proposed for this purpose:

WORM PLUNGING. Additional pinion crowning (longitudinal crowning) is provided by
plunging of the worm with respect to the pinion, shown schematically in Fig. 15.6.5(b).
Plunging of the worm in the process of pinion grinding is performed as a variation
of the shortest distance between the axes of the grinding worm and the pinion. The
instantaneous shortest center distance Ewp(�sw) between the grinding worm and the
pinion is executed as [Fig. 15.6.5(b)]

Ewp(�sw) = E (0)
wp − apl (�sw)2. (15.6.8)

Here, �sw is measured along the pinion axis from the middle of the pinion; apl is the
parabola coefficient of the function apl (�sw)2; E (0)

wp is the nominal value of the shortest
distance defined by Eq. (15.6.7). Plunging of the worm with observation of Eq. (15.6.8)
provides a parabolic function of transmission errors in the process of meshing of the
pinion and the gear of the proposed version of the modified involute helical gear drive.

MODIFIED ROLL OF FEED MOTION. Conventionally, the feed motion of the worm is pro-
vided by observation of linear relation (15.6.6) between components �sw and �ψp.
For the purpose of pinion longitudinal crowning, the following function �ψp(�sw) is
observed:

�ψp(�sw) = �sw

p
+ amr (�sw)2 (15.6.9)

where amr is the parabola coefficient of the parabolic function (15.6.9).
Worm modified roll is provided instead of worm plunging. Application of function

(15.6.9) allows modification of the pinion tooth surface and provides a parabolic func-
tion of transmission errors of the proposed gear drive.

The derivation of double-crowned surface �1 of the pinion by application of both
approaches mentioned above is based on determination of �1 as a two-parameter en-
veloping process:

Step 1: We consider that surface �w is determined as the envelope to the rack-cutter
surface �c . The determination of �w is a one-parameter enveloping process.

Step 2: Double-crowned surface �1 of the pinion is determined as an envelope of a
two-parameter process by application of the following equations:

r1(uw, θw, ψw, �sw) = M1w(ψw, �sw)rw(uw, θw) (15.6.10)

Nw · v(w1,ψw)
w = 0 (15.6.11)

Nw · v(w1,�sw)
w = 0 (15.6.12)

Here, (uw, θw) are the worm surface parameters; (ψw, �sw) are the generalized param-
eters of motion of the two-parameter enveloping process. Vector equation (15.6.10)
represents the family of surfaces �w of the worm in coordinate system S1 of the pinion.



P1: GDZ/SPH P2: GDZ

CB672-15 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:44

430 Modified Involute Gears

Equations (15.6.11) and (15.6.12) represent two equations of meshing. Vector Nw is the
normal to the worm tooth surface �w and is represented in system Sw. Vector v(w1,ψw)

w

represents the relative velocity between the worm and pinion determined under the con-
ditions that parameter ψw of motion is varied and the other parameter �sw is held at
rest. Vector v(w1,�sw)

w is determined under the conditions that parameter �sw is varied
and the other parameter of motion, ψw, is held at rest. Both vectors of relative velocity
are represented in coordinate system Sw.

Vector equations (15.6.10), (15.6.11), and (15.6.12) considered simultaneously de-
termine the double-crowned pinion tooth surface as the envelope to the two-parameter
enveloping process (Section 6.10).

15.7 TCA OF GEAR DRIVE WITH DOUBLE-CROWNED PINION

Simulation of meshing of a gear drive with a double-crowned pinion is investigated
by application of the same algorithm discussed in Section 15.4 for a gear drive with a
profile-crowned pinion. The applied design parameters are shown in Table 15.7.1.

The parabolic coefficient of longitudinal crowning apl is of a magnitude that provides
a maximal error of 8 arcsec of the predesigned function of transmission errors for a
gear drive without errors of alignment. Figures 15.7.1(a) and 15.7.1(b) show the path
of contact and the function of transmission errors, respectively. The TCA output shows
that a parabolic function of transmission errors in meshing of the pinion and the gear
is indeed obtained due to application of a double-crowned pinion.

The chosen approaches for TCA cover application of (i) a disk-shaped tool (Section
15.5), (ii) a plunging worm (Section 15.6), and (iii) a modified roll of feed motion
(Section 15.6). These approaches yield almost the same TCA output.

The simulation of meshing is performed for the following errors of alignment: (i)
change of center distance �E = 140 µm; (ii) change of shaft angle �γ = 3 arcmin;
(iii) error �λ = 3 arcmin; and (iv) combination of errors �γ and �λ as �γ − �λ = 0
arcmin.

Table 15.7.1: Design parameters

Number of teeth of the pinion, N1 21
Number of teeth of the gear, N2 77
Module, m 5.08 mm
Driving-side pressure angle, αd 25◦

Coast-side pressure angle, αc 25◦

Helix angle, β 30◦

Parameter of rack-cutter, b 1
Face width 70 mm
Radius of the worm pitch cylinder, rw 98 mm
Parabolic coefficient of pinion rack-cutter, ac 0.002 mm−1

Parabolic coefficient of longitudinal crowning, apl 0.000085 mm−1
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(arc sec)

(rad)

Figure 15.7.1: Output of TCA for a gear drive wherein the pinion is generated by plunging of the
grinding worm; no errors are applied: (a) path of contact and (b) function of transmission errors.

The results of TCA are as follows:

(1) Figure 15.7.1(a) shows the orientation of the path of contact of the aligned gear
drive.

(2) Figures 15.7.2(a), 15.7.2(b), and 15.7.2(c) show the shift of the paths of contact
caused by errors of alignment �E , �γ , and �λ, respectively. Misalignment �E
does not cause the shift of the bearing contact on the pinion surface. The shift
of paths of contact caused by �γ may be compensated by correction �λ1 of the
pinion (or �λ2 of the gear). Figure 15.7.2(d) shows that the location of the path of
contact can be restored by correction of �λ1 of the pinion, taking �γ − �λ1 = 0.
This means that correction of �λ1 can be used for the restoration of the location
of the path of contact. Correction of �λ1 or �λ2 may be applied for grinding of
the pinion or the gear, respectively.

It was mentioned above (see Section 15.4) that double crowning of the pinion pro-
vides a predesigned parabolic function. Therefore, linear functions of transmission
errors caused by �γ , �λ, and other errors are indeed absorbed by the predesigned
parabolic function of transmission errors �φ2(φ1). The final function of transmission
errors �φ2(φ1) remains a parabolic one. However, an increase in the magnitude of errors



P1: GDZ/SPH P2: GDZ

CB672-15 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:44

432 Modified Involute Gears

Figure 15.7.2: Influence of errors of alignment on the shift of the path of contact for a modified
involute helical gear drive wherein the pinion is generated by plunging of the grinding worm with the
following errors: (a) �E = 140 µm; (b) �γ = 3 arcmin; (c) �λ = 3 arcmin; (d) �γ − �λ1 = 0 arcmin.

�γ and �λ may result in the final function of transmission errors �φ2(φ1) becoming
discontinued. In such a case, the predesigned parabolic function �φ2(φ1) has to be of a
larger magnitude, or it becomes necessary to limit the range of �γ , �λ, and other errors.

15.8 UNDERCUTTING AND POINTING

Undercutting
Avoidance of undercutting is applied to pinion tooth surface �σ and is based on the
following ideas:

(i) Appearance of singular points on generated surface �σ is the warning that the
surface may be undercut in the process of generation [Litvin, 1989, 1994].

(ii) Singular points on surface �σ are generated by regular points on the generating
surface �c when the velocity of a contact point in its motion over �σ becomes
equal to zero [Litvin, 1989, 1994]:

v(σ )
r = v(c)

r + v(cσ ) = 0. (15.8.1)

(iii) Equation (15.8.1) and differentiated equation of meshing

d
dt

[ f (uc , θc , ψσ )] = 0 (15.8.2)

allow us to determine a line L on surface �c that generates singular points on �σ .
By limiting �c with line L, we may avoid the appearance of singular points on �σ .
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The derivation of line L is based on the following considerations:

(i) Equation (15.8.1) yields

∂rc

∂uc

duc

dt
+ ∂rc

∂θc

dθc

dt
= −v(cσ )

c . (15.8.3)

Here, ∂rc/∂uc , ∂rc/∂θc , and v(cσ )
c are three-dimensional vectors represented in sys-

tem Sc of the pinion rack-cutter.
(ii) Equation (15.8.2) yields

∂ f
∂uc

duc

dt
+ ∂ f

∂θc

dθc

dt
= − ∂ f

∂ψσ

dψσ

dt
. (15.8.4)

(iii) Equations (15.8.3) and (15.8.4) represent a system of four linear equations in two
unknowns: duc/dt and dθc/dt . This system has a certain solution for the unknowns
if matrix

A =


∂rc

∂uc

∂rc

∂θc
−v(cσ )

c

∂ f
∂uc

∂ f
∂θc

− ∂ f
∂ψσ

dψσ

dt

 (15.8.5)

has the rank r = 2. This yields

�1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂xc

∂uc

∂xc

∂θc
−v (cσ )

xc

∂yc

∂uc

∂yc

∂θc
−v (cσ )

yc

∂ f
∂uc

∂ f
∂θc

− ∂ f
∂ψσ

dψσ

dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (15.8.6)

�2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂xc

∂uc

∂xc

∂θc
−v (cσ )

xc

∂zc

∂uc

∂zc

∂θc
−v (cσ )

zc

∂ f
∂uc

∂ f
∂θc

− ∂ f
∂ψσ

dψσ

dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (15.8.7)

�3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂yc

∂uc

∂yc

∂θc
−v (cσ )

yc

∂zc

∂uc

∂zc

∂θc
−v (cσ )

zc

∂ f
∂uc

∂ f
∂θc

− ∂ f
∂ψσ

dψσ

dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (15.8.8)
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�4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂xc

∂uc

∂xc

∂θc
−v (cσ )

xc

∂yc

∂uc

∂yc

∂θc
−v (cσ )

yc

∂zc

∂uc

∂zc

∂θc
−v (cσ )

zc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (15.8.9)

Equation (15.8.9) yields the equation of meshing f (uc , θc , ψσ ) = 0 and is not ap-
plied for investigation of singularities. The requirement that determinants �1, �2,
and �3 must be equal to zero simultaneously may be represented as

�2
1 + �2

2 + �2
3 = 0. (15.8.10)

Equation (15.8.10) enables us to obtain for determination of singularities the fol-
lowing function:

F (uc , θc , ψσ ) = 0 (15.8.11)

NOTE. In most cases, it is sufficient for derivation of function F = 0 to use instead
of (15.8.10) only one of the three following equations:

�1 = 0, �2 = 0, �3 = 0. (15.8.12)

An exceptional case, when application of (15.8.10) is required, is discussed in
Section 6.3.

Singularities of the pinion may be avoided by limitation by line L of the rack-cutter
surface �c that generates the pinion. The determination of L [Fig. 15.8.1(a)] is based
on the following procedure:

(1) Using equation of meshing f (uc , θc , ψσ ) = 0, we may obtain in the plane of pa-
rameters (uc , θc ) the family of contact lines of the rack-cutter and the pinion. Each
contact line is determined for a fixed parameter of motion ψσ .

(2) The sought-for limiting line L is determined in the space of parameters (uc , θc ) by
simultaneous consideration of equations f = 0 and F = 0 [Fig. 15.8.1(a)]. Then,
we can obtain the limiting line L on the surface of the rack-cutter [Fig. 15.8.1(b)].
The limiting line L on the rack-cutter surface is formed by regular points of the rack-
cutter, but these points will generate singular points on the pinion tooth surface.

Limitations of the rack-cutter surface by L enable us to avoid singular points on the
pinion tooth surface. Singular points on the pinion tooth surface can be obtained by
coordinate transformation of line L on rack-cutter surface �c to surface �σ .

Pointing
Pointing of the pinion means that the width of the topland becomes equal to zero.
Figure 15.8.2(a) shows the cross sections of the pinion and the pinion rack-cutter. Point
Ac of the rack-cutter generates the limiting point Aσ of the pinion when singularity of
the pinion is still avoided. Point Bc of the rack-cutter generates point Bσ of the pinion
profile. Parameter sa indicates the chosen width of the pinion topland. Parameter αt

indicates the pressure angle at point Q. Parameters h1 and h2 indicate the limitation of
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(mm)

(mm)

Figure 15.8.1: Contact lines Lcσ and limiting line L: (a) in plane (uc , θc ); (b) on surface �c .

location of limiting points Ac and Bc of the rack-cutter profiles. Figure 15.8.2(b) shows
functions h1(N1) and h2(N1) (N1 is the pinion tooth number) obtained for the following
data: αd = 25◦, β = 30◦, parabola coefficient of pinion rack-cutter ac = 0.002 mm−1,
sa = 0.3 m, parameter s12 = 1.0 [see Eq. (15.2.3)], and module m = 1 mm.

15.9 STRESS ANALYSIS

This section covers stress analysis and investigation of formation of bearing contact
of contacting surfaces. The performed stress analysis is based on the finite element
method [Zienkiewicz & Taylor, 2000] and application of a general computer program
[Hibbit, Karlsson & Sirensen, Inc., 1998]. An enhanced approach for application of
finite element analysis is presented in Section 9.5.
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-

Figure 15.8.2: Permissible dimensions h1 and h2 of rack-cutter: (a) cross sections of pinion and rack-
cutter; (b) functions h1(N1) and h2(N1).

Using the developed approach for stress analysis, the following advantages can be
obtained:

• Finite element models of the gear drive can be automatically obtained for any position
of pinion and gear obtained from TCA. Stress convergence is assured because there
is at least one point of contact between the contacting surfaces.

• Assumption of load distribution in the contact area is not required because the contact
algorithm of the general computer program [Hibbit, Karlsson & Sirensen, Inc., 1998]
is used to get the contact area and stresses by application of torque to the pinion while
the gear is considered at rest.
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1

2

3

Figure 15.9.1: Whole gear drive finite element model.

1

2

3

Figure 15.9.2: Contacting model of five pairs of teeth derived for stress analysis.
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(Ave. Crit.: 75%)
S, Mises

+2.724e-03
+7.653e+01
+1.531e+02
+2.296e+02
+3.061e+02
+3.827e+02
+4.592e+02
+5.357e+02
+6.122e+02
+6.888e+02
+7.653e+02
+8.418e+02
+9.184e+02

1

2

3

Bending Stress: 136.8 MPa

(MPa)

Figure 15.9.3: Contact and bending stresses in the middle point of the path of contact on the pinion
tooth surface for a modified involute helical gear drive wherein the generation is performed by plunging
of the grinding worm.

Contact Stresses (MPa)

(rad)

Bending Stresses (MPa)

(rad)

φ

φ

Figure 15.9.4: Contact and bending stresses during the cycle of meshing of the pinion.

438



P1: GDZ/SPH P2: GDZ

CB672-15 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:44

15.9 Stress Analysis 439

(Ave. Crit.: 75%)
S, Mises

+1.569e+03

+4.956e-04
+7.500e+01
+1.500e+02
+2.250e+02
+3.000e+02
+3.750e+02
+4.500e+02
+5.250e+02
+6.000e+02
+6.750e+02
+7.500e+02
+8.250e+02
+9.000e+02

1

2

3

Bending Stress: 76.9 MPa

(MPa)

Figure 15.9.5: Contact and bending stresses in the middle point of the path of contact on a conventional
involute helical pinion with error �γ = 3 arcmin: edge contact with high stresses occurs.

• Finite element models of any number of teeth can be obtained. As an example,
Fig. 15.9.1 shows a whole gear drive finite element model. However, such a model is
not recommended if an exact definition of the contact ellipse is required. Three- or
five-tooth models are more adequate in such a case. Figure 15.9.2 shows a contacting
model of five pairs of teeth derived for stress analysis.

The use of several teeth in the models has the following advantages:

(i) Boundary conditions are far enough from the loaded areas of the teeth.
(ii) Simultaneous meshing of two pairs of teeth can occur due to the elasticity of sur-

faces. Therefore, the load transition at the beginning and at the end of the path of
contact can be studied.

Numerical Example
Stress analysis has been performed for the gear drive with the design parameters shown
in Table 15.7.1. A finite element model of three pairs of contacting teeth has been
applied for each chosen point of the path of contact. Elements C3D8I [Hibbit, Karlsson
& Sirensen, Inc., 1998] of first order (enhanced by incompatible modes to improve their
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(Ave. Crit.: 75%)
S, Mises

+1.598e-03
+9.215e+01
+1.843e+02
+2.764e+02
+3.686e+02
+4.607e+02
+5.529e+02
+6.450e+02
+7.372e+02
+8.293e+02
+9.215e+02
+1.014e+03
+1.106e+03

1

2

3

Bending Stress: 135.6 MPa

(MPa)

Figure 15.9.6: Contact and bending stresses in the middle point of the path of contact on the pinion
tooth surface for a modified involute helical gear drive wherein an error �γ = 3 arcmin is considered:
edge contact is avoided.

bending behavior) have been used to form the finite element mesh. The total number
of elements is 45,600 with 55,818 nodes. The material is steel with the properties
of Young’s Modulus E = 2.068 × 105 MPa and Poisson’s ratio of 0.29. A torque of
500 Nm has been applied to the pinion. Figure 15.9.3 shows the contact and bending
stresses obtained at the mean contact point for the pinion.

The variation of contact and bending stresses along the path of contact has been also
studied. Figure 15.9.4 illustrates the variation of contact and bending stresses for the
pinion. Stress analysis has also been performed for a conventional helical involute drive
with an error of the shaft angle of �γ = 3 arcmin (Fig. 15.9.5). Recall that the tooth
surfaces of an aligned conventional helical gear drive are in line contact, but they are in
point contact with error �γ . The results of computation show that error �γ causes an
edge contact and an area of severe contact stresses.

Figure 15.9.6 shows the results of finite element analysis for the pinion of a modi-
fied involute helical gear drive wherein an error �γ = 3 arcmin occurs. As shown in
Fig. 15.9.6, a helical gear drive with modified geometry is indeed free of edge contact
and areas of severe contact stresses.
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16.1 INTRODUCTION

Involute helical gears are widely applied in the industry for transformation of rotation
between parallel and crossed axes. Figure 16.1.1 shows an involute helical gear drive
with crossed axes in 3D-space. A gear drive formed by a helical gear and a worm gear is
a particular case of a gear drive with crossed axes (Figure 16.1.2). Gear tooth surfaces
are in line contact for involute helical gear drives with parallel axes and in point contact
for involute helical gear drives with crossed axes.

The theory of involute gears and research in this area have been presented by Litvin
[1968], Colbourne [1987], Townsend [1991], and Litvin et al. [1999, 2001a, 2001c,
2001d] and the theory of shaving and honing technological processes are discussed
in the works of Townsend [1991] and Litvin et al. [2001a]. Despite the broad in-
vestigation that has been accomplished in this area, the quality of misaligned invo-
lute helical gear drives is still a concern of manufacturers and designers. The main
defects of such misaligned gear drives are (i) appearance of edge contact, (ii) high
levels of vibration, and (iii) the shift of the bearing contact far from the central
location.

To overcome the defects mentioned above, some corrections of gear geometry have
been applied in the past: (i) correction of the lead angle of the pinion (requires regrind-
ing), and (ii) crowning in the areas of the tip of the profile and the edge of the teeth
(based on the experience of manufacturers). A more general approach for localization
of bearing contact has been proposed in Litvin et al. [2001c].

The conditions of meshing of crossed involute gears are represented in this chapter
as follows:

(1) It is shown that a special design (called the canonical one) provides a central location
of bearing contact.

(2) Modification of the representation of lines of action (as the sets of contact points)
allows the following:
(i) representation of an edge contact as the result of the shift of lines of action in

a misaligned gear drive
(ii) relation of the sensitivity to an edge contact with the nominal value of the

crossing angle.

441
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Figure 16.1.1: Involute helical gears with crossed
axes in 3D-space.

Worm

Helical gear

Figure 16.1.2: Gear drive formed by a worm and a helical
gear.
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Figure 16.2.1: Illustration of generation of a
screw involute surface.

Algorithms for simulation of meshing (including simulation of edge contact) are
represented. The theory is supported by numerical examples.

16.2 ANALYSIS AND SIMULATION OF MESHING OF HELICAL GEARS

Conceptual Considerations
It is well known [Litvin, 1968, 1989] that a screw involute surface can be generated
by a screw motion of a straight line MD (Fig. 16.2.1), while in the process of motion
the generating line keeps its orientation as the tangent to the helix on the base cylin-
der. The generated surface is a developed one [Litvin, 1968, 1989; Zalgaller, 1975],
and the normals to the surface along MD are collinear. Figure 16.2.2(a) shows that
the generated surface is formed as a family of straight lines that are tangent to the
helix on the base cylinder. Tooth surfaces of mating helical gears (in an aligned gear
drive with parallel axes) contact each other along the straight lines MD mentioned
above.

Assume now that, using coordinate transformation, the lines of contact are repre-
sented in plane � that is tangent to both base cylinders of the helical gears with parallel
axes. Figure 16.2.3 shows plane � that is tangent to the base cylinder of the pinion.
Angle αot1 is the pressure angle in the transverse section. Points O1 and O2 represent
the centers of base circles of mating helical gears.

Using coordinate transformation, we represent in plane � lines of contact of helical
gears with parallel axes. The lines of contact L represented in plane � (Fig. 16.2.3) are
parallel straight lines. Plane � of a gear drive with parallel axes is the plane of action
in the fixed coordinate system rigidly connected to the housing of the gear drive.
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Figure 16.2.2: Types of contact of helical gears: (a) line contact in a gear drive with parallel axes, (b)
point contact of crossed helical gears.

We emphasize the special features of the contact lines L:

(1) We recall that Fig. 16.2.1 shows that the screw involute surface is generated by
the screw motion of line MD. The normals to the screw involute surface (at the
instant position of MD) are collinear and their orientation does not depend on the
parameter of location of the point on MD. We may consider that locally MD is a
small strip of the screw involute surface with collinear normals.

Figure 16.2.3: Illustration of contact lines on plane of action �.
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Figure 16.2.4: Line A of action of involute planar
gearing.

(2) The normal to the screw involute surface at any contact point is orthogonal to the
contact line. Therefore, the normals to the tooth surface are also orthogonal to
contact lines represented on plane �.

(3) The normals to the screw involute surface have the same constant orientation in
the plane of action �.

Figure 16.2.4 illustrates a planar involute gearing. Line T1–T2 is tangent to the base
circles with radii rb1 and rb2. Simultaneously, line T1–T2 is the common normal to the
meshing involute profiles.

We may extend the conceptual considerations of meshing of a planar involute gearing
to the case of crossed involute helical gears. The gear tooth surfaces of crossed helical
gears contact each other at a point [Fig. 16.2.2(b)], but not at a line as in the case of
helical gears with parallel axes [Fig. 16.2.2(a)]. Figure 16.2.5 shows the base cylinders
of crossed helical gears. It is obvious that the crossed base cylinders of the gears may
have a common tangent line but not a common tangent plane. There are two lines A1

and A2 that are tangent to the base cylinders and to the base helices at the same time.
We may call A1 and A2 the lines of action of crossed helical gears. Lines A1 and A2

correspond to the meshing of the respective sides of the tooth surface.
It is shown below (see Appendices 16.A and 16.B) that the design of crossed helical

gears may be accomplished by observation of a special relation between the shortest
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Figure 16.2.5: Lines of action of aligned
crossed helical gears.

center distance of the gears and the crossing angle. Such a design provides that the lines
of action intersect each other at a point that belongs to the shortest center distance. This
design is called canonical.

Figure 16.2.6 shows the lines of action for which the rules of canonical design are
not observed, and the lines of action A1 and A2 are crossed but do not intersect each
other. Each line Ai is still a tangent to both base cylinders and base helices of the crossed
helical gears. The crossing of lines of action A1 and A2 is the result of an error �γ of the
nominal value of the shaft angle γo of the gears or the result of an error �E of center
distance (see below).

Analytical Determination of Line of Action
of Crossed Helical Gears
Analytical determination of the line of action of misaligned crossed helical gears is
important for detection of edge contact. Edge contact occurs when the line of action is
shifted from the theoretical position and is located outside of the face width (Figs. 16.2.7
and 16.2.8). The derivations that are represented as follows open the way for analytical
determination of the appearance of edge contact. We have represented intersected and
crossed lines of action of crossed helical gears in Figs. 16.2.5 and 16.2.6, respectively.
In addition to this presentation, it is important to represent the lines of action in the
plane that is tangent to the base cylinder of one of the crossed helical gears, say the
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Figure 16.2.6: Lines of action in gear drive with error �γ

of shaft angle.

Figure 16.2.7: Illustration of (a) plane �1 and
contact lines on �1, and (b) line of action A1

and parameters h1 and m1.
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Figure 16.2.8: Illustration of (a) plane �2 and contact
lines on �2, and (b) line of action A1 and parameter h2.

pinion. Determination of a line of action, say A1, in plane � (Fig. 16.2.3), requires
the orientation and location.

The orientation of A1 is determined easily as the one orthogonal to the lines of contact
L. The orientation of lines of action is determined by the lead angle λb1 of the pinion
(Fig. 16.2.3). The location of A1 in plane � is determined below. Errors of alignment
(change of shaft angle and shortest center distance) cause the shift of lines of action that
might be accompanied by edge contact. The procedure for computation of the location
of the lines of action is as follows.

Case 1: Error ∆γ of the Crossing Angle (Shaft Angle)
The input parameters of the computations are the radii of base cylinders rb1 and rb2,
the lead angles λb1 and λb2 on the base cylinders, the nominal value γo of the crossing
angle, and the error �γ of the crossing angle.
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Step 1: The pressure angle α∗
on in the normal section of rack-cutters (see Appendix

16.B) is determined as

cos2 α∗
on = cos2 λb1 ± 2 cos λb1 cos λb2 cos γ ∗

o + cos2 λb2

sin2 γ ∗
o

. (16.2.1)

Here and below, the superscript “∗” indicates that a parameter of a misaligned gear
drive is considered. The upper and lower signs in Eq. (16.2.1) correspond to helical
gears with the same and opposite directions of helices.

Step 2: The pressure angle α∗
oti (i = 1, 2) in the cross section of the pinion or the gear

is determined as

sin α∗
oti = sin α∗

on

sin λbi
(i = 1, 2). (16.2.2)

Step 3: Radii r ∗
oi indicate the operating pitch cylinders of helical gears used for gen-

eration of helical gears by rack-cutters and are determined as follows:
(i) The operating pitch cylinder of a helical gear is the axode in meshing with the

generating rack-cutter (see Section 16.4). Figure 16.4.2 shows pitch cylinders of
standard helical gears generated by rack-cutters.

(ii) The sum of radii r ∗
oi (i = 1, 2) of a misaligned gear drive with crossing angle γ ∗

o

differs from the nominal value of center distance Eo = ro1 + ro2.
(iii) Radii r ∗

oi are determined as

r ∗
oi = rbi

cos α∗
oti

(i = 1, 2). (16.2.3)

Step 4: Determination of parameters h1 and h2 of the shift of the line of action.
Parameter hi (i = 1, 2) is drawn perpendicular to the shifted line of action from point
P ∗

i (i = 1, 2). Point P ∗
i is the point of intersection of a cylinder of radius r ∗

oti with the
line of center distance.

Parameters h1 and h2 are determined from the equations (see below)

h1 =
rb2 + rb1

cos α∗
ot2

cos α∗
ot1

− Eo cos α∗
ot2

sin α∗
ot2 sin γ ∗

o
sin λb1 (16.2.4)

h2 = A
B

(16.2.5)

where

A = rb1 + rb2
cos α∗

ot1

cos α∗
ot2

− Eo cos α∗
ot1 (16.2.6)

B = sin λb2 sin αot1 sin γ ∗
o + cos λb2(cos α∗

ot1 sin α∗
ot2 − cos α∗

ot2 sin α∗
ot1 cos γ ∗

o ).

(16.2.7)

The derivation of equations above is based on the following considerations:

(1) Figure 16.2.7 shows coordinate systems Sf and Sa that are rigidly connected to
the pinion. Plane �1 [Fig. 16.2.7(a)] is tangent to the base cylinder of radius rb1.
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Figure 16.2.9: Fixed coordinate systems Sf

and Sp.

Contact lines between pinion tooth surface �1 and generating rack-cutter surface
�r 1 are represented in plane �1 as parallel straight lines. The orientation of contact
lines is determined by angle λb1 [Fig. 16.2.7(b)].

(2) The line of action A1 of a misaligned gear drive is shifted with respect to the line
of action A(o)

1 of an aligned gear drive. The shift is designated by h1. The location
of point M1 on line A1 is denoted by parameter m1 [Fig. 16.2.7(b)].

(3) Figure 16.2.8 shows coordinate systems Sb and Sp that are rigidly connected to
gear 2. Plane �2 is tangent to the base cylinder of radius rb2. Lines of contact
between the gear tooth surface �2 and the generating rack-cutter surface �r 2 are
represented in plane �2. The orientation of such lines of contact is determined by
angle λb2.

Line of action A1 is represented as a shifted one. The orientation of A1 in plane
�2 [Fig. 16.2.8(b)] is determined to be orthogonal to the lines of contact, and
its location in plane �2 is represented by parameter h2. Parameter h2 has to be
determined by a computational procedure (see below).

(4) Figure 16.2.9 shows the location and orientation of coordinate systems Sp and
Sf . The computational procedure for determination of parameters h1 and h2

of the shift of lines of action in planes �1 and �2 is based on the following
considerations:

(i) Figure 16.2.7 represents point M1 of the line of action (located in plane �) by
position vector

r(1)
f (h1, m1, rb1, λb1, α

∗
ot1) (16.2.8)

where h1 and m1 are the parameters to be determined.
(ii) Using coordinate transformation from Sb via Sp to Sf we may represent the

position vector of point M2 of the line of action (located in plane �2) as

r(2)
f (h2, rb2, λb2, α

∗
ot2, γ

∗
o , Eo). (16.2.9)
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(iii) Taking into account that points M1 and M2 belong to the same line of action,
vector equation r(1)

f (M1) = r(2)
f (M2) yields a system of three linear equations

for determination of h1 and h2 and the auxiliary parameter m1.
Parameters h1 and h2 determine the shifts of the line of action in planes �1 and
�2 by Eqs. (16.2.4) and (16.2.5), respectively.

The axial displacements of the line of action with respect to the pinion and the gear
are determined as follows:

�Z1 = h1

sin λb1
(16.2.10)

�Z2 = h2

sin λb2
. (16.2.11)

Case 2: Error ∆E of the Center Distance
The determination of the shift of the line of action caused by error �E is based on a
similar procedure discussed above, taking into account the following considerations:

(i) �γ = 0 and therefore α∗
on = αon, α∗

oti = αoti (i = 1, 2).
(ii) However, the center distance due to error �E is represented as

E∗ = Eo + �E . (16.2.12)

(iii) Then, the computational procedure enables us to obtain the shifts h1(�E) and
h2(�E) caused by �E , and the corresponding axial displacements �Z1 and �Z2.

The shifts of the line of action in plane �1 caused by errors �γ and �E are repre-
sented in Figs. 16.2.10(a) and 16.2.10(b) by functions �Z1(�γ, γo) and �Z1(�E, γo),

Figure 16.2.10: Illustration of variation of the shift �Z1 of the line of action due to errors (a) �γ and
(b) �E .
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respectively. Here, γo is the nominal crossing angle. In both cases, the sensitivity of the
shift becomes very high for a nominal crossing angle γo of small value. In this case,
edge contact is inevitable due to the large shift �Z1 that requires unreasonable axial
dimensions of the gears. The reduction of shift �Z1 may be obtained (i) by changing
the lead angle λbi and regrinding one of the gears, and (ii) by modification of the tooth
surface geometry [Litvin et al., 2001c].

16.3 SIMULATION OF MESHING OF CROSSED HELICAL GEARS

The algorithm for simulation of meshing and contact of cross helical gears is based on
simulation of continuous tangency of gear tooth surfaces (see Section 9.4). The equations
of tooth surfaces �1 and �2 of the gears and the unit normals are considered in a fixed
coordinate system S f rigidly connected to the housing. The conditions of continuous
tangency are represented as follows:

r(1)
f (u1, ψ1, φ1) − r(2)

f (u2, ψ2, φ2) = 0 (16.3.1)

n(1)
f (ψ1, φ1) − n(2)

f (ψ2, φ2) = 0. (16.3.2)

Here, (ui , ψi ) (i = 1, 2) are the surface parameters, φi are the angles of gear ro-
tation, and r(i )

f is the position vector of surface �i . Vector equations (16.3.1) and
(16.3.2) yield a system of five independent nonlinear equations in six unknowns tak-
ing into account that |n(1)

f | = |n(2)
f | = 0. One of the parameters, say φ1, is chosen as

the input one, and the solution of the five nonlinear equations is an iterative pro-
cess.

The solution of five nonlinear equations discussed above is based on application of the
theorem of implicit function system existence [Korn & Korn, 1968] and is represented
by functions

{u1(φ1), ψ1(φ1), u2(φ1), ψ2(φ1), φ2(φ1)} ∈ C1 (16.3.3)

that allow us to obtain the path of contact on the gear tooth surface and the transmis-
sion function φ2(φ1). The deviations of φ2(φ1) from the theoretical value represent the
transmission errors

�φ2(φ1) = φ2(φ1) − N1

N2
φ1. (16.3.4)

The Jacobian of the system of equations provided by vector equations (16.3.1) and
(16.3.2) has to differ from zero, and this is the sign that surfaces �1 and �2 are in point
contact but not in line contact.

It was mentioned above that the existence of an edge contact of tooth surfaces �1

and �2 (instead of surface-to-surface contact) in misaligned gear drives is not excluded.
In the case of edge contact, we have surface-to-curve meshing, and the algorithm for
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simulation of meshing is determined as follows:

r(1)
f (u1(ψ1), ψ1, φ1) − r(2)

f (u2, ψ2, φ2) = 0 (16.3.5)

∂r(1)
f

∂ψ1
· n(2)

f = 0. (16.3.6)

Here, r(1)
f (u1(ψ1), ψ1, φ1) represents at φ1 = const the instantaneous position of the edge

of the pinion tooth surface that is in mesh with the surface of gear 2; r(2)
f (u2, ψ2, φ2)

represents at φ2 = const the instantaneous position of the gear tooth surface. Vector
∂r(1)

f /∂ψ1 represents the tangent to the edge of the pinion. Observation of Eqs. (16.3.5)
and (16.3.6) means that the normal to surface �2 is perpendicular to the edge of the
pinion tooth surface and the pinion edge and surface �2 are indeed in mesh. Similar
equations can be applied wherein the surface of the pinion is in mesh with the edge of
the gear tooth surface. Application of the developed computer program for TCA (Tooth
Contact Analysis) shows (i) the change of shortest center distance and crossing angle
do not cause transmission errors; and (ii) however, errors �γ and �E cause the shift
of bearing contact from the working area.

Figure 16.3.1 illustrates the shift of bearing contact on the pinion tooth surfaces from
position I to position II due to error �γ obtained for a crossed helical gear drive. The
results obtained by numerical simulation are in agreement with the results obtained by
application of the equations of the line of action.

Figure 16.3.1: Illustration of zones of contact on tooth
surface of aligned and misaligned gear drives: I and II are
zones of contact that correspond to �γ = 0 and �γ �= 0,
respectively.
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(arc sec)

(rad)

Figure 16.3.2: Function of transmission errors in a gear drive formed by an Archimedes worm and an
involute helical gear.

Numerical Example: Worm-Gear Drive
Conjugation of tooth surfaces and zero transmission error are provided in a gear drive
formed by an involute worm and an involute helical gear. Application of a worm whose
thread surface differs from an involute screw one is accompanied with transmission
errors as shown in Fig. 16.3.2. The design parameters of the gear drive are represented
in Table 16.3.1. The output of the developed TCA computer program (Fig. 16.3.2) shows
that meshing of an Archimedes worm with a helical involute gear is accompanied with
large transmission errors, and the function of transmission errors is positive instead
of negative. Only a negative function of transmission errors wherein the driven gear is
lagging with respect to the worm gear should be applied in a misaligned gear drive. Then
the contact ratio of the gear drive might be increased due to the elastic deformations
of the driven gear of the drive. The obtained results of simulation of meshing show
that meshing of an involute helical gear with a worm that differs from an involute one
should not be applied in the design.

Table 16.3.1: Design parameters of a worm and an involute helical gear

Number of threads of the worm, N1 5
Number of teeth of the gear, N2 48
Normal module, mpn 4.0 mm
Normal pressure angle, αpn 25◦

Helix angle of the worm, βp1 70◦

Helix angle of the gear, βp2 20◦

Worm face width, F1 70 mm
Gear face width, F2 30 mm
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16.4 GENERATION OF CONJUGATED TOOTH SURFACES
OF CROSSED HELICAL GEARS

Generation of a Helical Gear

A helical gear can be generated by a hob or by a shaper. Consideration of generation
of a helical gear by a rack-cutter is useful for considering conceptual aspects of gear
generation. Figure 16.4.1 shows a skew rack-cutter. The generating surface �r is a plane
[Fig. 16.4.1(a)]. The normal and transverse sections of the rack-cutter are shown in
Fig. 16.4.1(c). Angles 2αpt and 2αpn are the profile angles in the transverse and normal
sections, respectively. The relations between parameters 2αpt and 2αpn are presented
in Appendix 16.C and 16.E. The surface parameters of the rack-cutter are denoted as
ur [Fig. 16.4.1(d)] and lr [Fig. 16.4.1(a)]. Figure 16.4.1(d) shows the normal section
where αpn is the normal pressure angle, and s pn1 and s pn2 represent the tooth thickness
and the space width on the normal section, respectively.

Coordinate systems Sr and S1 are rigidly connected to the rack-cutter and the pinion
1 [Fig. 16.4.1(b)]. In the process for generation, the pinion and the rack-cutter perform

Figure 16.4.1: Schematic illustration of (a) skew rack-cutter, (b) generation by rack-cutter of a helical
gear, (c) transverse and normal sections of rack-cutter, and (d) relation of s pn1 and s pn2 in normal
section.
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related rotation and translation [Fig. 16.4.1(b)]. Plane �r of the rack-cutter and the
pinion cylinder of radius r p1 are axodes that roll over each other in relative motion.

Consider that generating plane �r is given and determination of the surface �1 of
the pinion as the envelope to �r is required. The determination of �1 is based on the
equations

r1(ur , lr , ψ1) = M1r (ψ1)rr (ur , lr ) (16.4.1)

f1(ur , lr , ψ1) = 0 (16.4.2)

where ψ1 is the generalized parameter of motion in meshing of the rack-cutter with the
helical gear. Vector function r1(ur , lr , ψ1) represents the family of rack-cutter surfaces
in coordinate system S1. Equation of meshing (16.4.2) may be determined by one of the
following alternative approaches (see Chapter 6):(

∂r1

∂ur
× ∂r1

∂lr

)
· ∂r1

∂ψ1
= 0 (16.4.3)

or

Nr · v(r 1)
r = 0 (16.4.4)

where Nr is the normal to the rack-cutter generating plane and v(r 1)
r is the relative

(sliding) velocity of the rack-cutter with respect to the pinion. Vectors Nr and v(r 1)
r are

represented in coordinate system �r (for the purpose of simplification of derivations).
Equations (16.4.1) and (16.4.2) considered simultaneously represent the pinion tooth

surface by three related parameters. Taking into account that ur and lr are linear pa-
rameters, it is easy to eliminate one of them and represent surface �i in two-parameter
form, for instance, as r1(ψ1, ur ). The generated pinion tooth surface �1 is a screw invo-
lute one. Such a surface may be represented as the one generated by a straight line MD
performing a screw motion; line MD is shown in Fig. 16.2.1 (see Section 16.2).

The lines of contact of rack-cutter surfaces �r and �1 may be represented in various
coordinate systems, for instance in coordinate system Sr . Such lines of contact (consid-
ering simultaneously vector function rr (ur , lr ) and equation of meshing (16.4.2)) are
represented in Sr by the vector function

rr (ur (ψ1), lr (ψ1)). (16.4.5)

It is useful for conceptual purposes to represent the lines of contact Lr 1 in coordinate
system Sq that is rigidly connected to a plane that is tangent to the base cylinder of
pinion 1. Then we obtain the family of contact lines as

rq(ψ1) = Mqa Mar rr (ur (ψ1), lr (ψ1)). (16.4.6)

The lines of contact Lr 1 of �r and �1 are represented in Sq as a family of parallel straight
lines. Such a family is similar to the family of lines of contact shown in Fig. 16.2.3.

Generation of Conjugated Crossed Helical Gears
Crossed helical gears perform rotation between crossed axes with a constant gear ra-
tio. The idea of generation of conjugated surfaces of pinion 1 and gear 2 is based on
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Figure 16.4.2: Schematic of generation of
crossed helical gears.

application of two generating rack-cutters that are provided with two coinciding gen-
erating planes �

(1)
r and �

(2)
r . However, planes �

(1)
r and �

(2)
r may slide over each other.

Magnitudes s pn1 and s pn2 [Fig. 16.4.1(d)] represent in the normal section the tooth thick-
nesses of the rack-cutters applied for generation of the pinion and the gear. Parameters
s pn1 and s pn2 are related as

s pn1 + s pn2 = πmpn (16.4.7)

where mpn is the normal module.
The schematic of the generation of conjugated crossed helical gears is shown in

Fig. 16.4.2. Axes z1 and z2 of pinion 1 and gear 2 are crossed and form angle γp.
The shortest distance between the axes in the case of generation of standard gears is

Ep = r p1 + r p2 (16.4.8)

where rpi (i = 1, 2) is the radius of the pitch cylinder.
During the process of generation of pinion 1, the pinion is rotated with angular

velocity ω(1) about z1, and the rack-cutter �
(1)
r is translated with velocity

v(1)
r = ω

(1)
1 × O1 P . (16.4.9)

Similarly, gear 2 is rotated with angular velocity ω2 and the rack-cutter �
(2)
r is translated

with velocity

v(2)
r = ω

(2)
1 × O2 P . (16.4.10)

Here, O1 P and O2 P are the radii of the pitch cylinders of the pinion and the gear.
Planes �1 and �2 are perpendicular to the center distance and pass through point P of
the center distance. Skew rack-cutters �

(1)
r and �

(2)
r have coinciding generating planes

that may slide over each other during the process of generation. Angular velocities ω(1)

and ω(2) are related as m12 = ω(1)/ω(2) where m12 is the gear ratio.
The represented process of generation enables us to obtain tooth surfaces �1 and �2

of the pinion and the gear that are in point contact at any instant but not in line contact.
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Rack-cutter �
(1)
r and pinion 1 tooth surface �1 are in line tangency L1r . Similarly, �

(2)
r

and �2 are also in line contact L2r . However, lines of contact L1r and L2r do not coincide
and therefore the generated crossed helical gears are in point contact at every instant
[Fig. 16.2.2(b)].

16.5 DESIGN OF CROSSED HELICAL GEARS

Direction of Helices
The mating helical gears may have helices either with the same or the opposite direction
[Figs. 16.5.1(a) and 16.5.1(b)]. The helix angles βo1 and βo2, if of opposite directions
[Fig. 16.5.1(b)], are not equal as in the case of helical gears with parallel axes. The helix
angles βo1 and βo2 and the crossing angle γo are related as

γo = |βo1 ± βo2| (16.5.1)

where the upper and lower signs correspond to gears with the same [Fig. 16.5.1(a)] and
opposite [Fig. 16.5.1(b)] direction of the helices.

Figure 16.5.1: Velocity polygons of crossed helical gears of
(a) the same and (b) the opposite direction of the helices.
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Gear Ratio
The derivation of gear ratio m12 is based on the velocity polygons of Fig. 16.5.1. The
main idea of derivation is that the sliding velocity v(12) at point P is directed along the
common tangent t–t to the helices at point P of tangency of the pitch cylinders. Then
we obtain that

m12 = ω(1)

ω(2)
= ro2 cos βo2

ro1 cos βo1
= ro2 sin λo2

ro1 sin λo1
. (16.5.2)

We emphasize that the change of the crossing angle and shortest center distance of
crossed helical gears does not cause transmission errors. Therefore the gear ratio m12

may be expressed as

m12 = ω(1)

ω(2)
= N2

N1
. (16.5.3)

However, errors of alignment mentioned above cause the shift of the bearing contact
that may result in edge contact (see Section 16.2).

Standard and Nonstandard Gears
The generation of conjugated crossed helical gears is based on application of two skew
rack-cutters with the same normal section (Fig. 16.4.1). In the case of standard gears,
planes �1 and �2 are tangent to the respective pitch cylinders of the gears. The respective
rack-cutters perform translation in planes �1 and �2. Planes �1 and �2 are tangent to
both pitch cylinders. The shortest center distance Ep is equal to the sum of radii of pitch
cylinders. The profile angle αpn of each skew rack-cutter in normal section is the same as
that of a rack-cutter applied for generation of spur gears. The operating pitch cylinders
coincide with the pitch cylinders, and the nominal crossing angle γp is determined as

γp = |βp1 ± βp2| (16.5.4)

where βp1 and βp2 are the helix angles of the pitch cylinders.
In the case of nonstandard gears, generation is also based on application of two skew

rack-cutters. The rack-cutters also have a common normal section. The operating pitch
cylinders of nonstandard gears do not coincide with the pitch cylinders of standard
gears (Fig. 16.5.2). The shortest center distance of nonstandard gears is equal to the
sum of radii of operating pitch cylinders but not to the sum of radii of pitch cylinders.

The nominal crossing angle is determined by Eq. (16.5.1) wherein angles βo1 and βo2

are the helix angles of the operating pitch cylinders.
The procedure of design of standard and nonstandard crossed helical gears is illus-

trated with numerical example 1 for standard gears and numerical examples 2 and 3
for nonstandard gears (see below).

Canonical Design
Canonical design provides related parameters of nominal values of crossing angle γo,
normal profile αpn, and center distance Eo that enable obtaining a favorable location
of lines of action A1 and A2. The lines of action intersect each other at a point P that
belongs to the line of shortest distance and is the point of tangency of the operating



P1: JTH

CB672-16 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:51

460 Involute Helical Gears with Crossed Axes

Figure 16.5.2: Pitch cylinders (a) in a standard gear drive and (b) in a nonstandard gear drive.

pitch cylinders. Observation of γo and Eo obtained in canonical design as mentioned
above avoids edge contact. Conditions of canonical design discussed for nonstandard
gears can be applied as well for the design of standard crossed helical gears.

Due to errors of crossing angle γo and shortest center distance Eo or in the case
of a special design, the relation between γo and Eo (determined for canonical de-
sign) might not be observed. Then the lines of action A1 and A2 are shifted from
the theoretical positions, A(o)

1 and A(o)
2 , and become crossed but not intersected (see

Section 16.2). If sufficient axial dimensions of gears are not provided, edge contact is
inevitable.

The authors have developed equations for determination of related parameters of
γo, αon, and Eo for canonical design, considering as given the radii of base cylinders
and lead angles on these cylinders and the normal pressure angle αon (see Appendices
16.A and 16.B). In numerical examples 1, 2, and 3 discussed below, the conditions of
canonical design presented in Appendices 16.A and 16.B are observed.

Numerical Example 1: Design of Standard Gears
The input parameters are: N1 = 12; N2 = 29; βp1 = 47.5◦; βp2 = 42.5◦; γp = 90◦;
mpn = 4.0 mm; and αpn = 25◦.
Transverse pressure angles:

αpt1 = arctan
(

tan αpn

cos βp1

)
= 34.6143◦

αpt2 = arctan
(

tan αpn

cos βp2

)
= 32.3122◦.
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Transverse modules:

mpt1 = mpn

cos βp1
= 5.9207 mm

mpt2 = mpn

cos βp2
= 5.4254 mm.

Radii of standard pitch cylinders:

r p1 = mpt1N1

2
= 35.5245 mm

r p2 = mpt2N2

2
= 78.6678 mm.

Radii of base cylinders:

rb1 = r p1 cos αpt1 = 29.2365 mm

rb2 = r p2 cos αpt2 = 66.4859 mm.

Lead angles of base cylinders:

λb1 = arctan
(

1
cos αpt1 tan βp1

)
= 48.0717◦

λb2 = arctan
(

1
cos αpt2 tan βp2

)
= 52.2445◦.

Shortest center distance:

Ep = r p1 + r p2 = 114.1923 mm.

Tooth thicknesses on pitch cylinders:

s pt1 = r p1
π

N1
= 9.3003 mm

s pt2 = r p2
π

N2
= 8.5221 mm.

Radii of addendum and dedendum cylinders:

r pa1 = r p1 + mpn = 39.5245 mm

r pa2 = r p2 + mpn = 82.6678 mm

r pd1 = r p1 − 1.25mpn = 30.5245 mm

r pd2 = r p2 − 1.25mpn = 73.6678 mm.

It is easy to verify that Eq. (16.B.10) (see Appendix 16.B) that relates the crossing
angle and the normal pressure angle for canonical design is satisfied for the standard
gear drive.
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Numerical Example 2: Approach 1 for Design of Nonstandard
Crossed Helical Gears
The discussed approach to design of nonstandard crossed helical gears is based on
the following considerations: (i) the tooth thicknesses s pt1 and s pt2 of the gears to
be designed are considered as given (s pt1 and s pt2 differ from similar parameters of
standard gears); and (ii) the design parameters λb1, λb2, rb1, rb2 are considered to be the
same as for standard gears. It is shown below that the discussed approach to design is
accompanied with a small change of the crossing angle determined for a similar design
of standard gears. The following is the explanation of the computation procedure.

Assume that the tooth thicknesses are s pt1 = 10.9568 mm and s pt2 = 9.5341 mm
which correspond to the corrections of rack-cutter settings χ1 = 0.3mpn and χ2 =
0.2mpn. Transverse pressure angles of nonstandard crossing gears are related by the
following system of equations (see Appendix 16.D):

N1 invαot1 + N2 invαot2 = b (16.5.5)

where

b = N1

(
s pt1

2r p1
+ invαpt1

)
+ N2

(
s pt2

2r p2
+ invαpt2

)
− π

and (see Appendix 16.E)

sin αot1

sin αot2
= sin λb2

sin λb1
. (16.5.6)

Using the system of two equations above, we obtain

αot1 = 36.1615◦, αot2 = 33.7277◦.

Radii of the operating pitch cylinders:

ro1 = rb1

cos αot1
= 36.2125 mm

ro2 = rb2

cos αot2
= 79.9412 mm.

Helix angles on the operating pitch cylinders:

βo1 = arctan
(

ro1

rb1 tan λb1

)
= 48.0470◦

βo2 = arctan
(

ro2

rbi tan λb2

)
= 42.9586◦.

The nonstandard crossed helical gears are generated by two rack-cutters that have
the same normal pressure angle αon determined by

αon = arctan(tan αoti cos βoi ) = 26.0398◦ (i = 1, 2).

The new normal module mon is

mon = 2roi cos βoi

Ni
= 4.0348 mm (i = 1, 2).
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The new shortest center distance is

Eo = ro1 + ro2 = 116.1537 mm.

The new crossing angle is

γo = βo1 + βo2 = 91.0055◦.

The new radii of addendum and dedendum cylinders:

roa1 = ro1 + mon = 40.2473 mm

roa2 = ro2 + mon = 83.9760 mm

rod1 = ro1 − 1.25mon = 31.1690 mm

rod2 = ro2 − 1.25mon = 74.8977 mm.

It is easy to verify that Eq. (16.B.10) is satisfied for the obtained parameters of non-
standard crossed helical gears.

Numerical Example 3: Approach 2 for Design of Nonstandard
Crossed Helical Gears
Numerical example 2 (Approach 1) of design of nonstandard gears has shown that the
crossing angle of the drive is slightly changed in comparison with the crossing angle of
a similar design of standard gears. The main goal of Approach 2 of design is to keep the
same crossing angle that is applied in a similar design of standard gears. The approach
is based on the following considerations:

(i) The assigned crossing angle γo = γp and the gear ratio m12 have to be observed.
(ii) Module mpn and normal pressure angle αpn of the common rack-cutter are given.

(iii) Settings of rack-cutter χ1 and χ2 for the pinion and the gear are applied respectively,
and the tooth thicknesses of the pinion and gear must fit each other.

The observation of the assigned crossing angle of the gear drive is satisfied by modifica-
tion of the skew angles of the rack-cutters. The computational procedure is an iterative
process accomplished as follows.

Step 1: Determination of parameters on the pitch cylinders as a function of βp1 and
βp2:

r pi = mpnNi

2 cos βpi
(i = 1, 2)

αpti = arctan
tan αpn

cos βpi
(i = 1, 2)

s pti = πmpn

2 cos βpi
+ 2χi mpn tan αpti (i = 1, 2).
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Step 2: Determination of parameters on the base cylinders:

rbi = r pi cos αpti (i = 1, 2)

λbi = arctan
1

tan βpi cos αpti
(i = 1, 2)

sbti = rbi

(
s pti

r pi
+ 2invαpti

)
(i = 1, 2).

Step 3: Determination of parameters on the operating pitch cylinders:

cos αon = (cos2 λb1 ± 2 cos λb1 cos λb2 cos γo + cos2 λb2)0.5

sin γo

roi = rbi sin λbi√
cos2 αon − cos2 λbi

(i = 1, 2)

λoi = arctan
rbi tan λbi

roi
(i = 1, 2)

αoti = arccos
rbi

roi
(i = 1, 2)

soti = roi

(
sbi

rbi
− 2invαoti

)
(i = 1, 2)

mon = 2ro1 sin λo1

N1
.

Step 4: Determination of the following functions:

f1 = rb2 sin λb2

rb1 sin λb1
− m12

f2 = sot1 sin λo1 + sot2 sin λo2 − πmon.

The iterative process for determination of βp1 and βp2 is applied as follows:
(i) Initially, in the first iteration, the applied magnitudes βp1 and βp2 are the same as in

standard design. Generally, the equations of Step 4 are not satisfied simultaneously.
(ii) In the process of iterations, βp1 and βp2 are changed and steps 1, 2, and 3 are

repeated until observation of Eqs. f1 = 0 and f2 = 0.
The computations have been applied for the following example. The settings of the

rack-cutters are χ1 = 0.3mpn, χ2 = 0.2mpn. The crossing angle γo = γp = 90◦. The
iterative process yields:

βp1 = 46.9860◦, βp2 = 42.0010◦.

Using the equations from Step 1 to Step 3 all the parameters of the gear drive can be
determined. The new center distance is

Eo = ro1 + ro2 = 115.1898 mm.

The assigned crossing angle γo = 90◦ is observed because

γo = 180◦ − λo1 − λo2 = 180◦ − 42.4631◦ − 47.5369◦ = 90.0000◦.
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16.6 STRESS ANALYSIS

The goal of stress analysis presented in this section is determination of contact and
bending stresses and the investigation of formation of the bearing contact in a crossed
helical gear drive formed by an involute helical worm that is in mesh with an involute
helical gear. A similar approach may be applied for stress analysis in a gear drive formed
by mating helical gears. The performed stress analysis is based on the finite element
method [Zienkiewicz & Taylor, 2000] and application of a general purpose computer
program [Hibbit, Karlsson & Sirensen, Inc., 1998]. The developed approach for the
finite element models is described in Section 9.5.

Numerical Example
Finite element analysis has been performed for a gear drive formed by an involute worm
and an involute helical gear. The applied design parameters are the same as those shown
in Table 16.3.1, but an involute worm and not an Archimedes’ worm is considered
in this case. Therefore, transmission errors do not occur. The output from TCA [see
Figs. 16.6.1(a) and 16.6.1(b)] and the developed approach for the finite element models
automatically builds one model for every point of contact.

Figure 16.6.2 shows a three-tooth model of an involute worm. Figure 16.6.3 shows the
finite element model of the whole worm gear drive. A three-tooth model has been applied
for finite element analysis at each chosen point of the path of contact (Fig. 16.6.4). An
angle of 60◦ has been applied to delimit the worm gear body. Elements C3D8I of first
order (enhanced by incompatible modes to improve their bending behavior) [Hibbit,
Karlsson & Sirensen, Inc., 1998] have been used to form the finite element mesh. The
total number of elements is 59,866 with 74,561 nodes. The material is steel with the
properties of Young’s Modulus E = 2.068 × 105 MPa and Poisson’s ratio of 0.29. A
torque of 40 Nm has been applied to the worm.

Figure 16.6.1: Paths of contact on (a) the worm and (b) the gear.
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Figure 16.6.2: Three-tooth model of an involute worm.

1

2

3

Figure 16.6.3: Whole worm gear drive finite element model.

466
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1

2

3

Figure 16.6.4: Finite element model with three pairs of teeth.

Figures 16.6.5 and 16.6.6 show the distribution of pressure on the worm and gear
surfaces, respectively, in a chosen point of contact. The variation of contact and bending
stresses along the path of contact has been also studied. Figures 16.6.7(a) and 16.6.7(b)
illustrate the variation of contact stresses of the pinion and the gear, respectively, using
the Von Mises criteria. Figures 16.6.8(a) and 16.6.8(b) show the evolution of bending
stresses in the pinion and the gear, respectively. Areas of severe contact stresses are
inevitable as a consequence of a crossed path of contact. The obtained results of stress
analysis show that a gear drive formed by crossed helical gears should be applied as a
light loaded gear drive only.

APPENDIX 16.A: DERIVATION OF SHORTEST CENTER DISTANCE
FOR CANONICAL DESIGN

The goal is to derive the shortest center distance considering as given parameters rb1,
λb1, rb2, λb2, and αon.

Step 1: Derivation of the equation:

cos λoi = cos λbi

cos αon
(i = 1, 2). (16.A.1)
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(Ave. Crit.: 75%)
S, Pressure

-8.935e+01
+2.500e+01
+9.553e+01
+1.661e+02
+2.366e+02
+3.071e+02
+3.776e+02
+4.482e+02
+5.187e+02
+5.892e+02
+6.598e+02
+7.303e+02
+8.008e+02
+8.714e+02

1

2

3

(MPa)

Figure 16.6.5: Distribution of pressure on the worm model.

The derivation is based on two relations between the transverse profiles and normal
profiles of a rack-cutter that yield (see Chapter 14)

tan αoti = tan αon

sin λoi
(i = 1, 2) (16.A.2)

cos αoti = tan λoi

tan λbi
(i = 1, 2). (16.A.3)

Equations (16.A.2) and (16.A.3) yield the following transformations:

(a)

1 + tan2 αon

sin2 λoi
= 1 + tan2 αoti = 1

cos2 αoti
= tan2 λbi

tan2 λoi
. (16.A.4)

Then we obtain

1 + tan2 αon

sin2 λoi
= tan2 λbi

tan2 λoi
. (16.A.5)
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(Ave. Crit.: 75%)
S, Pressure

-8.180e+01
+2.500e+01
+9.731e+01
+1.696e+02
+2.419e+02
+3.142e+02
+3.865e+02
+4.588e+02
+5.311e+02
+6.035e+02
+6.758e+02
+7.481e+02
+8.204e+02
+8.927e+02

1
2

3

(MPa)

Figure 16.6.6: Distribution of pressure on the gear model.

(b) Equation (16.A.5) yields the following transformations:

sin2 λoi + tan2 αon = cos2 λoi tan2 λbi (16.A.6)

1 − cos2 λoi + tan2 αon = cos2 λoi tan2 λbi (16.A.7)

1 + tan2 αon = cos2 λoi (1 + tan2 λbi ) (16.A.8)

1
cos2 αon

= cos2 λoi

cos2 λbi
. (16.A.9)

Finally, we obtain relation (16.A.1).

Step 2: Consider as given Eq. (16.A.1) and derive the relation between roi and rbi

taking into account that

roi tan λoi = rbi tan λbi = pi (16.A.10)

where pi is the screw parameter.
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Contact Stresses (MPa)

Contact Stresses (MPa)

Figure 16.6.7: Variation of contact stresses on (a) the worm surface and (b) the gear surface.
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Bending Stresses (MPa)

Bending Stresses (MPa)

Figure 16.6.8: Variation of bending stresses on (a) the worm surface and (b) the gear surface.
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Then we obtain

roi = rbi tan λbi

tan λoi
(16.A.11)

and

Eo = ro1 + ro2 = rb1 tan λb1

tan λo1
+ rb2 tan λb2

tan λo2
. (16.A.12)

Taking into account Eq. (16.A.1), we obtain the following final equation for Eo:

Eo = rb1 sin λb1

(cos2 αon − cos2 λb1)0.5
+ rb2 sin λb2

(cos2 αon − cos2 λb2)0.5
. (16.A.13)

APPENDIX 16.B: DERIVATION OF EQUATION OF CANONICAL
DESIGN f (γo, αon , λb1, λb2) = 0

Consider as given the equation

cos αon = cos λbi

cos λoi
(i = 1, 2) [see Eq. (16.A.1)], (16.B.1)

which yields

cos λo1

cos λo2
= cos λb1

cos λb2
(16.B.2)

and the equation

γo = |βo1 ± βo2|. (16.B.3)

Step 1: Equations of cos γo and sin γo using Eq. (16.B.3) are represented as

cos γo = cos βo1 cos βo2 ∓ sin βo1 sin βo2 (16.B.4)

sin γo = sin βo1 cos βo2 ± cos βo1 sin βo2. (16.B.5)

Step 2: The transformation of Eqs. (16.B.4) and (16.B.5) taking into account that
βoi = 90◦ − λoi yields

cos γo = sin λo1 sin λo2 ∓ cos λo1 cos λo2 (16.B.6)

sin γo = cos λo1 sin λo2 ± sin λo1 cos λo2. (16.B.7)

Step 3: The further transformation is based on Eq. (16.B.6) which yields

sin λo1 sin λo2 = cos γo ± cos λo1 cos λo2 (16.B.8)

sin2 γo cos2 αon

= cos2 λb1 sin2 λo2 ± 2 cos λb1 cos λb2 sin λo1 sin λo2 + cos2 λb2 sin2 λo1

= cos2 λb1 ± 2 cos λb1 cos λb2 sin λo1 sin λo2 + cos2 λb2 − 2 cos2 λb1 cos2 λb2

cos2 αon
.

(16.B.9)
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Step 4: Equations (16.B.8) and (16.B.9) yield the following final expression:

cos2 αon sin2 γo = cos2 λb1 ± 2 cos λb1 cos λb2 cos γo + cos2 λb2. (16.B.10)

The advantage of Eq. (16.B.10) is that it allows us to obtain the relation between
αon and γo considering as input parameters λb1 and λb2. One parameter from the pair
of parameters αon and γo has to be chosen. Equation (16.B.10) may be applied for
canonical design of standard and nonstandard crossed involute helical gears.

APPENDIX 16.C: RELATIONS BETWEEN PARAMETERS αpt AND αpn

The transverse and normal sections of a skew rack-cutter are shown in Fig. 17.7.4(b).
The derivation between parameters αpt and αpn is based on the following considera-
tions: (i) the height of profiles in the transverse and normal sections is the same; and
(ii) the distance pn and pt [Fig. 17.7.4(b)] are related by parameter βp (λp). Thus
we obtain

tan αpt = tan αpn

sin λp
= tan αpn

cos βp
. (16.C.1)

APPENDIX 16.D: DERIVATION OF EQUATION (16.5.5)

The derivation of Eq. (16.5.5) is based on the following considerations (Chapter 10):

(1) The tooth thickness (space width) of the rack-cutter measured in the cross section
along the tangent to the gear pitch circle is equal to the gear space width (tooth
thickness) on the pitch circle because the gear and rack-cutter axodes roll without
sliding. Thus we have

sot1 sin λo1 + sot2 sin λo2 = pon = π

Pon
= πmon. (16.D.1)

(2) Relations between the tooth thicknesses of involute gears measured on various
circles yield (Section 10.6)

sot1 =
[

s pt1

r p1
+ 2(invαpt1 − invαot1)

]
ro1 (16.D.2)

sot2 =
[

s pt2

r p2
+ 2(invαpt2 − invαot2)

]
ro2 (16.D.3)

where

roi = Ni moti

2
(i = 1, 2) (16.D.4)

moti = mon

sin λoi
(i = 1, 2). (16.D.5)

Equations (16.D.1) to (16.D.5) yield Eq. (16.5.5).
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APPENDIX 16.E: DERIVATION OF ADDITIONAL RELATIONS
BETWEEN αot1 AND αot2

The goal is to prove Eq. (16.5.6) and the following one:

sin αpt1

sin αpt2
= sin αot1

sin αot2
. (16.E.1)

The proof is based on the following considerations:

(i) Equation (16.A.2) yields

tan αot1

tan αot2
= sin λo2

sin λo1
. (16.E.2)

(ii) Equations

cos αoti = rbi

roi

rbi tan λbi = roi tan λoi

yield

cos αot1

cos αot2
= rb1ro2

rb2ro1
= tan λo1 tan λb2

tan λo2 tan λb1
. (16.E.3)

(iii) Equations (16.E.2) and (16.E.3) yield

sin αot1

sin αot2
= cos λo2 tan λb2

cos λo1 tan λb1
. (16.E.4)

(iv) Equations (16.E.4) and (16.A.1) yield the relation

sin αot1

sin αot2
= sin λb2

sin λb1
. (16.E.5)

(v) A similar approach yields

sin αpt1

sin αpt2
= sin λb2

sin λb1
. (16.E.6)

(vi) Equation (16.E.1) follows from Eqs. (16.E.5) and (16.E.6).
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17 New Version of Novikov–Wildhaber
Helical Gears

17.1 INTRODUCTION

Wildhaber [1926] and Novikov [1956] have proposed helical gears based on generation
by circular arc rack-cutters. The difference between the two inventions is that the gear
tooth surfaces of Wildhaber gears are in line contact and the gear tooth surfaces of
Novikov gears are in point contact. Figures 17.1.1 and 17.1.2 show the first and second
versions of Novikov gears with one and two zones of meshing, respectively.

Point contact in Novikov gears has been achieved by application of two mismatched
rack-cutters for generation of the pinion and the gear, respectively. The principle of
mismatching of generating surfaces had already been applied for generation of spiral
bevel gears and hypoid gears for localization of bearing contact before Novikov’s in-
vention was proposed. However, Novikov was the first who (i) applied mismatched
tool surfaces for generation of helical gears, and (ii) achieved reduction of contact
stresses due to small difference of curvatures of generating and generated tooth sur-
faces.

There are two weak points in Novikov design:

(i) The function of transmission errors of a misaligned gear drive is a discontinuous
linear one, and the transfer of meshing between neighboring teeth is accompanied
by high acceleration that causes a high level of vibration and noise [Litvin & Lu,
1995].

(ii) Bending stresses of Novikov gears, especially of the first design, are of large mag-
nitude.

The manufacturing of Wildhaber–Novikov gears is based on application of two mat-
ing hobs that are conjugated to the respective mismatched rack-cutters. Improvement
of bearing contact of misaligned Novikov gears is achieved by running the gears in their
own housing and lapping. This is why Novikov gears of the existing design have been
applied for low-speed transmissions only, and hardened materials and grinding of tooth
surfaces have not been applied.

Novikov–Wildhaber gears have been the subject of intensive research [Wildhaber,
1926; Novikov, 1956; Niemann, 1961; Winter & Jooman, 1961; Litvin, 1962; Wells
& Shotter, 1962; Davidov, 1963; Chironis, 1967; Litvin & Tsay, 1985; Litvin,
1989; Litvin & Lu, 1995; Litvin et al., 2000c]. New designs of helical gear drives

475
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Figure 17.1.1: Previous design of Novikov gears
with one zone of meshing.

Figure 17.1.2: Profiles of rack-cutter for Novikov gears with two zones of meshing.
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Figure 17.1.3: 3D model of new version of
Novikov–Wildhaber gears.

are now based on application of a double-crowned pinion tooth surface. Crowning
in the profile direction enables localization of the bearing contact. Crowning in the
longitudinal direction provides a predesigned parabolic function with a limited value
of maximal transmission errors [Litvin et al., 2001c]. Profile crowning but not double-
crowning was applied in the initially proposed Novikov gears (Figs. 17.1.1 and 17.1.2).
Therefore, the noise of such gears was inevitable.

A new version of Novikov–Wildhaber gears (Fig. 17.1.3) that is free of the disadvan-
tages of the existing design is presented in this chapter. The chapter covers (i) various
methods for generation of pinion and gear tooth surfaces of the new design, (ii) avoid-
ance of undercutting, and (iii) stress analysis. The proposed new version of helical gears
is based partially on the ideas that have been presented in the patent [Litvin et al., 2001c]
and in the literature [Litvin et al., 2000c, 2002d] as follows:

(1) Two mismatched parabolic rack-cutters are applied instead of rack-cutters with the
circular arc profiles proposed for Novikov–Wildhaber gears. This increases tooth
rigidity and decreases bending stresses. A reduction of contact stresses is obtained
due to the small magnitude of relative curvatures.

(2) The tooth surface of the pinion is double-crowned (in the profile and longitudinal
directions) whereas in conventional Novikov–Wildhaber gears only profile crown-
ing is provided. Crowning in the longitudinal direction is obtained by plunging
of the tool that generates the pinion. Plunging of the pinion tool is executed by a
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parabolic function and enables us to obtain a predesigned parabolic function of
transmission errors.

(3) An alternative method of obtaining of a parabolic function of transmission errors
is based on application of modified roll (see Section 17.7).

(4) The generation of pinion and gear tooth surfaces may be accomplished by a grinding
disk or a grinding worm in addition to generation by a hob. The possibility of
grinding has opened up the possibility for application of hardened tooth surfaces
with potential “distortion free” surfaces. Absorption of transmission errors caused
by misalignment (due to the existence of a proposed predesigned parabolic function
of transmission errors) reduces noise.

17.2 AXODES OF HELICAL GEARS AND RACK-CUTTER

The concept of axodes is applied when meshing and generation of helical gears are
considered. Figure 17.2.1(a) shows that gears 1 and 2 perform rotation about parallel
axes with angular velocities ω(1) and ω(2) with the ratio ω(1)/ω(2) = m12 where m12 is the
gear ratio. The axodes of the gears are two cylinders of radii r p1 and r p2 [Fig. 17.2.1(a)]

Figure 17.2.1: Axodes of pinion, gear, and
rack-cutter: (a) axodes; (b) tooth surface of a
skew rack-cutter.
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and the line of tangency of the cylinders designated as P1–P2 is the instantaneous axis
of rotation. The axodes roll over each other without sliding. Plane � is tangent to the
gear axodes; it is the axode of the rack-cutter and performs translational motion with
velocity v [Fig. 17.2.1(a)] defined as

v = ω(1) × O1 P = ω(2) × O2 P (17.2.1)

where P belongs to P1–P2.
Figure 17.2.1(b) shows the tooth surface of a rack-cutter applied for generation of

helical gears. The rack-cutter is installed in plane � and is provided with skew teeth
(the tooth surface is a cylindrical one). It is obvious from the drawings that a left-hand
rack-cutter generates a left-hand pinion and a right-hand gear. The rack-cutter shown in
Fig. 17.2.1(b) will generate a pinion and a gear whose surfaces are in line contact at every
instant. Generation of pinion and gear tooth surfaces that are in point contact requires
application of two rack-cutters with mismatched surfaces that separately generate the
pinion and the gear.

17.3 PARABOLIC RACK-CUTTERS

The geometry of rack-cutters presented in this section is the basis for the design of
tools (grinding disks, hobs, and worms) for the generation of the helical gears discussed
above.

Normal and Transverse Sections
Henceforth, we consider the normal and transverse sections of the rack-cutter tooth
surface. The normal section a–a of the rack-cutter is obtained by a plane that is per-
pendicular to plane � and whose orientation is determined by angle β [Fig. 17.2.1(b)].
The transverse section of the rack-cutter is determined as a section by a plane that has
the orientation of b–b [Fig. 17.2.1(b)].

Mismatched Parabolic Rack-Cutters
It was mentioned above that two mismatched rack-cutters are applied for separate
generation of the pinion and the gear of the new version of helical gears. Figure 17.3.1(a)
shows the profiles of the normal sections of the rack-cutters. Figures 17.3.1(b) and
17.3.1(c) show the profiles of the pinion and gear rack-cutters, respectively. Dimensions
s1 and s2 are related by module m and parameter s12 as follows:

s1 + s2 = πm (17.3.1)

s12 = s1

s2
. (17.3.2)

Here, s12 is chosen in the process of optimization, relates pinion and gear tooth thick-
nesses, and can be varied in the design to modify the relative rigidity. In a conventional
case of design, we have s12 = 1.
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Figure 17.3.1: Normal sections of pinion and gear rack-cutters: (a) mismatched profiles; (b) profiles
of pinion rack-cutter in coordinate systems Sa and Sb; (c) profiles of gear rack-cutter in coordinate
systems Se and Sk.

The profiles of the rack-cutters are parabolic curves that are in internal tangency.
Points Q and Q∗ [Fig. 17.3.1(a)] are the points of tangency of the normal profiles
of the driving and coast sides of the teeth, respectively. The common normal to the
profiles passes through point P that belongs to the instantaneous axis of rotation P1–P2

Figure 17.3.2: Parabolic profiles of rack-cutter in normal sec-
tion.



P1: JXR

CB672-17 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:58

17.3 Parabolic Rack-Cutters 481

[Fig. 17.2.1(a)]. A parabolic profile of a rack-cutter is represented in parametric form
in an auxiliary coordinate system Si (xi , yi ) as follows (Fig. 17.3.2):

xi = ui , yi = ai u 2
i (17.3.3)

where ai is the parabola coefficient. The origin of Si coincides with Q.

Pinion Parabolic Rack-Cutter
The surface of the rack-cutter is designated by �c and is derived as follows:

(i) The mismatched profiles of pinion and gear rack-cutters are represented in Fig-
ure 17.3.1(a). The pressure angles are αd for the driving profile and αc for the
coast profile. The locations of points Q and Q∗ are designated by |QP | = ld and
|Q∗ P | = lc where ld and lc are defined as

ld = πm
1 + s12

· sin αd cos αd cos αc

sin(αd + αc )
(17.3.4)

lc = πm
1 + s12

· sin αc cos αc cos αd

sin(αd + αc )
. (17.3.5)

(ii) Coordinate systems Sa and Sb are located in the plane of the normal section of the
rack-cutter [Fig. 17.3.1(b)]. The normal profile is represented in Sb by the matrix
equation

rb(uc ) = Mba ra (uc ) = Mba [uc acu 2
c 0 1]T. (17.3.6)

(iii) The rack-cutter surface �c is represented in coordinate system Sc (Fig. 17.3.3)
wherein the normal profile performs translational motion along c–c. Then we
obtain that surface �c is determined by vector function

rc (uc , θc ) = Mcb(θc )rb(uc ) = Mcb(θc )Mba ra (uc ). (17.3.7)

θ

Figure 17.3.3: For derivation of pinion rack-cutter.
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Gear Parabolic Rack-Cutter
We apply coordinate systems Se and Sk [Fig. 17.3.1(c)] and coordinate system St which
is similar to system Sc (Fig. 17.3.3). The coordinate transformation from Sk to St is
similar to the transformation from Sb to Sc . The gear rack-cutter surface is represented
by the following matrix equation:

rt (ut , θt ) = Mtk(θt )Mkere (ut ). (17.3.8)

Rack-Cutters for Modified Involute Helical Gears
The idea of mismatched rack-cutters may be extended to the design of modified involute
helical gears as follows:

(i) The rack-cutter for the pinion is applied as a parabolic one, but the rack-cutter for
the gear is a conventional one and has straight-line profiles in the normal section.

(ii) In addition to profile crowning, the pinion is crowned in the longitudinal direction
to provide a parabolic function of transmission errors (see Sections 17.6, 17.7, and
17.8).

(iii) The principle of the new design of modified involute helical gears localizes the bear-
ing contact, avoids edge contact, and reduces transmission errors (see Chapter 15).
However, the contact stresses of modified involute helical gears are larger than
those in the new version of Novikov gears.

An example of involute helical gears is presented in Section 17.10 for comparison of
stresses in the new version of Novikov–Wildhaber helical gears and modified involute
helical gears.

17.4 PROFILE-CROWNED PINION AND GEAR TOOTH SURFACES

The profile-crowned pinion and gear tooth surfaces are designated as �σ and �2, re-
spectively, whereas �1 indicates the double-crowned pinion tooth surfaces.

Generation of Σσ

Profile-crowned pinion tooth surface �σ is generated as the envelope to the pinion
rack-cutter surface �c . The derivation of �σ is based on the following considerations:

(i) Movable coordinate systems Sc (xc , yc ) and Sσ (xσ , yσ ) are rigidly connected to the
pinion rack-cutter and the pinion, respectively [Fig. 17.4.1(a)]. The fixed coordinate
system Sm is rigidly connected to the cutting machine.

(ii) The rack-cutter and the pinion perform related motions, as shown in Fig. 17.4.1(a),
where sc = r p1ψσ is the displacement of the rack-cutter in its translational motion,
and ψσ is the angle of rotation of the pinion.

(iii) A family of rack-cutter surfaces is generated in coordinate system Sσ and is deter-
mined by the matrix equation

rσ (uc , θc , ψσ ) = Mσc (ψσ )rc (uc , θc ). (17.4.1)
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Figure 17.4.1: Generation of profile-crowned tooth surfaces by application of rack-cutters: (a) for
pinion generation by rack-cutter �c ; (b) for gear generation by rack-cutter �t .

(iv) The pinion tooth surface �σ is determined as the envelope to the family of surfaces
rσ (uc , θc , ψσ ) and is represented by simultaneous consideration of vector function
rσ (uc , θc , ψσ ) and the equation of meshing

fcσ (uc , θc , ψσ ) = 0. (17.4.2)

Equation fcσ = 0 may be determined applying one of two approaches (see Section 6.1):

(a) The common normal to surfaces �c and �σ at their line of tangency must pass
through the instantaneous axis of rotation P1–P2 [Fig. 17.2.1(a)].

(b) The second approach is based on the following equation of meshing:

N(c)
c · v(cσ )

c = 0. (17.4.3)

Here, N(c)
c is the normal to �c represented in Sc , and v(cσ )

c is the relative velocity
represented in Sc .

Generation of Gear Tooth Surface Σ2

The schematic of generation of �2 is represented in Fig. 17.4.1(b). Surface �2 is repre-
sented by the following two equations considered simultaneously:

r2(ut , θt , ψ2) = M2t (ψ2)rt (ut , θt ) (17.4.4)

ft2(ut , θt , ψ2) = 0. (17.4.5)

Here, vector equation rt (ut , θt ) represents the gear rack-cutter surface �t ; (ut , θt ) are
the surface parameters of �t ; matrix M2t (ψ2) represents the coordinate transformation
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from St to S2; and ψ2 is the generalized parameter of motion. Equations (17.4.4) and
(17.4.5) represent surface �2 by three related parameters.

Necessary and Sufficient Conditions of Existence of an Envelope
to a Parametric Family of Surfaces
Such conditions are formulated in the case of profile-crowned pinion tooth surface �σ ,
as follows (see Section 6.4):

(i) Vector function rσ (uc , θc , ψσ ) of class C2 is considered.
(ii) We designate by point M(u(0)

c , θ
(0)
c , ψ (0)

σ ) the set of parameters that satisfies the
equation of meshing (17.4.2) at M as well as the following conditions [see items
(iii) to (v)].

(iii) Generating surface �c of the rack-cutter is a r egular one, and we have at M that

∂rc

∂uc
× ∂rc

∂θc
�= 0. (17.4.6)

Vectors ∂rc/∂uc and ∂rc/∂θc represent in coordinate systems Sσ tangents to coor-
dinate lines of rack-cutter surface �c . Inequality (17.4.6) means that normal N (c)

c

to surface �c differs from zero. The designations of N (c)
c indicate that the normal

to �c is represented in coordinate system Sc .
(iv) Partial derivatives of the equation of meshing (17.4.2) satisfy at M the inequality∣∣∣∣∂ fcσ

∂uc

∣∣∣∣+ ∣∣∣∣∂ fcσ

∂θc

∣∣∣∣ �= 0. (17.4.7)

(v) Singularities of surface �σ are avoided by using the procedure described in
Section 17.9.

By observation of conditions (i) to (v), the envelope �σ is a regular surface; it contacts
the generating surface �c along a line and the normal to �σ is collinear to the normal of
�c . Vector function rσ (uc , θc , ψσ) and Eq. (17.4.2) considered simultaneously represent
surface �σ in three-parameter form by three related parameters (uc , θc , ψσ).

Representation of Envelope Σσ in Two-Parameter Form
The representation of �σ in two-parameter form is based on the following considera-
tions:

(i) Assume that inequality (17.4.7) is observed because

∂ fcσ

∂θc
�= 0. (17.4.8)

(ii) The theorem of implicit function system existence [Korn & Korn, 1968] yields
that due to observation of inequality (17.4.8) equation of meshing (17.4.2) may be
solved in the neighborhood of point M by function

θc = θc (uc , ψσ ). (17.4.9)

(iii) Then, surface �σ can be represented as

Rσ (uc , ψσ ) = rσ (uc , θc (uc , ψσ ), ψσ ). (17.4.10)
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Similar representations of pinion tooth surfaces may be obtained for the case in
which inequality (17.4.7) is observed, because ∂ fcσ /∂uc �= 0, instead of inequality
(17.4.8). The pinion profile-crowned tooth surface in this case may be represented
as

Rσ (θc , ψσ ) = rσ (uc (θc , ψσ ), θc , ψσ ). (17.4.11)

Representation of a Gear Profile-Crowned Tooth
Surface in Two-Parameter Form
We recall that the profile-crowned gear tooth surface is represented in three-parameter
form by vector function r2(ut , θt , ψ2) [see Eq. (17.4.4) and equation of meshing
(17.4.5)]. A similar approach allows us to represent the gear tooth surface in two-
parameter form as R2(ut , ψ2) or as R2(θt , ψ2).

17.5 TOOTH CONTACT ANALYSIS (TCA) OF GEAR DRIVE WITH
PROFILE-CROWNED PINION

The algorithm of tooth contact analysis (TCA) for simulation of meshing provides
conditions of continuous tangency of contacting tooth surfaces of the pinion and the
gear (see Section 9.4). Two cases have been considered for simulation of meshing and
contact: (i) the pinion of the gear drive is profile-crowned, and (ii) the pinion is double-
crowned (see Sections 17.6, 17.7, and 17.8). Comparison of the output for the two cases
shows that double-crowning of the pinion reduces transmission errors as well as noise
and vibration of the gear drive. A double-crowned pinion is also favorable for avoiding
edge contact.

An example of meshing of profile-crowned pinion and gear tooth surfaces has
been investigated with the following data: N1 = 17, N2 = 77, m = 5.08 mm, s12 = 0.7,
β = 20◦, αd = αc = 25◦, ac = 0.016739 mm−1, and at = 0.0155 mm−1. The following
errors of alignment have been simulated: (i) change of center distance �E = 70 µm, (ii)
error �λ = 2 arcmin of the lead angle, and (iii) change of shaft angle �γ = 2 arcmin.
The change of shaft angle �γ means that the axes of the pinion and the gear are crossed
and the shortest distance E between the axes is displaced on a magnitude L (Fig. 17.5.1)
from the plane of symmetry of the gear drive.

Figure 17.5.1: Effect of the change of
the shaft angle on the shortest distance
between axes.
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φ

φ

Figure 17.5.2: Output of TCA of a profile-crowned gear drive: (a) path of contact with error �E
[70 µm]; (b) path of contact with error �γ [2 arcmin]; (c) functions of transmission errors with error
�γ [2 arcmin].

Combinations of L and �γ may cause the following cases of meshing and contact
inside the cycle of meshing:

(i) The bearing contact is formed by points of tangency of tooth surfaces of the pinion
and gear.

(ii) Edge contact occurs in the process of meshing wherein a curve (it is an edge of one
of the mating surfaces) is in mesh with a surface (the other mating surface).

(iii) The bearing contact is formed as the result of a combination of the meshing in
cases (i) and (ii).

Investigation of meshing in the case of edge contact is discussed in Section 9.6.
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The output of TCA has been obtained for the previous example wherein edge contact
has not occurred. The results obtained by computation are as follows:

(1) The path of contact is indeed oriented longitudinally [Figs. 17.5.2(a) and
17.5.2(b)].

(2) Error �E of the center distance does not cause transmission errors, but causes the
shift of the bearing contact.

(3) However, errors of alignment �γ and �λ cause a discontinuous linear function
of transmission errors �φ2(φσ) [Fig. 17.5.2(c)]. Therefore, the transfer of meshing
from one pair of teeth to the neighboring one is accompanied with high acceleration,
and vibration and noise become inevitable.

Noise and vibration of all types of Novikov–Wildhaber gear drives are inevitable if
only profile crowning of pinion-gear tooth surfaces is provided. This statement is true
as well for Novikov–Wildhaber gears of the existing design. Substantial reduction of
acceleration is obtained by double-crowning of the pinion that provides a parabolic
function of transmission errors as discussed in Section 9.2. Such a function is able to
absorb linear functions of transmission errors caused by misalignment. It follows from
the discussion above that design of a gear drive formed by a double-crowned pinion
and a profile-crowned gear is the precondition for reduction of noise and vibration and
localization of bearing contact.

17.6 LONGITUDINAL CROWNING OF PINION BY A PLUNGING DISK

Longitudinal crowning of the pinion tooth surface, in addition to profile crowning,
is applied for transformation of the shape of the function of transmission errors and
reduction of noise and vibration. We recall that errors of shaft angle and lead an-
gle cause a discontinuous linear function of transmission errors [see Section 17.5 and
Fig. 17.6.2(c)], and high acceleration and vibration of the gear drive become inevitable.
Generation of the pinion by a plunging disk enables avoidance of this defect.

Application of a Disk-Shaped Tool
Figure 17.6.1 shows the generating disk and the pinion in the 3D-space. The surface of
the disk is a surface of revolution and is conjugated to the profile-crowned surface of
the pinion. The profile-crowned surface �σ of the pinion is a helicoid and is determined
as the envelope to the parabolic rack-cutter (see Section 17.4).

It is assumed that during the process of generation of the pinion, the pinion performs
a screw motion about its axis and is plunged with respect to the generating disk that is
held at rest. The plunging motion of the pinion is performed along the shortest center
distance between the axes of the disk and the pinion. The plunging motion is executed
by a parabolic function (see below). The generating disk performs rotation about its
axis, but the angular velocity of rotation is not related to the process of generation. It
is assumed that the two components of pinion screw motion and the plunging motion
are provided to the pinion. However, one or two of these three components of motions
may be provided to the generating disk but not to the pinion.
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Figure 17.6.1: Generation of pinion by disk.

Details of the developed approach are as follows:

(i) The profile-crowned surface �σ of the pinion is considered as given.
(ii) A disk-shaped tool �D that is conjugated to �σ is determined [Fig. 17.6.2(a)] (see in

addition Chapter 24). The axes of the disk and pinion tooth surface �σ are crossed
and the crossing angle γDp is equal to the lead angle on the pinion pitch cylinder
[Fig. 17.6.2(b)]. The nominal center distance EDp [Fig. 17.6.2(a)] is defined as

EDp = rd 1 + ρD (17.6.1)

where rd 1 is the dedendum radius of the pinion and ρD is the generating disk radius.
(iii) Determination of disk surface �D is based on the following procedure (see

Chapter 24):
Step 1: Disk surface �D is a surface of revolution. Therefore, there is such a line
Lσ D [Fig. 17.6.2(c)] of tangency of �σ and �D that the common normal to �σ

and �D at each point of Lσ D passes through the axis of rotation of the disk (see
Chapter 24). Figure 17.6.2(c) shows line Lσ D obtained on surface �D. Rotation
of Lσ D about the axis of �D enables representation of surface �D as the family of
lines Lσ D.
Step 2: It is obvious that screw motion of disk �D about the axis of pinion tooth
surface �σ provides a surface that coincides with �σ [Fig. 17.6.2(d)].
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Figure 17.6.2: Determination of disk surface �D: (a) and (b) installment of generating disk; (c) line
Lσ D of tangency of surfaces �σ and �D; (d) illustration of generation of surface �τ by disk surface
�D.

(iv) Our goal is to obtain a double-crowned surface �1 of the pinion, and this is accom-
plished by providing a combination of screw and plunging motions of the disk and
the pinion. The generation of a double-crowned pinion tooth surface is illustrated
in Fig. 17.6.3 and is accomplished as follows:
(1) Figures 17.6.3(a) and 17.6.3(b) show two positions of the generated double-

crowned pinion with respect to the disk. One of the two positions with center
distance E (0)

Dp is the initial one; the other with EDp(ψ1) is the current position.

The shortest distance E (0)
Dp is defined by Eq. (17.6.1).

(2) Coordinate system SD is rigidly connected to the generating disk [Fig.
17.6.3(c)] and is considered fixed.

(3) Coordinate system S1 of the pinion performs a screw motion and is plunged
with respect to the disk. Auxiliary systems Sh and Sq are used for better il-
lustration of these motions in Fig. 17.6.3(c). Such motions are described as
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Figure 17.6.3: Generation of double-crowned pinion surface �1 by a plunging disk: (a) initial positions
of pinion and disk; (b) schematic of generation; (c) applied coordinate systems.

follows. Screw motion is accomplished by two components: (a) translational
displacement l p that is collinear to the axis of the pinion, and (b) rotational
motion ψ1 about the axis of the pinion [Figs. 17.6.3(b) and 17.6.3(c)]. The
magnitudes l p and ψ1 are related through the screw parameter p of the pinion
as

l p = pψ1. (17.6.2)

Plunging motion is accomplished by a translational displacement a pl l 2
p along

the shortest distance direction [Fig. 17.6.3(c)]. Such motion allows us to define
the shortest distance EDp(ψ1) [Figs. 17.6.3(b) and 17.6.3(c)] as a parabolic
function

EDp(ψ1) = E (0)
Dp − a pl l 2

p. (17.6.3)

The translational displacements l p and a pl l 2
p are represented as displacement

of system Sq with respect to system Sh. The same translational displacements
are performed by system S1 which performs rotation of angle ψ1 with respect
to system Sq .

(4) The pinion tooth surface �1 is determined as the envelope to the family of disk
surfaces �D generated in the relative motion between the disk and the pinion.
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Figure 17.7.1: Generation of pinion by worm.

17.7 GENERATION OF DOUBLE-CROWNED PINION BY A WORM

Figure 17.7.1 shows a single-thread generating worm and the pinion in 3D-space. The
worm surface shown in Fig. 17.7.1 belongs to the same thread of the worm. Details of
the developed approach are given below.

Worm Installment
The installment of the generating worm with respect to the pinion may be represented
on the basis of meshing of two helicoids. Figure 17.7.2 illustrates the meshing of two
left-hand helicoids, which represent the generating worm and the pinion generated by
the worm, respectively. Figure 17.7.2 yields that the crossing angle is

γwp = λp + λw (17.7.1)

where λp and λw are the lead angles on the pitch cylinders of the worm and the pinion.
Figure 17.7.2 shows that the pitch cylinders of the worm and the pinion are in tan-

gency at point M which belongs to the shortest distance between the crossed axes. The
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Figure 17.7.2: Installment of generating worm.

velocity polygon at M satisfies the relation

v(w) − v(p) = µit . (17.7.2)

Here, v(w) and v(p) are the velocities of the worm and the pinion at M; it is the unit
vector directed along the common tangent to the helices; and µ is the scalar factor.
Equation (17.7.2) indicates that the relative velocity at point M is collinear to the unit
vector it .

Determination of Worm Thread Surface Σw

In order to get the same pinion tooth surface �σ that is generated by rack-cutter surface
�c , the generation of �w can be accomplished by considering that three surfaces �c , �σ ,
and �w are simultaneously in meshing. Figure 17.7.3 shows the axodes of these three
surfaces, and for the purpose of better illustration the shortest distance between the
pinion and worm axodes is extended. Plane � represents the axode of the rack-cutter.
Surface �w is obtained using the following steps:

Step 1: Parabolic tooth surface �c of the rack-cutter is considered as given.
Step 2: A translational motion of rack-cutter surface �c , which is perpendicular to

the axis of the pinion, and rotational motion of the pinion provide surface �σ as an
envelope to the family of surfaces of �c (see Section 17.4). Velocity v1 (Fig. 17.7.3) of
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Figure 17.7.3: For illustration of axodes of worm, pinion, and rack-cutter.

the rack-cutter corresponds to rotation of the pinion with angular velocity ω(p). The
relation between v1 and ω(p) is defined as

v1 = ω(p)r p (17.7.3)

where r p is the radius of the pinion pitch cylinder.
Step 3: An additional motion of surface �c with velocity vaux along direction t−t of

skew rack-cutter teeth (Fig. 17.7.3) is performed and this motion does not affect the
generation of surface �σ . Vector equation v2 = v1 + vaux allows us to obtain velocity
v2 of rack-cutter �c in a direction that is perpendicular to the axis of the worm. Then,
we may represent the generation of worm surface �w by rack-cutter �c considering
that the rack-cutter performs translational motion v2 while the worm is rotated with
angular velocity ω(w). The relation between v2 and ω(w) is defined as

v2 = ω(w)rw (17.7.4)

where rw is the radius of the worm pitch cylinder.
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Figure 17.7.4: Contact lines Lcσ and Lcw corresponding to meshing of rack-cutter �c with pinion and
worm surfaces �σ and �w , respectively.

Worm surface �w is generated as the envelope to the family of rack-cutter surfaces
�c .

Step 4: The discussion above enables us to verify simultaneous generation of profile-
crowned pinion tooth surface �σ and worm thread surface �w by rack-cutter surface
�c . Each of the two generated surfaces �σ and �w are in line contact with rack-cutter
surface �c . However, the contact lines Lcσ and Lcw do not coincide but rather intersect
each other as shown in Fig. 17.7.4. Here, Lcσ and Lcw represent the lines of contact
between �c and �σ , and between �c and �w, respectively. Lines Lcσ and Lcw are
obtained for a chosen value of related parameters of motion between �c , �σ , and �w.
Point N of intersection of lines Lcw and Lcσ (Fig. 17.7.4) is the common point of
tangency of surfaces �c , �σ , and �w.

Profile Crowning of Pinion
Profile-crowned pinion tooth surface �σ has been previously obtained by using rack-
cutter surface �c . Direct derivation of generation of �σ by the worm �w may be ac-
complished as follows:

(a) Consider that worm surface �w and pinion tooth surface �σ perform rotation
between their crossed axes with angular velocities ω(w) and ω(p). It follows from
previous discussions that �w and �σ are in point contact and N is one of the
instantaneous points of contact of �w and �σ (Fig. 17.7.4).

(b) The concept of direct derivation of �σ by �w is based on the two-parameter
enveloping process (see Section 6.10). The process of such enveloping is based
on application of two independent sets of parameters of motion [Litvin & Seol,
1996]:

(i) One set of parameters relates the angles of rotation of the worm and the pinion
as

mwp = ω(w)

ω(p)
= Np (17.7.5)

where the number Nw of worm threads is considered as Nw = 1, and Np is
the number of teeth of the pinion.

(ii) The second set of parameters of motion is provided as a combination of two
components: (1) translational motion �sw of the worm that is performed
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Figure 17.7.5: Schematic of generation: (a) without worm plunging; (b) with worm plunging.

collinear to the axis of the pinion [Fig. 17.7.5(a)], and (2) small rotational
motion of the pinion about the pinion axis determined as

�ψp = �sw

p
(17.7.6)

where p is the screw parameter of the pinion.

Analytical determination of a surface generated as the envelope to a two-parameter
enveloping process is presented in Section 6.10.

The schematic generation of �σ by �w is shown in Fig. 17.7.5(a) wherein the shortest
center distance is shown as an extended one for the purpose of better illustration. In the
process of meshing of �w and �σ , the worm surface �w and the profile-crowned pinion
surface perform rotation about crossed axes. The shortest distance is executed as

Ewp = r p + rw. (17.7.7)

Surfaces �w and �σ are in point tangency. Feed motion of the worm is provided as a
screw motion with the screw parameter of the pinion. Designations in Fig. 17.7.5(a)
indicate (1) M1 and M2 are points on pitch cylinders (these points do not coincide with
each other because the shortest distance is illustrated as extended); (2) ω(w) and ω(p) are
the angular velocities of the worm and profile-crowned pinion in their rotation about
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crossed axes; (3) �sw and �ψp are the components of the screw motion of the feed
motion; and (4) rw and r p are the radii of pitch cylinders.

Double Crowning of Pinion
We have presented above the generation by a worm of a profile-crowned surface �σ of
the pinion. However, our final goal is the generation by a worm of a double-crowned
surface �1 of the pinion. Two approaches are proposed for this purpose:

WORM PLUNGING. Additional pinion crowning (longitudinal crowning) is provided
by plunging of the worm with respect to the pinion which is shown schematically in
Fig. 17.7.5(b). Plunging of the worm in the process of pinion generation is performed as
variation of the shortest distance between the axes of the grinding worm and the pinion.
The instantaneous shortest center distance Ewp(�sw) between the grinding worm and
the pinion is executed as [Fig. 17.7.5(b)]:

Ewp(�sw) = E (0)
wp − a pl (�sw)2. (17.7.8)

Here, �sw is measured along the pinion axis from the middle of the pinion; apl is
the parabola coefficient of the function apl (�sw)2; and E (0)

wp is the nominal value of
the shortest distance defined by Eq. (17.7.7). Plunging of the worm with observation of
Eq. (17.7.8) provides a parabolic function of transmission errors in the process of mesh-
ing of the pinion and the gear of the proposed new version of the Novikov–Wildhaber
helical gear drive.

MODIFIED ROLL OF FEED MOTION. Conventionally, the feed motion of the worm is pro-
vided by observation of relation (17.7.6) between components �sw and �ψp. For the
purpose of pinion longitudinal crowning, the following function �ψp(�sw) is observed:

�ψp(�sw) = �sw

p
+ amr (�sw)2 (17.7.9)

where amr is the parabola coefficient of the parabolic function in Eq. (17.7.9). Modified
roll motion is provided to the worm instead of worm plunging. Application of func-
tion �ψp(�sw) enables us to modify the pinion tooth surface and provide a parabolic
function of transmission errors of the proposed gear drive.

The derivation of double-crowned surface �1 of the pinion by application of both
previously mentioned approaches is based on determination of �1 as a two-parameter
enveloping process:

Step 1: We consider that surface �w is determined as the envelope to the rack-cutter
surface �c . The determination of �w is a one-parameter enveloping process.

Step 2: Double-crowned surface �1 of the pinion is determined as an envelope of a
two-parameter enveloping process by application of the following equations:

r1(uw, θw, ψw, sw) = M1w(ψw, sw)rw(uw, θw) (17.7.10)

Nw · v(w1,ψw)
w = 0 (17.7.11)

Nw · v(w1,sw)
w = 0. (17.7.12)
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Here, (uw, θw) are the worm surface parameters, and (ψw, sw) are the generalized pa-
rameters of motion of the two-parameter enveloping process. Vector equation (17.7.10)
represents the family of surfaces �w of the worm in coordinate system S1 of the pin-
ion. Equations (17.7.11) and (17.7.12) represent two equations of meshing. Vector Nw

is the normal to the worm tooth surface �w and is represented in system Sw. Vector
v(w1,ψw)

w represents the relative velocity between the worm and pinion determined un-
der the condition that parameter ψw of motion is varied and the other parameter sw

is held at rest. Vector v(w1,sw)
w is determined under the condition that parameter sw is

varied and the other parameter of motion ψw is held at rest. Both vectors of relative
velocity are represented in coordinate system Sw. Vector equations (17.7.10), (17.7.11),
and (17.7.12) (considered simultaneously) determine a double-crowned pinion tooth
surface obtained by a two-parameter enveloping process (see Section 6.10).

17.8 TCA OF A GEAR DRIVE WITH A DOUBLE-CROWNED PINION

Simulation of meshing of a gear drive with a double-crowned pinion is investigated
by application of the same algorithm discussed in Section 17.5 for a gear drive with a
profile-crowned pinion and gear tooth surfaces. The TCA has been performed for the
following cases:

(1) The new version of the Novikov–Wildhaber helical gear drive.
(2) The modified involute helical gear drive, whose design is based on the following

ideas: (i) a pinion rack-cutter with a parabolic profile and a conventional gear rack-
cutter with a straight profile are applied for the generation of the pinion and the
gear, respectively; and (ii) the pinion of the gear drive is double-crowned.

The applied design parameters are shown in Table 17.8.1 for both the new version
of the Novikov–Wildhaber gear drive (case 1) and the modified involute helical gear

Table 17.8.1: Design parameters

Number of teeth of the pinion, N1 17
Number of teeth of the gear, N2 77
Module, m 5.08 mm
Driving-side pressure angle, αd 25◦

Coast-side pressure angle, αc 25◦

Helix angle, β 20◦

Parameter of rack-cutter, b 0.7
Face width 90 mm
Radius of the worm pitch cylinder, rw 98 mm

Parabolic coefficient of pinion rack-cutter(a), ac 0.016739 mm−1

Parabolic coefficient of gear rack-cutter(a), at 0.0155 mm−1

Parabolic coefficient of plunging(a), a pl 0.00005 mm−1

Parabolic coefficient of pinion rack-cutter(b), ac 0.016739 mm−1

Parabolic coefficient of gear rack-cutter(b), at 0.0 mm−1

Parabolic coefficient of plunging(b), a pl 0.0000315 mm−1

(a) Novikov–Wildhaber helical gear drive.
(b) Modified involute helical gear drive.



P1: JXR

CB672-17 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:58

498 New Version of Novikov–Wildhaber Helical Gears

(arc sec)

(rad)

φ

φ

Figure 17.8.1: Output of TCA for a gear drive wherein the pinion is generated by plunging of the
grinding worm: (a) path of contact and (c) function of transmission errors for the new version of the
Novikov–Wildhaber helical gear drive; (b) path of contact for the modified involute helical gear drive.

drive (case 2). The same parabolic coefficient of profile crowning for the pinion rack-
cutter ac has been used for both the new version of the Novikov–Wildhaber gear drive
and the modified involute helical gear drive. The parabolic coefficient of longitudinal
crowning a pl used in each case provides a limited error of 8 arcsec of the predesigned
function of transmission errors for a gear drive without errors of alignment. Figures
17.8.1(a) and 17.8.1(b) show the path of contact for cases (1) and (2), respectively.
Figure 17.8.1(c) shows the function of transmission errors for case (1). The function of
transmission errors for case (2) is similar and also provides a maximum transmission
error of 8 arcsec. The TCA output shows that a parabolic function of transmission
errors is indeed obtained in the meshing of the pinion and the gear due to application
of a double-crowned pinion.

The approaches chosen for TCA cover application of (i) a disk-shaped tool (Sec-
tion 17.6), (ii) a plunging worm (Section 17.7), and (iii) modified roll of feed motion
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Figure 17.8.2: Influence of errors of alignment in the shift of the path of contact for a Novikov–
Wildhaber helical gear drive wherein the pinion is generated by plunging of the generating worm:
(a) with error �E [70 µm]; (b) with error �γ [3 arcmin]; (c) with error �λ [3 arcmin]; (d) with
�γ + �λ1 = 0 arcmin.

(Section 17.7). These approaches yield almost the same output of TCA. The simulation
of meshing is performed for the following errors of alignment: (i) change of center
distance �E = 70 µm, (ii) change of shaft angle �γ = 3 arcmin, (iii) error �λ = 3
arcmin, and (iv) combination of errors �γ and �λ as �γ + �λ = 0.

The results of TCA accomplished for the design parameters represented in
Table 17.8.1 are as follows:

(1) Figures 17.8.1(a) and 17.8.1(b) show that the paths of contact of aligned gear
drives are oriented longitudinally in both cases of design Novikov–Wildhaber
gears and modified helical gears. Deviation from the longitudinal direction is less
for modified involute helical gear drives in comparison with the new version of
the Novikov–Wildhaber helical gear drive. However, the advantage of the new
Novikov–Wildhaber gear drive is the reduction of stresses (see Section 17.10).

(2) Figures 17.8.2(a), 17.8.2(b), and 17.8.2(c) show the shift of the paths of contact
caused by errors of alignment �E , �γ , and �λ, respectively. The shift of paths of
contact caused by �γ may be compensated by correction �λ1 of the pinion (or �λ2

of the gear). Figure 17.8.2(d) shows that the location of the path of contact can be
restored by correction of �λ1 of the pinion by taking �γ + �λ1 = 0. This means
that correction of �λ1 can be used for the restoration of the location of the path
of contact. Correction of �λ1 or �λ2 may be applied in the process of generation
of the pinion or the gear, respectively.
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It was previously mentioned (see Section 17.5) that double crowning of the pinion
provides a predesigned parabolic function of transmission errors. Therefore, linear func-
tions of transmission errors caused by �γ , �λ, and other errors are absorbed by the
predesigned parabolic function of transmission errors �φ2(φ1). The final function of
transmission errors �φ2(φ1) remains a parabolic one. However, increase of the magni-
tude of errors �γ and �λ may result in the final function of transmission errors �φ2(φ1)
becoming a discontinued one. In such a case, the predesigned parabolic function �φ2(φ1)
has to be of larger magnitude or it becomes necessary to limit the range of �γ , �λ, and
other errors.

17.9 UNDERCUTTING AND POINTING

The pinion of the drive is more sensitive to undercutting than the gear because the pinion
has a smaller number of teeth.

Undercutting
Avoidance of undercutting is applied to pinion tooth surface �σ and is based on the
following ideas:

(i) The appearance of singular points on generated surface �σ is the warning that the
surface may be undercut in the process of generation [Litvin, 1989].

(ii) Singular points on surface �σ are generated by regular points on the generating
surface �c when the velocity of a contact point in its motion over �σ becomes
equal to zero [Litvin, 1989; Litvin, 1994]:

v(σ )
r = v(c)

r + v(cσ ) = 0. (17.9.1)

(iii) Equation (17.9.1) and differented equation of meshing

d
dt

[ f (uc , θc , ψσ )] = 0 (17.9.2)

allow us to determine a function

F (uc , θc , ψσ ) = 0 (17.9.3)

that relates parameters uc , θc , and ψσ at a point of singularity of surface �σ .

The limitation of generating surface �c for avoidance of singularities of generated
surface �σ is based on the following procedure:

(1) Using equation of meshing fσc (uc , θc , ψσ ) = 0 between the rack-cutter and the
pinion, we may obtain in plane of parameters (uc , θc ) the family of contact lines of
the rack-cutter and the pinion. Each contact line is determined for a fixed parameter
of motion ψσ .

(2) The sought-for limiting line L [Fig. 17.9.1(a)] that limits the rack-cutter surface
is determined in the space of parameters (uc , θc ) by simultaneous consideration
of equations fσc = 0 and F = 0 [Fig. 17.9.1(a)]. Then we can obtain the limiting
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(mm)θ

(mm)

Figure 17.9.1: Contact lines Lσc and limiting line L: (a) in plane (uc , θc ), and (b) on surface �c .

line L on the surface of the rack-cutter [Fig. 17.9.1(b)]. The limiting line L on the
rack-cutter surface is formed by regular points of the rack-cutter, but these points
will generate singular points on the pinion tooth surface.

Limitations of the rack-cutter surface by L enables us to avoid singular points on the
pinion tooth surface. Singular points on the pinion tooth surface can be obtained by
coordinate transformation of line L on rack-cutter surface �c to surface �σ .

Pointing
Pointing of the pinion means that the width of the topland becomes equal to zero.
Figure 17.9.2(a) shows cross sections of the pinion and the pinion rack-cutter. Point
Ac of the rack-cutter generates the point Aσ that is the limiting point of the cross
section of the pinion tooth surface which is still free of singularities. Point Bc of the
rack-cutter generates point Bσ of the pinion profile. Parameter sa indicates the chosen
width of the pinion topland. Parameter αt indicates the pressure angle at point Q.
Parameters h1 and h2 indicate the limitation of location of limiting points Ac and Bc

of the rack-cutter profiles. Figure 17.9.2(b) shows functions h1(N1) and h2(N1) (N1 is
the pinion tooth number) obtained for the following data: αd = 25◦, β = 20◦, parabola
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Figure 17.9.2: Permissible dimensions
h1 and h2 of rack-cutter: (a) cross sec-
tions of pinion and rack-cutter; (b) func-
tions h1(N1) and h2(N1).

coefficient of pinion rack-cutter ac = 0.016739 mm−1, sa = 0.3m, parameter s12 = 1.0
[see Eq. (17.3.2)], and module m = 1 mm. Functions h1(N1) and h2(N2) are obtained
as discussed in Section 15.8.

17.10 STRESS ANALYSIS

Stress analysis and investigation of formation of bearing contact have been performed:
(i) for the proposed new version of Novikov–Wildhaber, and (ii) for a gear drive with
modified involute helical gears. The second type of gearing has been proposed by patent
[Litvin et al., 2001c] and is formed by a double-crowned helical pinion and a conven-
tional involute helical gear. The second type of gear drive has been predesigned with a
parabolic function of transmission errors, similar to the function of transmission errors
of the proposed version of Novikov–Wildhaber gear drives (see Section 17.8).

The difference between the two types of gear drives that have been investigated is that
the Novikov–Wildhaber gear drives are generated by two parabolic rack-cutters that
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are in internal tangency, whereas the modified involute helical gears are generated by
application of two rack-cutters that are in external tangency. The pinion rack-cutter has
a parabolic profile and the gear rack-cutter is a conventional one and has a conventional
straight-line profile. Comparison of obtained bending and contact stresses confirms sev-
eral advantages of the new version of Novikov–Wildhaber gear drives. The performed
stress analysis is based on the finite element method [Zienkiewicz & Taylor, 2000] and
application of a general computer program [Hibbit, Karlsson & Sirensen, Inc., 1998].

Development of Finite Element Models
The approach followed for finite element models is summarized in Section 9.5 and has
the following characteristics:

(i) Finite element models of the gear drive are automatically obtained for any position
of pinion and gear obtained from tooth contact analysis (TCA). Stress convergence
is assured because there is at least one point of contact between contacting surfaces.

(ii) Assumption of load distribution in the contact area is not required because the al-
gorithm of contact of the general computer program [Hibbit, Karlsson & Sirensen,
Inc., 1998] will determine it by application of torque to the pinion, whereas the
gear is considered at rest.

(iii) Finite element models of any number of teeth can be obtained. As an example,
Figure 17.10.1 shows a whole gear drive finite element model. However, three- or

Figure 17.10.1: Whole gear drive finite
element model.
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Figure 17.10.2: Finite element model with three pairs of teeth.

Figure 17.10.3: Contact and bending stresses at the middle point of the path of contact on the pinion
tooth surface for a Novikov–Wildhaber gear drive wherein the generation is performed by plunging of
the grinding worm.



P1: JXR

CB672-17 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 0:58

17.10 Stress Analysis 505

Figure 17.10.4: Contact and bending stresses at the middle point of the path of contact on the pinion
tooth surface for a modified involute helical gear drive wherein the generation is performed by plunging
of the grinding worm.

five-tooth models are more adequate for consideration of a more refined mesh
that will allow the contact ellipses to be determined accurately. The use of sev-
eral pairs of contacting teeth in the finite element models has the following
advantages:
(a) Boundary conditions are far enough from the loaded areas of the teeth.
(b) Simultaneous meshing of two pairs of teeth can occur due to the elasticity of

surfaces. Therefore, the load transition at the beginning and at the end of the
path of contact can be studied.

Numerical Example
Finite element analyses have been performed for the following cases:

(1) the new version of the Novikov–Wildhaber helical gear drive
(2) a modified involute helical gear drive.

The applied design parameters are shown in Table 17.8.1 (see Section 17.8). The output
of TCA [see Figs. 17.8.1(a) and 17.8.1(b)] allows the designer to design the finite element
model at any point of contact.
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Contact Stresses (MPa)

Contact Stresses (MPa)

φ

φ (rad)

(rad)

Figure 17.10.5: Variation of functions of contact stresses during the cycle of meshing for the two gear
drives of design (1) and (2) for (a) the pinion and (b) the gear.

A three-tooth model is applied for each chosen point of the path of contact. Elements
C3D8I [Hibbit, Karlsson & Sirensen, Inc., 1998] of first order (enhanced by incompati-
ble modes to improve their bending behavior) are used to form the finite element mesh.
The total number of elements is 71,460 with 87,360 nodes. The material is steel with
the properties of Young’s Modulus E = 2.068 × 105 MPa and Poisson’s ratio of 0.29.
A torque of 500 Nm is applied to the pinion in both cases. Figure 17.10.2 shows the
finite element mesh for case (1) at the mean contact point. Figures 17.10.3 and 17.10.4
show the maximum contact and bending stresses obtained at the mean contact point
for cases (1) and (2), respectively.
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Bending Stresses (MPa)
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Figure 17.10.6: Variation of functions of bending stresses during the cycle of meshing for the two gear
drives of design (1) and (2) for (a) the pinion and (b) the gear.

Figures 17.10.5 and 17.10.6 illustrate the variation of contact and bending stresses,
respectively, for both cases. A substantial reduction of contact stresses has been achieved
by using the new version of Novikov–Wildhaber helical gear drive in comparison with
the gear drive of modified helical gears. Bending stresses are reduced as well. The results
obtained confirm reduction of stresses with the proposed Novikov–Wildhaber gear drive
in comparison with the modified involute helical gear drive.
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18 Face-Gear Drives

18.1 INTRODUCTION

A conventional face-gear drive is formed by an involute spur pinion and a conjugated
face-gear (Fig. 18.1.1). Such a gear drive may be applied for transformation of rotation
between intersected and crossed axes. An important example of application of a face-
gear drive with intersected axes is in the helicopter transmission (Fig. 18.1.2).

The manufacturing of face-gears by a shaper was invented by the Fellow Corporation.
The basic idea of generation is based on simulation of meshing of the generating shaper
with the face-gear being generated as the meshing of the pinion of the drive with the
face-gear. In the process of generation, the surfaces of the teeth of the shaper and the
face-gear are in line contact at every instant. However, when the shaper is exactly
identical to the pinion of the face-gear drive, the generated face-gear drive becomes
sensitive to misalignment. This causes an undesirable shift of the bearing contact and
even separation of the surfaces. Therefore, it is necessary to provide an instantaneous
point contact between the tooth surfaces of the pinion and the face-gear instead of a
line contact. Then, the bearing contact will be localized and the face-gear drive will
be less sensitive to misalignment. Point contact between the pinion and face-gear tooth
surfaces is provided by application of a shaper of number of teeth Ns > Np where Np is
the number of teeth of the pinion of the drive (see Section 18.4).

The geometry, design, manufacturing, and recently stress analysis of face-gear drives
were subjects of research of many researchers (Davidov [1950], Litvin et al. [1992,
2000a, 2002b], Handschuh et al. [1996]). A method of grinding of face-gears by a
worm of a special shape [Litvin et al., 2000a] has been recently invented (Fig. 18.1.3).
Grinding of the spur pinion of the drive does not cause difficulties. The possibility
of grinding of the face-gear and the pinion of the drive enables us to harden the tooth
surfaces and to increase the permissible contact stresses. The worm shown in Fig. 18.1.3
may be also applied as the basis of design of a hob for generation of face-gears (instead
of their generation by a shaper). The number of turns of the thread of the worm has to
be limited to avoid appearance of singularities on the worm surface (see Section 18.14).
Threads with singularities are indicated in Fig. 18.1.3 by “A.”

The structure of a face-gear tooth is shown in Fig. 18.1.4(a). The surface of the tooth
consists of two parts: (i) the working part formed by lines L2s of tangency of the shaper
and the face-gear, and (ii) the fillet surface generated by the edge of the top of the

508
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Figure 18.1.1: Face-gear drive in 3D-space.

Rotor shaft output

Sun gear

NOTARTM

output

Combining gear

Driving spur pinion

Engine input
Face-gears

Figure 18.1.2: Application of face-gear drive in helicopter transmission.

A

Figure 18.1.3: Illustration of worm applied for grinding of face-gears. Designation “A” indicates thread
surfaces with singularities.
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Figure 18.1.4: Structure of face-gear tooth: (a) contact lines L2s and fillet; (b) cross sections of face-gear
tooth.

shaper. Line L∗ is the common line of the fillet and the working part of the surface.
Figure 18.1.4(b) shows the cross sections of the tooth surface.

While designing a face-gear drive, it is necessary to avoid possible undercutting in
area “A” and tooth pointing in area “B” [Fig. 18.1.4(a) and Sections 18.6 and 18.7].

18.2 AXODES, PITCH SURFACES, AND PITCH POINT

The concepts of axodes, pitch surfaces, and pitch point are important for the visualiza-
tion of meshing of face-gear drives.

Axodes
Consider that rotation is performed between the intersected axes Oa–Ob that form
angle γ [Fig. 18.2.1(a)]. The gear ratio is

m12 = ω(1)

ω(2)
= N2

N1
(18.2.1)

where ω(i ) and Ni are the angular velocity and the number of teeth, respectively, for the
pinion (i = 1) and the face-gear (i = 2).
The axodes are two cones of semiangles γ1 and γ2 that are determined with the equations
(see Section 3.4)

cot γ1 = m12 + cos γ

sin γ
, cot γ2 = m21 + cos γ

sin γ
= 1 + m12 cos γ

m12 sin γ
(18.2.2)
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Figure 18.2.1: Axodes and pitch cones.

where

m21 = 1
m12

.

The line of tangency of the cones, OI, is the instantaneous axis of rotation in relative
motion. An axode is the family of instantaneous axes of rotation that is generated in
coordinate systems Si (i = 1, 2) rigidly connected to pinion 1 and gear 2, respectively.
The axodes are the pitch cones of the bevel gear drive. These cones are used as the basis
for the design of a bevel gear drive.

Pitch Surfaces
A face-gear drive is formed by a pinion and a face-gear that is conjugated to the pinion.
The reference surfaces (pitch surfaces) of a face-gear drive are (i) the cylinder of radius
rp1 as the pitch surface of the pinion, and (ii) the cone of semiangle γ as the pitch
surface of the face-gear [Fig. 18.2.1(b)]. In the case of crossing angle γ = 90◦, the pitch
surface of the face-gear is a plane. The pitch line is O ′M, the line of tangency of the
pitch surfaces. We call point P , the point of intersection of the pitch line (O ′M) with
the instantaneous axis of rotation (OI ), the pitch point. The variation of location of
the pitch point on the instantaneous axis of rotation affects the conditions of pointing
of the face-gear teeth and the dimensions of the area of meshing (see Section 18.3). The
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Figure 18.3.1: Face-gear generation.

relative motion at point P is pure rolling, and sliding and rolling at other points of the
pitch line O ′M.

18.3 FACE-GEAR GENERATION

The generation of a face-gear by a shaper is shown in Fig. 18.3.1. The shaper and the
gear perform rotation between intersected axes with angular velocities ω(s ) and ω(2) that
are related as

ω(s )

ω(2)
= N2

Ns
(18.3.1)

where Ns and N2 are the tooth numbers of the shaper and the face-gear, respectively.
The shaper also performs a reciprocating motion (the feed motion) in the direction of
the generatrix of the face-gear cone that is parallel to the shaper axis. It is obvious
that the axes of the shaper and the face-gear form angle γ which is equal to the angle
formed by the axes of the pinion and the face-gear [Fig. 18.2.1(b)]. Angle γm is defined
as γm = 180◦ − γ .

18.4 LOCALIZATION OF BEARING CONTACT

The process for generation of the face-gear is an exact simulation of meshing of the
pinion with the face-gear if the shaper is an identical copy of the pinion, with the
same number of teeth. However, such a process for generation cannot be applied
in practice, as the face-gear drive is likely to be misaligned. This is why the bear-
ing contact between the pinion and the face-gear must be localized, and this can be
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Figure 18.4.1: Tangency of pinion and shaper tooth profiles.

achieved if the process for generation provides an instantaneous point contact be-
tween the tooth surfaces of the pinion and the face-gear, instead of instantaneous line
contact.

The localization of the bearing contact is based on the following ideas:

(i) The tooth number Ns of the shaper is chosen to be larger than the tooth number
N1 of the pinion. Usually, Ns − N1 is chosen to be 2 or 3.

(ii) The installation of the shaper for generation simulates an imaginary internal mesh-
ing of shaper “s” with pinion “1, ” as shown exaggeratedly in Fig. 18.4.1.

(iii) The axodes in meshing of the shaper and the pinion are the pitch cylinders of radii
rps and rp1 (Fig. 18.4.1). The tangent to the pitch cylinders is parallel to the axes
of rotation of the shaper and the pinion, passes through the pitch point P , and is
the instantaneous axis of rotation IAs1 in the relative motion of the shaper with
respect to the pinion (Fig. 18.4.2).

(iv) We may consider now that three surfaces, �s , �2, and �1 are in mesh simulta-
neously. Surfaces �s and �2 are in line contact at every instant in the process of
generation of the face-gear by the shaper. Surfaces �s and �1 are in line contact
at every instant in the process of imaginary meshing of the shaper and the pinion.
The generated face-gear tooth surface �2 and the pinion tooth surface �1 are in
point contact at every instant.

(v) Figure 18.4.2 illustrates the location and orientation of the instantaneous axes of
rotation in the meshing of �s , �2, and �1. The instantaneous axes of rotation are
designated as IAs2, IAs1, and IA12. The subscripts “s2,” “s1,” and “12” indicate
that the respective meshings between “s” and “2, ” “s” and “1, ” and “1” and
“2” are considered. Angle γs that is formed between the shaper axis and IAs2 is
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Figure 18.4.2: Instantaneous axes of rotation.

determined with the equation

cot γs = ms2 + cos γ

sin γ
=

N2

Ns
+ cos γ

sin γ
(18.4.1)

which is similar to Eq. (18.2.2) for determination of γ1. The instantaneous axis of
rotation IAs1 coincides with the pitch line. All three instantaneous axes of rotation
intersect each other at point P which may be called the pitch point. The shortest
distance B between the axes of the pinion and the shaper is determined as

B = rps − rp1 = Ns − N1

2Pd
. (18.4.2)

(vi) We have to distinguish between the contact lines Ls2 and Ls1 that are represented
on the shaper tooth surface �s [Figs. 18.4.3(a) and 18.4.3(b)]. The contact lines
correspond to the meshing of the shaper with face-gear 2 and pinion 1, respectively.
The current instantaneous point of tangency of surfaces �2 and �1 is represented
on surface �s as point M that is the point of intersection of respective current
contact lines Ls1 and Ls2 [Fig. 18.4.3(c)].

We may determine the path of contact of surfaces �1 and �2 (the set of instantaneous
points of contact between �1 and �2) using the following consideration: the normal to
the generating surface �s at the instantaneous contact point M [Fig. 18.4.3(c)] must
pass through the pitch point P [Figs. 18.4.2 and 18.2.1(b)]. Detailed derivations of the
path of contact are discussed in Section 18.13.
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Figure 18.4.3: Contact lines on shaper tooth surface: (a) lines Ls2 in meshing of shaper “s” with face-
gear “2”; (b) lines Ls1 in meshing of shaper “s” with pinion “1” of a face-gear drive wherein Ns > N1;
(c) determination of point M of intersection of lines Ls2 and Ls1.

18.5 EQUATIONS OF FACE-GEAR TOOTH SURFACE

Generation by Involute Shaper
We consider two types of geometry of face-gear drives wherein (i) the face-gear is gener-
ated by an involute shaper (presented in this section), and (ii) the face-gear is generated
by a shaper conjugated to a parabolic rack-cutter (Section 18.9).

Shaper Tooth Surfaces
Plane ys = 0 is the plane of symmetry of the space of the shaper (Fig. 18.5.1). Limiting
the discussion to the right-side of the space with the involute profile M0M in the cross
section, we represent the position vector OsM of current point M by the vector equation

OsM = OsN + NM
(
|NM| =

�
MoN= rbsθs

)
. (18.5.1)

Here, θs is the parameter of the involute profile. Using Eq. (18.5.1) and designating by
us the surface parameter of shaper tooth surface �s in the direction of zs , we represent
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Figure 18.5.1: For derivation of equations of the involute profile of the shaper.

surface �s by the vector function

rs (us , θs ) =


rbs [cos(θ0s + θs ) + θs sin(θ0s + θs )]

rbs [sin(θ0s + θs ) − θs cos(θ0s + θs )]

us

1

 . (18.5.2)

Here, rbs is the radius of the shaper base circle, and θ0s determines half of the width
of the space of the shaper on the base circle (Fig. 18.5.1). Parameter θ0s for a standard
shaper is represented by the equation

θ0s = π

2Ns
− inv αc (18.5.3)

where αc is the pressure angle, and Ns is the tooth number of the shaper.
The unit normal to the shaper tooth surface is represented as (Fig. 18.5.1)

ns = Ns

|Ns | =

 sin(θ0s + θs )

− cos(θ0s + θs )

0

 . (18.5.4)
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Figure 18.5.2: Coordinate systems applied for generation of face-gear surface �2: (a) illustration of
installation; (b) for derivation of coordinate transformation.

Face-Gear Tooth Surface Σ2

Surface �2 is determined as the envelope to the family of shaper tooth surfaces �s . We
apply for derivations the following coordinate systems: (i) movable coordinate systems
Ss and S2 rigidly connected to the shaper and the face-gear (Fig. 18.5.2), and (ii) fixed
coordinate systems Sa and Sm. Coordinate axis Oa xa passes through pitch point P
(Fig. 18.5.2).

During the generation, the shaper and the face-gear perform rotations about axes za

and zm related as follows:

ψs

ψ2
= N2

Ns
. (18.5.5)

The family of shaper surfaces �s is represented in coordinate system S2 by the matrix
equation [Fig. 18.5.2(b)]

r2(us , θs , ψs ) = M2mMma Mas (ψs )rs (us , θs ). (18.5.6)
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Here,

Mas (ψs ) =


cos ψs − sin ψs 0 0

sin ψs cos ψs 0 0

0 0 1 0

0 0 0 1

 (18.5.7)

Mma =


− cos γ 0 sin γ rp2

0 1 0 0

− sin γ 0 − cos γ −rp2 cot γ

0 0 0 1

 (18.5.8)

where γ is formed by the axes of the shaper and the face-gear as shown in Fig. 18.5.2,
and

M2m =


cos ψ2 sin ψ2 0 0

− sin ψ2 cos ψ2 0 0

0 0 1 0

0 0 0 1

 . (18.5.9)

The equation of meshing is determined as (see Section 6.1)

ns · v(s2)
s = fs2(us , θs , ψs ) = 0. (18.5.10)

Computerized determination of relative velocity v(s2)
s is based on the procedure presented

in Section 2.2. Designations in Figs. 18.5.2(a) and 18.5.2(b) indicate the angle γ formed
by negative axis zm and za , the radii rps and rp2 of pitch circles of the shaper and the
face-gear, and the pitch point P [see Fig. 18.2.1(b)].

Surface �2 of the face-gear is determined in three-parameter form by vector equation
r2(us , θs , ψs ) and equation of meshing fs2 = 0. Surface �s may be represented in two-
parameter form using the theorem of implicit function system existence. The procedure
is as follows [Zalgaller & Litvin, 1977]:

(i) Consider that equation fs2 = 0 is satisfied at a point (u(0)
s , θ

(0)
s , ψ

(0)
s ), and at this

point

∂ fs2

∂us
�= 0. (18.5.11)

(ii) Then, equation fs2 = 0 may be solved by function

us = us (θs , ψs ) ∈ C1, (18.5.12)
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and surface �2 may be represented as

r2(us (θs , ψs ), θs , ψs ) = R2(θs , ψs ). (18.5.13)

Contact lines L2s on the face-gear tooth surface are determined by vector function
R2(θs , ψs ) taking ψs = const. (Fig. 18.1.4).

18.6 CONDITIONS OF NONUNDERCUTTING OF FACE-GEAR TOOTH
SURFACE (GENERATED BY INVOLUTE SHAPER)

Appearance of singularities on surface �2 is the herald of oncoming undercutting. There-
fore, to avoid undercutting of �2, it is necessary to avoid singularities on �2. Singularities
on �2 occur at the point where normal N2 to �2 becomes equal to zero. Normal N2 is
given by

N2 = ∂R2

∂θs
× ∂R2

∂ψs
. (18.6.1)

Another approach for determination of singularities of �2 is based on the following
considerations:

(i) It is proven that at a singular point of �2, the following equation holds [Litvin,
1989]:

v(s )
r + v(s2)

s = 0 (18.6.2)

where v(s )
r is the velocity of a point of contact in its motion over surface �s of the

shaper.
(ii) In addition to Eq. (18.6.2), we apply the differentiated equation of meshing fs2 = 0

that yields

∂ fs2

∂us

dus

dt
+ ∂ fs2

∂θs

dθs

dt
+ ∂ fs2

∂ψs

dψs

dt
= 0. (18.6.3)

(iii) Application of Eqs. (18.6.2) and (18.6.3) yields a system of four linear equations
in two unknowns (dus/dt , dθs/dt); dψs/dt is considered as given.

(iv) The system of linear equations has a certain solution for the unknowns if the matrix

A =


∂rs

∂us

∂rs

∂θs
−v(2s )

s

∂ fs2

∂us

∂ fs2

∂θs
−∂ fs2

∂ψs

dψs

dt

 (18.6.4)

has the rank r = 2. Then, we obtain that

�2
1 + �2

2 + �2
3 = 0 (18.6.5)
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where �i (i = 1, 2, 3) are three determinants obtained from matrix A. The equal-
ity of �4 = 0 (�4 is the fourth determinant) yields the equation of meshing and
therefore is not considered.
Determinants �i (i = 1, 2, 3, 4) are given by

�1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂xs

∂us

∂xs

∂θs
− v (s2)

xs

∂ys

∂us

∂ys

∂θs
− v (s2)

ys

∂ fs2

∂us

∂ fs2

∂θs
−∂ fs2

∂ψs

dψs

dt

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (18.6.6)

�2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂xs

∂us

∂xs

∂θs
− v (s2)

xs

∂zs

∂us

∂zs

∂θs
− v (s2)

zs

∂ fs2

∂us

∂ fs2

∂θs
−∂ fs2

∂ψs

dψs

dt

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (18.6.7)

�3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ys

∂us

∂ys

∂θs
− v (s2)

ys

∂zs

∂us

∂zs

∂θs
− v (s2)

zs

∂ fs2

∂us

∂ fs2

∂θs
−∂ fs2

∂ψs

dψs

dt

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (18.6.8)

�4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂xs

∂us

∂xs

∂θs
− v (s2)

xs

∂ys

∂us

∂ys

∂θs
− v (s2)

ys

∂zs

∂us

∂zs

∂θs
− v (s2)

zs

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (18.6.9)

(v) Equation (18.6.5) yields a relation

Fs2(us , θs , ψs ) = 0. (18.6.10)

(vi) Equations Fs2 = 0 and fs2 = 0 enable us to obtain a line on the shaper tooth surface
that generates singular points on surface �2. Limitations of parameters (us , θs , ψs )
observed by design enable us to avoid singularities of face-gear tooth surface �2.

The procedure of limitation of parameters (us , θs , ψs ) for avoidance of singularities
of �2 is as follows:

Step 1: We consider the plane of surface parameters (us , θs ) of the shaper and repre-
sent in this space: (i) lines of tangency Ls2 of shaper �s and surface �2, and (ii) line Q
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Figure 18.6.1: Limitation of space of parameters (us , θs ) for avoidance of singularities.

of points (us , θs , ψs ) that correspond to singular points of �2. We apply for this purpose
equations fs2(us , θs , ψs ) = 0 and Fs2(us , θs , ψs ) = 0.

Step 2: Figure 18.6.1 shows lines Ls2 and line Q which is the image of singularities of
�2 on plane (us , θs ). Points of line Q are obtained as points that satisfy simultaneously
equations fs2 = 0 and Fs2 = 0.

Step 3: Avoidance of singularities of �2 is achieved by elimination of line Q of the
space of parameters (us , θs ). Taking into account that Q designates the parameter of
the shaper measured along its axis, it is sufficient to eliminate line K–K ∗ of the shaper,
where K corresponds to the addendum of the shaper.

Directions for Computations
Our goal is determination of the magnitude of L1 that will avoid singularities of the face-
gear tooth surface �2 (Fig. 18.6.2). Parameter L2 (Fig. 18.6.2) determines the zone free
of pointing of �2 (see Section 18.7). The computation of L1 is based on the following
procedure:

(a) Limiting point K of the line of singularities of the face-gear belongs to the ad-
dendum of the shaper. Parameter θs of limiting point K is determined from the

Figure 18.6.2: Illustration of limiting tooth dimensions L1 and L2 of face-gear.
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equation

θs =
(
r 2

as − r 2
bs

)0.5

rbs
(18.6.11)

where ras and rbs are the radii of the addendum circle and base circle of the shaper.
(b) Investigation shows that for determination of singularities of �2 it is sufficient to

take �2 = 0 or �3 = 0 instead of Eq. (18.6.4). Determinants �2 = 0 or �3 = 0
include elements ∂zs/∂us and ∂zs/∂θs , whereas determinant �1 does not include
such elements. Using, let us say, �2 and equation of meshing fs2 = 0, we obtain
two equations in two unknowns φs and us .

(c) Parameter us determines the sought-for magnitude of L1 (Fig. 18.6.2).

18.7 POINTING OF FACE-GEAR TEETH GENERATED
BY INVOLUTE SHAPER

Pointing of teeth means that the tooth thickness on the top of the tooth becomes equal
to zero. The location of a tooth pointing area may be determined by considering the
intersection of the two opposite tooth surfaces at the topland of the tooth. A computer
program to solve this problem has been developed by the authors of this book. An
alternative but approximate solution to this problem is discussed in this chapter.

Consider that the face-gear is generated by a shaper. The axes of rotation of the shaper
and the face-gear are designated by zs and z2, respectively [Figs. 18.5.2(a) and 18.6.2].
The instantaneous axis of rotation in the process of generation is Om I . Consider cross
sections of the shaper that are determined by planes �1 and �2 that are perpendicular
to axis zs and pass through pitch point P and a point I chosen on instantaneous axis
of rotation Om P (Fig. 18.6.2). The goal is to determine the location on plane �2 where
the profiles of the tooth sides of the face-gear intersect.

Profiles of the shaper and the face-gear in planes �1 and �2 are shown in Figs. 18.7.1
and 18.7.2, respectively. The point of intersection of profiles of the face-gear in plane

Figure 18.7.1: Cross section profiles of
face-gear and shaper in plane �1.
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Figure 18.7.2: Cross section profiles of
face-gear and shaper in plane �2.

�2 is designated by “A” (Fig. 18.7.2). Point A has to be located on the addendum
line of the face-gear, and therefore its location with respect to axis ya is determined by
rps − 1/Pd (Fig. 18.7.2). The goal is determination of magnitude L2 defined by distance
�l between planes �1 and �2 (Fig. 18.6.2). Figures 18.6.2 and 18.7.2 illustrate the
procedure of derivation of magnitude �l and L2. The computation of L2 is based on
the following procedure:

Step 1: Determination of pressure angle α of pointed teeth (Fig. 18.7.2).
We use vector equation (Fig. 18.7.2)

O∗
a N + NM + MA = O∗

a A. (18.7.1)

(See the location of point O∗
a in Fig. 18.6.2.) Here,

O∗
a A = rps − 1

Pd
= Ns − 2

2Pd
(18.7.2)

where Pd is the diametral pitch; point M is the point of tangency of profiles of the shaper
and the face-gear in plane �2 (Fig. 18.7.2); |MA| = λs ; |NM| = rbsθs .

Vector equation (18.7.1) yields two scalar equations in two unknowns α and λs :

rbs (cos α + θs sin α) − λs cos α = Ns − 2
2Pd

(18.7.3)

rbs (sin α − θs cos α) − λs sin α = 0. (18.7.4)

Here, rbs = (Ns/(2Pd)) cos α0; θs = α − θ0s ; θ0s = π/(2Ns ) − inv α0. Eliminating λs , we
obtain the following equation for determination of α:

α − sin α
Ns − 2

Ns cos α0
= π

2Ns
− inv α0. (18.7.5)

The sought-for angle α is obtained by solving the nonlinear equation (18.7.5).
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Step 2: Determination of magnitude L2 (Fig. 18.6.2).
Figure 18.7.2 yields

O∗
a I = rbs

cos α
= Ns cos α0

2Pd cos α
. (18.7.6)

Then, we obtain (Fig. 18.6.2)

L2 = O∗
a I

tan γs
= Ns cos α0

2Pd cos α tan γs
. (18.7.7)

Knowing the magnitudes of L1 and L2 (Fig. 18.6.2), it becomes possible to design a
face-gear of the gear drive that is free of undercutting and pointing.

18.8 FILLET SURFACE

Two types of fillet surfaces might be provided: (i) those generated by the generatrix G
of the addendum cylinder [Fig. 18.4.3(a)], and (ii) those generated by the rounded top
of the shaper (Fig. 18.8.1).

Case 1: Generation of the fillet by edge G [Fig. 18.4.3(a)].
Using Fig. 18.5.1, we represent edge G [Fig. 18.4.3(a)] in coordinate system Ss by

vector function rs (us , θ
∗
s ) where

θ∗
s =

(
r 2

as − r 2
bs

)0.5

rbs
, ras = rps + 1.25

Pd
= Ns + 2.5

2Pd
. (18.8.1)

The fillet surface is represented in S2 by the equation

r2(us , ψs ) = M2s (ψs )rs (us , θ
∗
s ). (18.8.2)

Case 2: Generation of the fillet by the rounded top of the shaper.
The fillet is generated as the envelope to the family of circles of radius ρ (Fig. 18.8.1).

The investigation of bending stresses shows that application of a shaper with a rounded
top reduces bending stresses on approximately 10% with respect to those obtained by
application of an edged top shaper.

Figure 18.8.1: Rounded top of the shaper tooth.
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Figure 18.9.1: Illustration of rack-cutter profiles; (b) and
(c) parabolic profiles of the shaper and pinion rack-cutters,
respectively.

18.9 GEOMETRY OF PARABOLIC RACK-CUTTERS

Basic Concept
The second version of the geometry of face-gear drives is based on the following ideas
Litvin et al. [2002b]:

(i) Two imaginary rigidly connected rack-cutters designated as A1 and As are applied
for generation of the pinion and the shaper, respectively. Designation A0 indicates
a reference rack-cutter with straight-line profiles (Fig. 18.9.1).

(ii) Rack-cutters A1 and As are provided with mismatched parabolic profiles that de-
viate from the straight-line profiles of reference rack-cutter A0. Figure 18.9.1(a)
shows schematically an exaggerated deviation of A1 and As from A0. The parabolic
profiles of rack-cutters A1 and As for one tooth side are shown schematically in
Figs. 18.9.1(b) and 18.9.1(c).

(iii) The tooth surfaces �1 and �s of the pinion and the shaper are determined as
envelopes to the tooth surfaces of rack-cutters A1 and As , respectively.

(iv) The tooth surfaces of the face-gear �2 are generated by the shaper and are de-
termined by a sequence of two enveloping processes wherein (a) the parabolic
rack-cutter As generates the shaper, and (b) the shaper generates the face-gear. The
face-gear tooth surface �2 may also be ground (or cut) by a worm (hob) of a special
shape (see Section 18.14).

(v) The pinion and face-gear tooth surfaces are in point contact at every instant because:
(i) rack-cutters A1 and As are mismatched [Fig. 18.9.1(a)] due to application of two
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different parabola coefficients, and (ii) the pinion and the shaper are provided with
a different number of teeth. Figures 18.9.1(b) and 18.9.1(c) show schematically the
profiles of the rack-cutters of the pinion and the shaper, respectively. Application
of both items, (i) and (ii), provides more freedom for observation of the desired
dimensions of the instantaneous contact ellipse and for the predesign of a parabolic
function of transmission errors.

(vi) An alternative method of generation of face-gears is based on application of a worm
of a special shape, which might be applied for grinding or cutting (Fig. 18.1.3).
Grinding enables us to harden the tooth surfaces and to increase the permissible
contact stresses. It is shown below that the derivation of the worm thread surface
is based on simultaneous meshing of the shaper with the face-gear and the worm
(see Section 18.14).

Reference and Parabolic Rack-Cutters
Reference rack-cutter A0 has straight-line profiles [Fig. 18.9.1(a)]. Parabolic rack-cutters
designated as As and A1 are in mesh with the shaper and the pinion. Parabolic profiles
of As and A1 deviate from straight-line profiles of A0.

Coordinate systems Sq and Sr are applied for derivation of equations of shaper rack-
cutter As . Parameters ur and parabola coefficient ar determine the parabolic profile of
rack-cutter As [Fig. 18.9.1(b)]. Respectively, coordinate systems Sk and Se are applied
for derivation of equations of rack-cutter A1. Parameters ue and parabola coefficient ae

determine the parabolic profile of rack-cutter A1 [Fig. 18.9.1(c)]. Origins Oq and Ok

of coordinate systems Sq and Sk, respectively [Figs. 18.9.1(b) and 18.9.1(c)], coincide,
and their location is determined by parameter fd . The profiles of the rack-cutter are
considered for the side with profile angle αd [Fig. 18.9.1(a)].

The design parameters of reference rack-cutter A0 [Fig. 18.9.1(a)] are w0, s0, and αd .
Taking into account that

w0 + s0 = p = π

P
(18.9.1)

we obtain

s0 = p
1 + λ

= π

(1 + λ)P
; w0 = λp

1 + λ
= λπ

(1 + λ)P
. (18.9.2)

Here, λ = w0/s0, and p and P are the circular and diametral pitches, respectively.
The tooth surface of rack-cutter As is represented in coordinate system Sr [Fig.

18.9.1(a)] as

rr (ur , θr ) =


(ur − fd) sin αd − ld cos αd − ar u2

r cos αd

(ur − fd) cos αd + ld sin αd + ar u2
r sin αd

θr

1

 . (18.9.3)
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Parameter θr is measured along the zr axis. Parameter ld is shown in Fig. 18.9.1(a).
Normal Nr to the shaper rack-cutter is represented as

Nr (ur ) =

 cos αd + 2ar ur sin αd

− sin αd + 2ar ur cos αd

0

 . (18.9.4)

Similarly, we may represent vector function re (ue , θe ) of pinion rack-cutter A1 and
normal Ne (ue ).

18.10 SECOND VERSION OF GEOMETRY: DERIVATION OF TOOTH
SURFACES OF SHAPER AND PINION

Shaper Tooth Surface
We apply for derivation of shaper tooth surface �s : (i) movable coordinate sys-
tems Sr and Ss that are rigidly connected to the shaper rack-cutter and the shaper,
and (ii) fixed coordinate system Sn [Fig. 18.10.1(a)]. Rack-cutter As and the shaper
perform related motions of translation and rotation determined by (rps ψr ) and ψr

[Fig. 18.10.1 (a)].

Figure 18.10.1: For generation of shaper of
pinion by rack-cutters: (a) generation of the
shaper, (b) installation of pinion rack-cutter,
and (c) generation of the pinion.
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The shaper tooth surface �s is determined as the envelope to the family of rack-cutter
surfaces As considering simultaneously the following equations:

rs (ur , θr , ψr ) = Msr (ψr )rr (ur , θr ) (18.10.1)

Nr (ur ) · v(sb)
r = fsr (ur , ψr ) = 0. (18.10.2)

Here, vector function rs (ur , θr , ψr ) represents in Ss the family of rack-cutter As tooth
surfaces; matrix Msr (ψr ) describes coordinate transformation from Sr to Ss ; vector
function Nr (ur ) represents the normal to the rack-cutter As [see Eq. (18.9.4)]; v(sb)

r is
the relative (sliding) velocity.

Equation (18.10.2) (the equation of meshing) yields

fsr (ur , ψr ) = xr Nyr − yr Nxr

rps Nyr
− ψr = 0. (18.10.3)

Finally, we represent the surface of the shaper by vector function

rs (ur (ψr ), ψr , θr ) = Rs (ψr , θr ). (18.10.4)

The normal to the shaper is represented in coordinate system Ss as

Ns = ∂Rs

∂ψr
× ∂Rs

∂θr
. (18.10.5)

Pinion Tooth Surface
Movable coordinate systems Se and S1 are rigidly connected to the pinion rack-cutter
and the pinion, respectively [Figs. 18.10.1(b) and 18.10.1(c)]; S∗

n is the fixed coordinate
system. The installation angle �β [Fig. 18.10.1(b)] is provided for the improvement of
the bearing contact between the pinion and the face-gear (see Section 18.13). Derivations
of pinion tooth surfaces are similar to those applied for derivation of shaper tooth
surfaces and are based on the following procedure:

Step 1: We obtain the family of pinion rack-cutters represented in coordinate system
S1 as

r1 (ue , θe , ψe ) = M1e (ψe )re (ue , θe ) (18.10.6)

where matrix M1e describes coordinate transformation from Se via S∗
n to S1 [Figs.

18.10.1(b) and 18.10.1(c)].
Step 2: Using the equation of meshing between the rack-cutter and the shaper, we

obtain

ue (ψe ) = xe Nye − ye Nxe

rp1 Nye
− ψe . (18.10.7)

Step 3: We represent the pinion tooth surfaces by vector function

r1(ue (ψe ), ψe , θe ) = R1(ψe , θe ). (18.10.8)
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18.11 SECOND VERSION OF GEOMETRY: DERIVATION
OF FACE-GEAR TOOTH SURFACE

Preliminary Considerations
The face-gear tooth surface is determined as the result of two enveloping processes
wherein (i) a parabolic rack-cutter generates the shaper tooth surface (see Section 18.10),
and (ii) the shaper generates the face-gear tooth surface. The second enveloping process
is based on the algorithm presented in Section 18.5 wherein an involute shaper generates
the face-gear tooth surface of the first version of geometry. Recall that the shaper tooth
surface of the second version of geometry is represented in two-parameter form by vector
function Rs (ψr , θr ) [see Eq. (18.10.4)]. The normal to the surface mentioned above is
represented by vector function (18.10.5). Investigation of undercutting of surface �2

(of the second version of geometry) is based on the algorithm discussed in Section 18.6.

Structure of Face-Gear Tooth Surface Σ2

The type of a surface may be defined by the Gaussian curvature that represents the
product of principal surface curvatures at the chosen surface point. Thus, the Gaussian
curvature K at a surface point M is defined as

K = KI KII (18.11.1)

where KI and KII are the principal surface curvatures at M. The type of surface point
(elliptical, parabolic, or hyperbolic) depends on the sign of Gaussian curvature K .

Direct determination of Gaussian curvature for a surface represented by three,
sometimes four, related parameters requires complex derivations and computations.
The derivations and computations previously mentioned may be simplified using pro-
posed relations between the curvatures of the generating and generated surfaces (see
Chapter 8).

Investigation shows that surface �2 has elliptical (K > 0) and hyperbolic (K < 0)
points (Fig. 18.11.1). The common line of both sub-areas is the line of parabolic points.
The dimensions of the area of surface elliptical points depend on the magnitude of
the parabola coefficient ar of the shaper rack-cutter. Surface �2 of the first version of
geometry contains only hyperbolic points.

18.12 DESIGN RECOMMENDATIONS

The bending stresses in a face-gear drive depend on the unitless coefficient

c = Pd �l = Pd(L2 − L1). (18.12.1)

(See the designations of L2 and L1 in Fig. 18.6.2.) Usually, the coefficient c is chosen as
c = 10 for high-power transmissions. The coefficient c can be increased for face-gear
drives by choosing a higher gear ratio and increasing the tooth number. This statement
can be confirmed by the graphs shown in Fig. 18.12.1 for face-gear drives of the first
type of geometry.
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Figure 18.11.1: Areas of elliptical and hyperbolic points of face-gear tooth surface �2 for rack-cutter
parabola coefficients (a) ar = 0.01 1/mm, (b) ar = 0.02 1/mm, and (c) ar = 0.03 1/mm.

The investigation of the influence of coefficient c on the structure of the face-gear
teeth is based on the following considerations: Assume that the outer radius L2 is known
(it has been determined from the conditions of avoidance of pointing). We are able to
eliminate the portion of the tooth where the fillet exists (Figs. 18.6.2 and 18.11.1) by
increasing the inner radius L1. This means that the coefficient c will be decreased [see

Figure 18.12.1: Graphs of coefficient c for
face-gears of the first type of geometry.
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Figure 18.12.2: Illustration of influence of parabola coefficient ar and gear ratio m2s on coefficient c.

Eq. (18.12.1)]. However, observing a sufficient value of c enables us to obtain a more
uniform structure, eliminating the weaker part of the face-gear tooth.

Figure 18.12.2 shows the influence of the parabola coefficient ar of the parabolic
profile of the rack-cutter and the gear ratio on the possible tooth length of the face-gear
of the second type of geometry. Results of the investigation of undercutting and pointing
are shown in Fig. 18.12.2, which represents the influence of gear ratio m2s and parabola
coefficient ar on the coefficient c represented in Eq. (18.12.1).

18.13 TOOTH CONTACT ANALYSIS (TCA)

Tooth contact analysis is directed at simulation of meshing and contact of surfaces �1

and �2 and enables investigation of the influence of errors of alignment on transmission
errors and the shift of bearing contact. The algorithm for simulation of meshing is
based on equations that describe the continuous tangency of surfaces �1 and �2 and is
presented in Section 9.4.

Applied Coordinate Systems
The following coordinate systems are applied for TCA: (a) coordinate system Sf , rigidly
connected to the frame of the face-gear drive [Fig. 18.13.1(a)]; (b) coordinate sys-
tems S1 [Fig. 18.13.1(a)] and S2 [Fig. 18.13.2(b)], rigidly connected to the pinion and
the face-gear respectively; and (c) auxiliary coordinate systems Sd , Se , and Sq , ap-
plied for simulation of errors of alignment of the face-gear drive [Figs. 18.13.2(a) and
18.13.2(b)].

All misalignments are referred to the gear. Parameters �E , B, and B cot γ determine
the location of origin Oq with respect to Of [Fig. 18.13.1(b)]. Here, �E is the shortest
distance between the pinion and the face-gear axes when the axes are crossed but not
intersected. The location and orientation of coordinate systems Sd and Se with respect
to Sq are shown in Fig. 18.13.2(a). The misaligned face-gear performs rotation about
the ze axis [Fig. 18.13.2(b)].
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Figure 18.13.1: Coordinate systems applied for simu-
lation of meshing, I.

Figure 18.13.2: Coordinate systems ap-
plied for simulation of meshing, II.
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Computational Procedure
The algorithm of TCA is based on simulation of continuous tangency of surfaces �1

and �2 accomplished as follows (see Section 9.4):

(1) Surfaces �1 and �2 and their unit normals are represented in the fixed coordinate
system Sf by vector functions

r(i )
f (ui , θi , φi ) (i = 1, 2) (18.13.1)

n(i )
f (ui , θi , φi ) (i = 1, 2) . (18.13.2)

(2) Continuous tangency of �1 and �2 is represented by vector equations

r(1)
f (u1, θ1, φ1) − r(2)

f (u2, θ2, φ2) = 0 (18.13.3)

n(1)
f (u1, θ1, φ1) − n(2)

f (u2, θ2, φ2) = 0. (18.13.4)

Here, (ui , θi ) (i = 1, 2) are the surface parameters of �1 and �2, φ1 and φ2 are
the angles of rotation of the pinion and the face-gear in the process of meshing.
Vector equations (18.13.3) and (18.13.4) yield a system of five independent scalar
equations (because

∣∣n(1)
f

∣∣ = ∣∣n(2)
f

∣∣ = 1) represented in terms of six unknowns as

fi (u1, θ1, φ1, u2, θ2, φ2) = 0, fi ∈ C1 (i = 1, . . . ,5) . (18.13.5)

(3) Surfaces �1 and �2 are in point contact at every instant and one of the parameters,
say φ1, may be chosen as the input one. The requirement of point contact yields
the inequality

∂ ( f1, f2, f3, f4, f5)
∂ (u1, θ1, u2, θ2, φ2)

�= 0. (18.13.6)

Then the solution of system of equations (18.13.5) may be represented by functions

{u1 (φ1) , θ1 (φ1) , u2 (φ1) , θ2(φ1), φ2 (φ1)} ∈ C1. (18.13.7)

The solution of system of equations (18.13.3) and (18.13.4) by functions (18.13.7)
is an iterative process and requires as a first guess the set of parameters

P(0)(u(0)
1 , θ

(0)
1 , φ

(0)
1 , u(0)

2 , θ
(0)
2 , φ

(0)
2

)
(18.13.8)

that satisfies system of equations (18.13.3) and (18.13.4).
(4) The solution by functions (18.13.7) enables us to obtain:

(a) transmission function φ2(φ1) and function of transmission errors

�φ2(φ1) = φ2(φ1) − N1

N2
φ1; (18.13.9)
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(b) the paths of contact on surfaces �1 and �2 that are represented, respectively,
as

r1(u1(φ1), θ1(φ1)) (18.13.10)

r2(u2(φ1), θ2(φ1)). (18.13.11)

Results of Investigation
The results of investigation of the first version of geometry are represented in Fig.
18.13.3 which shows the shift of the bearing contact due to errors of alignment. It has
been found that the bearing contact of the face-gear drive is oriented across the tooth
surface and is sensitive to the change �γ of the shaft angle. Such an orientation of the
bearing contact may cause an edge contact wherein the formation of the bearing contact
is considered (in addition to stress analysis).

The sensitivity of face-gear drives of the first version of geometry to the change �γ

of the shaft angle may be compensated by the axial correction �q of the face-gear in
the process of assembly [Fig. 18.13.3(c)]. The advantage of the first version of geometry
is that the transmission errors of the gear drive are equal to zero. This is the result of
application of an involute shaper for generation that has equidistant profiles.

The results of TCA of the second version of geometry are represented in Figs. 18.13.4
and 18.13.5. The main advantages of the mentioned type of geometry are as follows:

(i) Longitudinal orientation of bearing contact that enables us to avoid the edge
contact.

(ii) Reduction of stresses (see Section 18.15).

The sensitivity of the gear drive of the second type of geometry to error �γ may be
compensated as well by correction �q.

For face-gear drives of the second type of geometry, the misalignment of the gear
drive is accompanied with transmission errors. However, application of a predesigned
parabolic function of transmission errors provides a favorable shape of the function
of errors of the drive and reduces the magnitude of maximal transmission errors (see

Figure 18.13.3: Path of contact, bearing
contact, and major axis of contact ellipses
for the following examples: (a) no errors
of alignment, (b) |�γ | = 3 arcmin, and (c)
adjustment of path of contact by applying
the axial displacement �q of the face-gear
with respect to the pinion (|�γ | = 3 arcmin,
|�q| = 550 µm).
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Figure 18.13.4: Path of contact, bearing contact, and major axis of contact ellipses for the following
examples: (a) no errors of alignment, (b) |�γ | = 2 arcmin, and (c) adjustment of path of contact by
application of correction �q: |�γ | = 2 arcmin, |�q| = 350 µm.

Section 9.2). The predesigned parabolic function of transmission errors is obtained by
(i) mismatch of parabolic rack-cutters for the shaper and the pinion of the gear drive,
and (ii) application of a shaper with tooth number Ns > Np, where Np is the tooth
number of the pinion of the gear drive.

18.14 APPLICATION OF GENERATING WORM

Concept of Generating Worm
The conventional method for generation of a face-gear is based on (i) application of an
involute shaper, and (ii) manufacturing of the face-gear performed as the simulation of
meshing of the shaper and the face-gear being generated.

Figure 18.13.5: Parabolic function of transmission errors for proposed geometry.
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Figure 18.14.1: Illustration of simultaneous meshing of shaper, worm, and face-gear.

Edward W. Miller proposed in 1942 the generation of the face-gear by a hob [Miller,
1942]. The next step was done by the patent proposed by Litvin et al. [Litvin et al.,
2000a] that has formulated the exact determination of the thread surface of a generating
worm that provides the necessary conditions of conjugation of the tooth surfaces of the
hob, the shaper, and the face-gear; the concept of worm design; and avoidance of worm
singularities. The worm design as proposed above may be applied for grinding and
cutting of face-gears [Litvin et al., 2002a].

Designations �s , �w, and �2 indicate surfaces of the shaper, worm, and face-gear,
respectively. Simultaneous meshing of �s , �w, and �2 is illustrated by Fig. 18.14.1.
Shaper surface �s is considered as the envelope to the family of rack-cutter As surfaces
and is represented by vector function Rs (ψr , θr ) [see Eq. (18.10.4)]. Surfaces �w and
�2 are generated as the envelopes to the family of shaper surfaces �s .

Recall that with the second type of geometry, the shaper is provided with non-involute
profiles (see Section 18.10). We discuss in this section application of the worm for
generation of a face-gear of the second type of geometry. However, the discussed idea
may be applied as well for the generation of face-gears of the first type of geometry.

Crossing Angle Between Axes of Shaper and Worm
Figure 18.14.2 shows fixed coordinate systems Sa , Sb, and Sc applied for illustration
of installation of the worm with respect to the shaper. Movable coordinate systems Ss

and Sw are rigidly connected to the shaper and the worm. Axis zs (it coincides with za )
is the axis of rotation of the shaper. Axis zw (it coincides with zc ) is the axis of rotation
of the worm. Axes zs and zw are crossed and form a crossing angle of 90o ± λw. The
upper (and lower) sign corresponds to application of a right-hand (left-hand) worm.
The shortest distance between axes zs and zw is designated as Ews .

The crossing angle λw is

λw = arcsin
rps

Ns (Ews + rps )
. (18.14.1)
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Figure 18.14.2: Coordinate systems Ss , Sw , and worm installation.

Here, rps is the pitch radius of the shaper, and Ews (Fig. 18.14.2) is the shortest distance
between the axes of the shaper and the worm. The magnitude of Ews affects the dimen-
sions of the grinding worm and the conditions of avoidance of surface singularities of
the worm (see below).

Determination of Worm Surface Σw

The worm surface �w is determined in coordinate system Sw (Fig. 18.14.2) by the
following equations:

rw(ψr , θr , ψw) = Mws (ψw)Rs (ψr , θr ) (18.14.2)(
∂Rs

∂ψr
× ∂Rs

∂θr

)
· v(sw)

s = fws (ψr , θr , ψw) = 0. (18.14.3)

Here, relative velocity v(sw)
s is determined by differentiation and transformation of ma-

trix Mws that are similar to derivations in Section 2.2; vector function rw(ψr , θr , ψw) is
the family of shaper surfaces �s represented in Sw; matrix Mws (ψw) describes coordinate
transformation from Ss to Sw; Eq. (18.14.3) is the equation of meshing between �s and
�w. Parameters (ψr , θr ) in vector function Rs (ψr , θr ) represent the surface parameters
of the shaper; parameter ψw is the generalized parameter of motion in the process of
generation of the worm by the shaper. Recall that during generation of the worm, the
shaper and the worm perform rotations about crossed axes za and zw (Fig. 18.14.2).
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Angles of rotation ψws and ψw (Fig. 18.14.2) are related by the equation

ψws

ψw
= 1

Ns
(18.14.4)

where Ns is the number of teeth of the shaper. It is assumed that a single-thread worm
is applied.

Equations (18.14.2) and (18.14.3) represent the worm surface �w by three related
parameters. We may represent �w in two-parameter form using the following procedure:

(i) We apply the theorem of implicit function system existence and consider that one
of the derivatives of fws , say ∂ fws/∂θr , is not equal to zero.

(ii) Then, we can solve equation fws = 0 by function θr (ψr , ψw) ∈ C1 and represent
the worm surface �w by

rw(ψr , θr (ψr , ψw), ψw) = Rw(ψr , ψw). (18.14.5)

Conceptual Consideration of Simultaneous Meshing
of Surfaces ΣS, Σw, and Σ2

The shaper surface �s is in line contact with the worm surface �w and the face-gear tooth
surface �2. This type of surface contact is obtained because �w and �2 are generated
as envelopes to shaper surface �s . We designate by Lws the lines of tangency between
�s and �w and by L2s the lines of tangency between �s and �2. Investigation of lines
Lws and L2s shows that they do not coincide with each other but are intersected at any
position of meshing.

Generation of Surface Σ2 by Worm Surface Σw

We recall that the shaper surface �s is in line contact with worm surface �w and with
face-gear tooth surface �2. However, surfaces �w and �2 are in point contact with
each other at any instant. This means that finishing grinding of �2 by worm surface
�w cannot be accomplished as a one-parameter enveloping process. A grinding process
based on one-parameter enveloping of the worm and the face-gear will provide only a
strip on required surface �2. Therefore, generation of �2 by the worm has to be based
on a two-parameter enveloping process wherein two independent sets of parameters
are provided as: (i) a set of angles of rotation (ψw, ψ2) of the worm and the face-gear,
and (ii) a translational motion lw of the worm. Parameters ψw and ψ2 are the angles of
rotation of the worm and the face-gear related by the equation

ψw

ψ2
= N2

Nw
(18.14.6)

where N2 and Nw are the number of teeth of the face-gear and the number of threads
of the worm. Usually, a single-thread worm is applied and Nw = 1. Parameter lw of
translational motion is provided as collinear to the axis of the shaper (see below).
Surface �2 generated by the grinding worm as a two-parameter enveloping process
coincides with surface �2 generated by the shaper.
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Figure 18.14.3: Contact lines between the shaper and the worm in the plane of surface parameters
(us , θs ) for (a) the first type of geometry, and (b) the second type of geometry.

The approach for determination of worm singularities is the same as that applied
for determination of singularities of face-gear tooth surface �2 (Section 18.6). Figures
18.14.3(a) and 18.14.3(b) show, in the space of surface parameters, lines of tangency
of the shaper with the worm that are determined for the existing and proposed design,
respectively. Lines Q are the image of singular points on the plane of surface parameters
of the shaper. Figure 18.14.3 enables us to determine the maximal angle of rotation of
the shaper permissible for avoidance of worm singularities. Then it becomes possible to
determine the maximal number of turns of the thread of the worm.

Figure 18.14.4(a) shows lines A(1) and A(2) on the shaper tooth surface formed by
regular points of the shaper. Points of lines A(1) and A(2) generate singular points on the
worm surface. The worm surface �w must be limited with two lines B to avoid under-
cutting of the worm.

Dressing of the Worm
The worm dressing is based on generation of its surface �w point by point by a plane
or by a conical disk that has the same profile as the rack-cutter that generated the
shaper. The execution of motions of the disk or the plane with respect to the worm is
accomplished by application of a CNC machine. The determination of instantaneous
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Figure 18.14.4: Illustration of worm singularities: (a) regular points A of shaper that generate worm
singularities; (b) singularities B on worm thread surface.

installments of the grinding disk with respect to the worm requires application of a
computer program.

The computational procedure is as follows:

Step 1: Consider vector function rw(ψr, ψr (θr , ψw), ψw) [see Eq. (18.14.4)] and take
ψr = const.

Step 2: Assign θr and obtain ψw from ψw = ψw(ψr , θr ).
Step 3: Compute xw, yw, zw from rw(ψr, θr, ψw(ψr, θr )) = Rw(ψr, θr ).
Step 4: Knowing ψr , it is easy to get the unit normal to the shaper determined as

ns (ψr ) and then determine the unit normal to the worm surface determined as

nw(ψr , ψw) = Lws (ψw)ns (ψr ). (18.14.7)

Step 5: The data (xw, yw, zw, nw) are sufficient for the installation of the tool (a plane
or a disk) using a CNC machine.

The second type of geometry allows application of a worm with a larger number of
turns of the thread.
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18.15 STRESS ANALYSIS

The goals of stress analysis presented in this section are:

(i) Comparison of contact and bending stresses of two types of geometry of face-gear
drives

(ii) Comparison of bending stresses of two versions of face-gears generated with edged
and rounded top shapers, respectively (Fig. 18.8.1)

(iii) Determination of contact and bending stresses and investigation of formation of
the bearing contact during the cycle of meshing.

The performed stress analysis is based on the finite element method [Zienkiewicz &
Taylor, 2000] and application of a general purpose computer program [Hibbit, Karlsson
& Siresen, Inc., 1998]. The authors’ approach to application of finite element analysis
is based on the following ideas:

(a) The generation of finite element models is performed automatically by using the
equations of the tooth surfaces and taking into account the corresponding fillets
and portion of the rim. Loss of accuracy due to the development of solid models
by using CAD computer programs is avoided.

(b) The proposed approach does not require an assumption of load distribution in
the contact area. The contact algorithm of the general purpose computer program
[Hibbit, Karlsson & Siresen, Inc., 1998] is used to get the contact area and stresses
by application of torque to the pinion. The face-gear is considered at rest.

(c) Finite element models are developed numerically at the chosen contact point of the
path of contact. Stress convergence is assured because there is at least one point of
contact between the contacting surfaces.

(d) Finite element models of three pairs of teeth are applied and therefore the boundary
conditions are far enough from the loaded areas of the teeth.

Numerical Example
Finite element analysis has been performed for two types of geometry of face-gear drives
represented in Tables 18.15.1 and 18.15.2. For the second type of geometry of face-gear

Table 18.15.1: Design parameters of face-gear
of first type of geometry

Number of teeth of the pinion N1 = 25
Number of teeth of the shaper Ns = 28
Number of teeth of the face-gear N2 = 160
Module m = 6.35 mm
Driving-side pressure angle αd = 25.0o

Coast-side pressure angle αc = 25.0o

Shaft angle γm = 90.0o

Inner radius of the face-gear 471.0 mm
Outer radius of the face-gear 559.0 mm
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Table 18.15.2: Design parameters of face-gear of second type
of geometry

Number of teeth of the pinion N1 = 25
Number of teeth of the shaper Ns = 28
Number of teeth of the face-gear N2 = 160
Module m = 6.35 mm
Driving-side pressure angle αd = 25.0o

Coast-side pressure angle αc = 25.0o

Shaft angle γm = 90.0o

Inner radius of the face-gear 493.0 mm
Outer radius of the face-gear 567.0 mm
Rack-cutter dimensional coefficient λt = 0.90
Parabola coefficient of rack-cutter As as = 7.50 · 10−3 1/mm
Parabola coefficient of rack-cutter A1 a1 = 3.00 · 10−3 1/mm
Driving-side offset parabola fd = 2.00 mm
Coast-side offset parabola fc = 0.00 mm
Pinion helix angle �β = 0.05o

drives, the application of a rounded top shaper (Fig. 18.8.1) has also been considered
in order to compare the bending stresses at the fillet of the generated face-gear.

The finite element mesh of three pairs of teeth of the second type of geometry is
represented in Fig. 18.15.1. Continuum solid elements of first order, enhanced by in-
compatible nodes to improve their bending behavior, have been used to form the finite
element mesh. The total number of elements is 44,820 with 58,327 nodes. The material
is steel with the properties of Young’s Modulus E = 2.068 × 108 mN/mm2 and Poisson’s

1

2

3

Pinion

Face-Gear

Figure 18.15.1: Three-pairs-of-teeth face-gear drive finite element model.
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(Ave. Crit.: 75%)
S, Mises

+8.056e+00
+4.546e+04
+9.092e+04
+1.364e+05
+1.818e+05
+2.273e+05
+2.727e+05
+3.182e+05
+3.636e+05
+4.091e+05
+4.545e+05
+5.000e+05
+1.453e+06

1

2

3

Bending Stresses: 80000 mN/mm2Edge Contact

Figure 18.15.2: Contact and bending stresses for the first type of geometry of face-gear drive.

Figure 18.15.3: Contact and bending stresses for the second type of geometry of face-gear drive gen-
erated with an edged-top shaper.
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(Ave. Crit.: 75%)
S, Mises

+2.484e+00
+4.364e+04
+8.727e+04
+1.309e+05
+1.745e+05
+2.182e+05
+2.618e+05
+3.055e+05
+3.491e+05
+3.927e+05
+4.364e+05
+4.800e+05
+7.515e+05

1

2

3

Bending Stresses: 118000 mN/mm2

Figure 18.15.4: Contact and bending stresses for the second type of geometry of face-gear drive gen-
erated with a rounded-top shaper.

ratio of 0.29. A torque of 1600 Nm has been applied to the pinion for both versions of
face-gear drive.

Figures 18.15.2 and 18.15.3 show the maximum contact and bending stresses ob-
tained at the mean contact point for the first and second type of geometry, respectively.
For such examples, a traditional edged-top shaper has been applied. Comparison be-
tween Figs. 18.15.1 and 18.15.2 shows that:

(i) Edge contact can be avoided, reducing the magnitude of the maximum contact
stress up to 40%.

(ii) For a considerable part of the cycle of meshing only one pair of teeth is in contact.
The maximum bending stress at the fillet of the first type of geometry of face-gear
is 43% lower.

Figure 18.15.4 confirms that application of a rounded-top shaper (Fig. 18.8.1) reduces
the bending stresses of the face-gear from 6 to 12% during the cycle of meshing. This
enables us to keep the increment of the bending stresses for the second type of geometry
to less than 40%.

The performed stress analysis has been complemented with investigation of formation
of the bearing contact (Figs. 18.15.2 to 18.15.5). Figures 18.15.5 and 18.15.6 illustrate
the variation of bending and contact stresses of the gear and the pinion during the cycle
of meshing for the second type of geometry, an application of an edged-top shaper and
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Figure 18.15.5: Variation of functions of contact and bending stresses during the cycle of meshing for
(a) the face-gear, and (b) the pinion of the second type of geometry and an edged-top shaper.

a rounded-top shaper, respectively. The stresses are represented as functions of unitless
parameter φ represented as

φ = φP − φin

φfin − φin
, 0 ≤ φ ≤ 1. (18.15.1)

Here, φP is the pinion rotation angle; φin and φfin are the magnitudes of the pinion
angular positions in the beginning and at the end of the cycle of meshing.
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Figure 18.15.6: Variation of functions of contact and bending stresses during the cycle of meshing for
(a) the face-gear, and (b) the pinion of the second type of geometry and a rounded-top shaper.

The unitless stress coefficient σ (Figs. 18.15.5 and 18.15.6) is defined as

σ = σP

σPmax

, |σ | ≤ 1. (18.15.2)

Here, σP is the variable of function of stresses, and σPmax is the magnitude of maximal
stress.
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19 Worm-Gear Drives with Cylindrical Worms

19.1 INTRODUCTION

There are two types of worm-gear drives: (i) those with cylindrical worms (Fig. 19.1.1)
(single-enveloping worm-gear drives), and (ii) those with hourglass worms (see Chap-
ter 20) (double-enveloping worm-gear drives). The terms “single-enveloping” and
“double-enveloping” are confusing because in both cases the surface of the worm-
gear tooth is the envelope to the one-parameter family of worm thread surfaces that
are generated in the coordinate system rigidly connected to the worm-gear. The thread
surface of a cylindrical worm is a helicoid. (We recall that a helicoid is the surface that
is generated by a given curve while it performs a screw motion.)

This chapter covers (i) the generation and geometry of cylindrical worms, and (ii) the
basic design problems (relations between design parameters). Depending on the method
for generation, we differentiate henceforth the following types of cylindrical worms (see
German Standards DIN 3975):

(i) ZA worms, with surface A. The worm surface is a ruled surface that is generated
by a straight line while it performs a screw motion with respect to the worm axis.
The generating line intersects the worm axis and therefore the axial section of the
worm surface is a straight line that is just the generating line. The cross section of
the ZA worm is an Archimedes spiral (see Section 19.4).

(ii) ZN worms, with surface N. The worm surface is also a ruled surface. However, the
generating line lies in a plane that passes through the perpendicular to the worm
axis and forms angle λp with the worm axis (see Section 19.5). Here, λp is the
lead angle on the pitch cylinder on the worm. The cross section of the worm is an
extended involute (see Section 19.5).

(iii) ZI worms, with surface I. The worm surface is a screw involute surface that may be
considered a particular case of a ruled surface. Such a surface can be generated by
a straight line that performs a screw motion about the worm axis and is tangent to
the helix on the base cylinder of the worm. The cross section of the worm surface
is an involute curve. The ZI worm is identical to an involute helical gear whose
tooth number is the number of worm threads.

(iv) ZK worms, with surface K. The worm surface is not a ruled surface but an envelope
to the family of cone surfaces. Such a family of surfaces is generated by the surface

547



P1: JsY

CB672-19 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 1:28

548 Worm-Gear Drives with Cylindrical Worms

Figure 19.1.1: Worm-gear with cylindrical worm.

of a cone (the tool surface) that performs a screw motion about the axis of the
worm (see Section 19.7).

(v) Flender worms, with convex–concave (CC) surface. Again, the worm surface is not
a ruled surface but an envelope to the family of generating surfaces. The generating
surface is a surface of revolution and its axial section is an arc of a circle. The
family of generating surfaces is formed by the screw motion of the tool about the
worm axis.

Worm-gear drives are sensitive to errors of assembly (the change of center distance,
shaft angle, and axial displacement of the worm-gear) that result in the shift of the
bearing contact to the edge and cause a piecewise almost-linear function of transmission
errors. The frequency of transmission errors is the same as the cycle of meshing of a
pair of teeth. A more stable bearing contact of worm-gear drives and a more favorable
function of transmission errors can be obtained by a proper mismatch between the
surfaces of the worm and the hob.

19.2 PITCH SURFACES AND GEAR RATIO

We recall that in the case of transformation of motions between crossed axes the relative
motion is the screw one and the axodes are hyperboloids of revolution. There is nothing
common to the pitch surfaces of a worm-gear drive and the axodes. The pitch surfaces
are two cylinders with the same twist angle as that of the worm-gear drive. The purpose
of application of such pitch surfaces is to provide by synthesis a main point of contact
of the worm and the worm-gear surfaces, the same as the point of tangency of the
crossed cylinders – the pitch surfaces. Henceforth, we differentiate between ordinary
pitch surfaces and operating pitch surfaces. In the case of ordinary pitch surfaces, the
cross cylinders are the pitch cylinders of the worm and the worm-gear.

Figure 19.2.1(a) shows the operating pitch cylinders of the worm and the worm-
gear. Axes zf and z2 of these cylinders form the crossing angle γ , and their shortest
distance is E [Figs. 19.2.1(a) and 19.2.1(b)]. Angle γ is measured clockwise from zf

to z2. The operating pitch cylinders are in tangency at point P . We assume that the
worm is located above the worm-gear. The intersection of the respective cylinder with
the surface of the worm thread and the worm-gear tooth surface represents a helix on
the cylinder; the common tangent to both helices is t–t ; the unit tangent is τ f ; and λ

(o)
1
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Figure 19.2.1: Illustration of (a) operating pitch
cylinders of the worm and the gear, and (b) the
worm helix.

is the lead angle on the worm operating pitch cylinder. Figure 19.2.1(a) corresponds
to the case when the worm and the worm-gear are right-handed. The direction of the
worm helix is shown in Fig. 19.2.1(b); tangent t–t is drawn to the helix at point P,
located on the bottom of the worm cylinder.

Our goal is to represent the worm-gear ratio considering that the operating pitch
cylinders are in tangency at point P and the input data are ro, Ro, λ

(o)
1 , and γ . We may

consider that the direction and magnitude of ω(1) are chosen and we have to determine
the magnitude and the direction of ω(2) considering that the line of action of ω(2) is the
z2 axis of gear rotation.

We consider a fixed coordinate system Sf (xf , yf , zf ) where zf is the axis of worm
rotation. Points P1 and P2 of the respective operating pitch cylinders coincide with each
other at point P . The velocities of points P1 and P2 are represented by the equations

v(1) = ω(1) × r f , v(2) = (ω(2) × r f ) + (E × ω(2)) (19.2.1)

where rf = Of P and E = Of O2. Velocities v(1) and v(2) lie in plane � that is perpendic-
ular to the x f axis; this plane is tangent to the operating pitch cylinders at point P. Thus,

v(1) · i f = v(2) · i f = 0 (19.2.2)

where i f is the unit vector of axis xf .
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To determine the gear ratio, we can use one of the two following equations:(
v(1)

f − v(2)
f

)× τ f = v(12)
f × τ f = 0 (19.2.3)

or

v(1)
f · m f = v(2)

f · m f . (19.2.4)

Here,

m f = i f × τ f . (19.2.5)

Vector m f lies in plane � and is perpendicular to τ f [Fig. 19.2.1(a)]. The subscript f
indicates that the introduced vectors are represented in Sf . Equation (19.2.3) follows
from the fact that the relative (sliding) velocity at point P is collinear to τ f . Equation
(19.2.4) indicates that (

v(1)
f − v(2)

f

) · m f = v(12)
f · m f = 0 (19.2.6)

because m f is perpendicular to τ f .
For further derivations we use Eqs. (19.2.1), (19.2.4), and (19.2.5), which yield

ω(1)ro sin λ
(o)
1 = ω(2) Ro sin

(
γ − λ

(o)
1

)
. (19.2.7)

For the case where γ > λ
(o)
1 , ω(2) is positive and ω(2) has the same direction as k2

[Fig. 19.2.1(b)]. The negative sign for ω(2) when γ < λ
(o)
1 indicates that in this case ω(2) is

opposite to k2. Equation (19.2.7) cannot be satisfied for the case when γ = λ
(o)
1 because

the helix on the gear operating pitch cylinder turns into a circle and v(1) · m �= v(2) · m.
Equation (19.2.7) enables representation of the gear ratio as follows:

m21 = |ω(2)|
ω(1)

= ± ro sin λ
(o)
1

Ro sin
(
γ − λ

(o)
1

) (
provided γ �= λ

(o)
1

)
. (19.2.8)

Here, the upper sign corresponds to the case when γ > λ
(o)
1 , and the lower sign corre-

sponds to the case when γ < λ
(o)
1 .

Equations (19.2.3) and (19.2.4) may be interpreted geometrically with the velocity
polygon that is shown in Fig. 19.2.2. The drawings confirm that the sliding velocity
v(12) is collinear to τ , and the projections of v(1) and v(2) on m have the same magnitude
and direction.

Figure 19.2.3 shows the operating pitch cylinders for a left-hand worm and worm-
gear. Derivations similar to those discussed above yield the following gear ratio:

m21 = ro sin λ
(o)
1

Ro sin
(
γ + λ

(o)
1

) . (19.2.9)

The magnitude of λ
(o)
1 is considered as a positive value. The derivations yield that for

the chosen direction of ω(1) (Fig. 19.2.3), vector ω(2) is opposite to k2.
The velocity polygon is shown in Fig. 19.2.4. In the most common case, the crossing

angle γ is 90◦ and

m21 = ro

Ro
tan λ

(o)
1 . (19.2.10)
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Figure 19.2.2: Velocity polygon for right-
hand worm-gear drive.

Figure 19.2.3: Operating pitch cylinders
for left-hand worm-gear drive.



P1: JsY

CB672-19 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 1:28

552 Worm-Gear Drives with Cylindrical Worms

Figure 19.2.4: Velocity polygon for left-
hand worm-gear drive.

It is also possible to express the gear ratio that is represented by Eqs. (19.2.8), (19.2.9),
and (19.2.10) in terms of the number of worm threads N1 and the number of gear teeth
N2 [see Eq. (19.3.11)].

19.3 DESIGN PARAMETERS AND THEIR RELATIONS

Worm Pitch Diameter, Lead Angle, and Axial Pitch
Figure 19.3.1(a) shows the pitch diameter dp of the worm ordinary pitch cylinder; pax is
the axial distance between the neighboring threads of the worm, which is measured along
the generatrix of the pitch cylinder. We designate with Pax the ratio Pax = π/pax. The

Figure 19.3.1: Worm pitch cylinder (a)
in 3D-space, and (b) developed on a
plane.
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worm pitch diameter may be chosen as

dp = 2rp = q
Pax

. (19.3.1)

The value of q depends on the number N1 of threads of the worm and the number N2

of gear teeth and may be picked up from a recommended set (7 ≤ q ≤ 25).
Let us develop the pitch cylinder on a plane [Fig. 19.3.1(b)]. The helix for each

worm thread is represented by a straight line. The distance pax between the neighboring
straight lines is

pax = H
N1

(19.3.2)

where N1 is the number of worm threads, and H is the lead. Considering as known
rp and Pax, we can determine the lead angle on the pitch cylinder from the following
equation [Fig. 19.3.1(b)]:

tan λ
(p)
1 = H

πdp
= pax N1

2πrp
= N1

2Paxrp
. (19.3.3)

Lead Angle on Worm Operating Pitch Cylinder
The lead angles on the worm operating pitch cylinder and ordinary pitch cylinder are
related as

tan λ
(o)
1 ro = tan λ

(p)
1 rp = p (19.3.4)

where p = H/(2π ) is the screw parameter. Equations (19.3.3) and (19.3.4) yield

tan λ
(o)
1 = N1

2Paxro
(19.3.5)

where ro is the chosen radius of the operating pitch cylinder. The difference between
ro and rp affects the shape of contact lines between the surfaces of the worm and the
worm-gear.

Relation Between Worm and Worm-Gear Pitches
We emphasize that we now consider the worm and worm-gear pitches on the operating
pitch cylinder (Fig. 19.3.2). The axial section of two neighboring teeth represents two
parallel curves. Therefore, the worm axial pitch pax is the same for the worm pitch
cylinder and the operating pitch cylinder. The normal pitch pn is the same for the worm
and the worm-gear and is represented by the equation

pn = pax cos λ
(o)
1 .

The worm-gear transverse pitch, pt , is represented by the equation (Fig. 19.3.2)

pt = pn

cos β
(o)
2

= pax cos λ
(o)
1

cos
[
90◦ ± (λ(o)

1 − γ
)] = ± pax cos λ

(o)
1

sin
(
γ − λ

(o)
1

)
(
provided γ − λ

(o)
1 �= 0

)
.

(19.3.6)
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Figure 19.3.2: Worm and worm-gear operating
pitch cylinders.

Here, β
(o)
2 is the gear helix angle on the worm-gear operating pitch cylinder. The upper

sign corresponds to the case where γ > λ
(o)
1 , and the lower sign corresponds to γ < λ

(o)
1 .

Equation (19.3.6) provides the positive sign for pt . Similar derivations for the left-hand
worm and worm-gear (Fig. 19.2.3) yield

pt = pax cos λ
(o)
1

sin
(
γ + λ

(o)
1

) . (19.3.7)

It is obvious that for the case of an orthogonal worm-gear drive (with γ = 90◦) we
obtain that pt = pax.

Radius of Worm-Gear Operating Pitch Cylinder
We take into account that

pt N2 = 2π Ro. (19.3.8)

Equations (19.3.6), (19.3.7), and (19.3.8) yield the following:

(i) Ro is represented for the right-hand worm and worm-gear as

Ro = ± pax N2 cos λ
(o)
1

2π sin
(
γ − λ

(1)
o
) (

provided γ − λ
(o)
1 �= 0

)
. (19.3.9)

The upper sign corresponds to the case when γ > λ
(o)
1 , and the lower sign corre-

sponds to the case when γ < λ
(o)
1 .

(ii) For the left-hand worm and worm-gear, we have

Ro = pax N2 cos λ
(o)
1

2π sin
(
γ + λ

(o)
1

) . (19.3.10)
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Representation of m21 in Terms of N1 and N2

The gear ratio m21 was represented for the right-hand and left-hand worms and worm-
gears by Eqs. (19.2.8) and (19.2.9), respectively. Equations (19.2.8), (19.2.9), (19.3.9),
and (19.3.10) yield

m21 = N1

N2
. (19.3.11)

Shortest Distance E
The shortest distance E between the axes of the worm and the worm-gear is

E = ro + Ro (19.3.12)

where

ro = N1 pax

2π tan λ
(o)
1

, (19.3.13)

and Ro is represented by Eq. (19.3.9) or Eq. (19.3.10). For the case when γ = 90◦ and
the operating pitch cylinders coincide with the ordinary pitch cylinders, we obtain

E = pax

2π

(
N1

tan λ
(o)
1

+ N2

)
. (19.3.14)

Relations Between Profile Angles in Axial, Normal,
and Transverse Sections
Consider the transverse, normal, and axial sections of the worm surface. The transverse
section is obtained by cutting of the surface by plane z = 0 [Fig. 19.3.3(a)]. The axial sec-
tion is obtained by cutting of the surface by plane y = 0 [Fig. 19.3.3(d)]. Figure 19.3.3(b)
shows the unit tangent a to the helix on the pitch cylinder at point P of the helix. The
normal section [Fig. 19.3.3(c)] is obtained by cutting of the surface by plane � that
passes through the x axis and is perpendicular to vector a [Fig. 19.3.3(b)]. The normal
section is shown in Fig. 19.3.3(c), and the unit tangent to the profile at point P is b.

The unit normal n to the worm surface at P is represented as

n = a × b (19.3.15)

where

a = [0 cos λp sin λp]T

b = [cos αn sin αn sin λp − sin αn cos λp]T,
(19.3.16)

and λp is the lead angle of the helix at the pitch cylinder. Equations (19.3.15) and
(19.3.16) yield

n = [− sin αn cos αn sin λp − cos αn cos λp]T. (19.3.17)

Projections of the unit normal are shown in Fig. 19.3.3. The orientations of the
tangents to the profiles in the transverse, normal, and axial sections are represented by
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Figure 19.3.3: Sections of worm sur-
face: (a) tooth cross section; (b) worm
pitch cylinder in 3D-space; (c) section
of pitch cylinder by plane �; (d) axial
section of worm tooth.

angles αt , αn, and αax, respectively. It is evident from Fig. 19.3.3 that

tan αt = −nx

ny
= tan αn

sin λp
, tan αax = nx

nz
= tan αn

cos λp
.

Thus,

tan αn = tan αt sin λp = tan αax cos λp. (19.3.18)

Equation (19.3.18) relates the profile angles in normal, transverse, and axial sections.
Let us now consider a particular case, an involute worm. We may express the radius

rb of the base cylinder of an involute worm in terms of the screw parameter p, the lead
angle on the pitch cylinder λp, and the axial profile angle αax. The derivations are based
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on the following considerations:

cos αt = rb

rp
= tan λp

tan λb
. (19.3.19)

Equation (19.3.18) yields

tan αt = tan αax

tan λp
. (19.3.20)

The radius of the base cylinder is represented as

rb = p
tan λb

= p
tan λp

cos αt = p
tan λp(1 + tan2 αt )1/2

. (19.3.21)

Equations (19.3.20) and (19.3.21) yield the following final expression for rb:

rb = p
(tan2 αax + tan2 λp)1/2

. (19.3.22)

19.4 GENERATION AND GEOMETRY OF ZA WORMS

The worm is generated by a straight-lined blade (Fig. 19.4.1). The cutting edges of the
blade are installed in the axial section of the worm.

Henceforth we consider two generating lines, I and II, that generate the surface sides I
and II of the worm space, respectively (Fig. 19.4.2). The generating lines are represented
in coordinate system Sb that is rigidly connected to the blade. The respective surfaces of
both sides of the worm thread are generated while coordinate system Sb performs the
screw motion about the worm axis (Fig. 19.4.3). The generated surface is represented
in coordinate system S1 by the matrix equation

r1(u, θ ) = M1b(θ ) rb(u). (19.4.1)

Here, the coordinate system S1 is rigidly connected to the worm; θ is the angle of
rotation in the screw motion; parameter u determines the location of a current point
on the generating line and is measured from the point of intersection of the generating
line with the zb axis. Thus u = |BB ′| for the current point B ′ of the left generating line
II. Similarly, u = |AA′| for the current point A′ of the right generating line I.

Figure 19.4.1: Installation of blade for generation of an Archimedes worm.
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Figure 19.4.2: Geometry of straight-lined blade.

The unit surface normal is represented in coordinate system S1 by the equations

n1(u, θ ) = ± k N1 = ± k
(

∂r1

∂u
× ∂r1

∂θ

)
(19.4.2)

where k = 1/|N1|. The upper or lower sign must be chosen with the condition that the
surface unit normal will be directed toward the worm thread.

Matrix M1b is represented by the equation (Fig. 19.4.3)

M1b =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 ±pθ

0 0 0 1

 . (19.4.3)

Figure 19.4.3: Coordinate transformation in the
case of screw motion.
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Here, p is the screw parameter that is considered as an arithmetic value (p > 0). The
upper and lower signs for pθ correspond to the cases when a right-hand worm and
a left-hand worm are generated, respectively. Figure 19.4.3 shows the generation of a
right-hand worm. The surface sides I and II for right-hand and left-hand worms are
generated by generating line I and generating line II, respectively.

Using Eqs. (19.4.1) and (19.4.2) we may represent the surface equations and the
surface unit normals for both sides of the worm thread in S1 as follows:

(i) Surface side I, right-hand worm:

x1 = u cos α cos θ

y1 = u cos α sin θ

z1 = −u sin α +
(
rp tan α − sp

2

)
+ pθ.

(19.4.4)

The surface unit normal is

n1 = −k[(p sin θ + u sin α cos θ ) i1 − (p cos θ − u sin α sin θ ) j1 + u cos α k1]

(provided cos α �= 0) (19.4.5)

where k = 1/(p2 + u2)0.5. We recall that parameter u is measured along the gen-
erating line I from point A of intersection of this line with axis zb (Fig. 19.4.2).
Design parameter sp is equal to the axial width wax of the worm space in the axial
section. For standard worm gear drives we have

wax = π

2Pax
(19.4.6)

where Pax is the axial diametral pitch.
(ii) Surface side II, right-hand worm:

x1 = u cos α cos θ

y1 = u cos α sin θ

z1 = u sin α −
(
rp tan α − sp

2

)
+ pθ.

(19.4.7)

The surface unit normal is

n1 = k[(p sin θ − u sin α cos θ ) i1 − (p cos θ + u sin α sin θ ) j1 + u cos α k1]

(provided cos α �= 0) (19.4.8)

where k = 1/(p2 + u2)0.5.
(iii) Surface side I, left-hand worm:

x1 = u cos α cos θ

y1 = u cos α sin θ

z1 = −u sin α +
(
rp tan α − sp

2

)
− pθ.

(19.4.9)

The surface unit normal is

n1 = −k[(−p sin θ + u sin α cos θ ) i1 + (p cos θ + u sin α sin θ ) j1 + u cos α k1]

(provided cos α �= 0) (19.4.10)

where k = 1/(p2 + u2)0.5.
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(iv) Surface side II, left-hand worm:

x1 = u cos α cos θ

y1 = u cos α sin θ

z1 = u sin α −
(
rp tan α − sp

2

)
− pθ.

(19.4.11)

The surface unit normal is

n1 = k[−(p sin θ + u sin α cos θ ) i1 + (p cos θ − u sin α sin θ) j1 + u cos α k1]

(provided cos α �= 0) (19.4.12)

where k = 1/(p2 + u2)0.5.

Problem 19.4.1
The worm surface �1 is represented by Eqs. (19.4.7). Consider the axial section of �1

as the intersection of �1 by plane y1 = 0. Equations (19.4.7) with y1 = 0 provide two
solutions:

(i) Derive the equations of two axial sections as x1 = x1(u), and z1 = z1(u).
(ii) Determine coordinates x1 and z1 for the point of intersection of the respective axial

section with the pitch cylinder of radius rp.

Solution
(i) Solution 1

x1 = u cos α, y1 = 0, z1 = u sin α −
(
rp tan α − sp

2

)
.

Solution 2

x1 = −u cos α, y1 = 0, z1 = u sin α −
(
rp tan α − sp

2

)
+ pπ.

(ii) Solution 1

θ = 0, x1 = rp, z1 = sp

2
.

Solution 2

θ = π, x1 = −rp, z1 = sp

2
+ pπ.

Problem 19.4.2
The worm surface �1 is represented by Eqs. (19.4.7). Consider the cross section of �1

by plane z1 = 0. Investigate the equation r1 = r1(θ ), where r1 = (x2
1 + y2

1 )0.5, and verify
that it represents the Archimedes spiral.

Solution
(i) Equation z1 = 0 yields

u =
rp tan α − sp

2
− pθ

sin α
= a − pθ

sin α
.
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Figure 19.4.4: Cross section of an Archimedes
worm.

(ii) The cross section is represented by equations

x1 = (a − pθ ) cot α cos θ, y1 = (a − pθ ) cot α sin θ.

(iii) Equation

r1 = (x2
1 + y2

1

)0.5

yields

r1 = (a − pθ ) cot α.

The magnitude of the initial position vector for θ = 0 is r1 = a cot α. The increment
and decrement of the magnitude of the position vector is proportional to θ , and this is
the proof that the cross section is an Archimedes spiral. Figure 19.4.4 shows the cross
section of the ZA worm with three threads.

19.5 GENERATION AND GEOMETRY OF ZN WORMS

Generation
ZA worms are used if the lead angle of the worm is small enough (λp ≤ 10◦). In the
case of generation of worms with large lead angles, the blade is installed as shown
in Figs. 19.5.1(a) or (b) to provide better conditions of cutting. The first version of
installation [Fig. 19.5.1(a)] provides straight-lined shapes in the normal section of the
thread. Straight-lined shapes are provided in the normal section of the space with the
second version of installation [Fig. 19.5.1(b)]. The surfaces of the worm will be generated
by the blade performing a screw motion with respect to the worm.

To describe the installation of the blade with respect to the worm, we use coordinate
systems Sa and Sb that are rigidly connected to the blade and the worm. We start the
discussion with the generation of the worm space (Fig. 19.5.2). Axis zb coincides with
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Figure 19.5.1: Blade installation for genera-
tion of ZN worm: (a) for thread generation;
(b) for space generation.

Figure 19.5.2: Coordinate systems applied for blade in-
stallation.
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Figure 19.5.3: Representation of generating lines in
coordinate system Sa .

the worm axis; axes za and zb form angle λp that is the lead angle on the worm pitch
cylinder; the origins Oa and Ob lie on the worm axis.

The straight-lined shapes of the blades are shown in Fig. 19.5.3. The extended straight
lines are in tangency with the cylinder of the to-be-determined radius ρ. The intersection
of plane ya = 0 of coordinate system Sa with the cylinder represents an ellipse with axes
2ρ and 2ρ/sin λp. The coordinate transformation from Sa to Sb is represented by the
matrix Mba :

Mba =


1 0 0 0

0 cos λp ∓ sin λp 0

0 ± sin λp cos λp 0

0 0 0 1

 . (19.5.1)

The upper and lower signs correspond to the generation of a right-hand worm and
left-hand worm, respectively.
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Figure 19.5.4: Interpretation of ellipse equations.

Representation of Generating Lines in Coordinate Systems Sa

Henceforth we consider the generating lines I and II (Fig. 19.5.3). Each generating line
is tangent to the ellipse whose equations are represented in Sa in parametric form as

Ra =
[
ρ sin µ 0

ρ

sin λp
cos µ

]T

. (19.5.2)

Figure 19.5.4 illustrates the determination of coordinates of current point C of the
ellipse; µ is the variable parameter.

The unit tangent τ a to the ellipse is represented by the equation

τ a = Ta

|Ta | = ρ

|Ta |
[
cos µ 0 − sin µ

sin λp

]T (
Ta = dRa

dµ

)
. (19.5.3)

The direction of τ a that is shown in Fig. 19.5.3 coincides with the direction of increment
of parameter µ (Fig. 19.5.4).

The unit vectors b(i )
a (i = I, II ) of the generating lines I and II are represented in Sa

as follows:

b(I )
a = [cos α 0 − sin α]T (19.5.4)

b(II )
a = [cos α 0 sin α]T. (19.5.5)

It is evident that at the point of tangency of the generating line with the ellipse (point
M and respectively M′), we have b(I )

a = τ
(I )
a and b(II )

a = −τ
(II )
a . Equations (19.5.3),

(19.5.4), and (19.5.5) yield (see additional explanations in Notes 1 and 2, which
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follow this section)

ρ

|Ta | = cos δ, cos µ(I ) = cos α

cos δ

sin µ(I ) = sin α sin λp

cos δ
= tan δ tan λp

cos µ(II ) = −cos α

cos δ
, sin µ(II ) = sin α sin λp

cos δ
= tan δ tan λp.

(19.5.6)

Here,

cos δ = (cos2 α + sin2 α sin2 λp)0.5, sin δ = sin α cos λp. (19.5.7)

The designations “I” and “II” indicate the generating lines I and II.
The generating lines are represented in Sa by the equations

xa = ρ sin µ ± u cos δ cos µ

ya = 0

za = ρ cos µ

sin λp
∓ u

cos δ sin µ

sin λp
.

(19.5.8)

The upper and lower signs in Eqs. (19.5.8) correspond to the generating lines I and II,
respectively. The designations “I” and “II” have been dropped but the magnitudes of
µ are different for generating lines I and II [see Eqs. (19.5.6)]. Parameter u determines
the location of current point A (or A′) on the generating line; u = |MA| and u = |M′A′|
as shown in Fig. 19.5.3.

Note 1: Determination of Expressions for cos δ and sin δ
Using the equality b(I )

a = τ
(I )
a , and Eqs. (19.5.3) and (19.5.4), we obtain

ρ

|Ta | cos µ(I ) = cos α,
ρ

|Ta |
sin µ(I )

sin λp
= sin α. (19.5.9)

Equations (19.5.9) yield

cos µ(I ) =
(

ρ

|Ta |
)−1

cos α, sin µ(I ) =
(

ρ

|Ta |
)−1

sin α sin λp. (19.5.10)

Using Eqs. (19.5.10), we obtain that

ρ

|Ta | = (cos2 α + sin2 α sin2 λp)0.5. (19.5.11)

Using for the purpose of simplification the designation

ρ

|Ta | = cos δ, (19.5.12)

we obtain the following expressions for cos δ and sin δ:

cos δ = (cos2 α + sin2 α sin2 λp)0.5, sin δ = (1 − cos2 δ)0.5 = sin α cos λp.

Equations (19.5.7) are confirmed.
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Note 2: Derivation of Expressions for cosµ and sinµ
Equations (19.5.9) yield

cos µ(I ) = cos α

cos δ
, sin µ(I ) = sin α sin λp

cos δ
(19.5.13)

because |ρ/Ta | = cos δ.
Taking into account that sin δ = sin α cos λp [see Eqs. (19.5.7)], we obtain

cos µ(I ) = cos α

cos δ
, sin µ(I ) = tan δ tan λp. (19.5.14)

Similarly, we can derive the expressions for cos µ(II ) and sin µ(II ). The expressions
for cos µ(i ), sin µ(i ) (i = I, II ) have been represented in Eqs. (19.5.6).

Determination of ρ
Equations (19.5.8) represent generating lines that are tangents to the ellipse shown in
Fig. 19.5.3. The points of tangency are M and M′, respectively. Equations (19.5.8) for
point N of the generating lines (Fig. 19.5.3) are represented as

ρ sin µ ± u∗ cos δ cos µ = d,
ρ cos µ

sin λp
∓ u∗ cos δ sin µ

sin λp
= 0 (19.5.15)

where u∗ = |MN | = |M′N |, d = Oa N = rp − (sp/2) cot α.
We consider Eqs. (19.5.15) as a system of two linear equations in the unknowns u∗

and ρ and represent them as

a11ρ + a12u∗ = d, a21ρ + a22u∗ = 0. (19.5.16)

The solution for the unknown ρ is

ρ = �1

�
(19.5.17)

where

�1 =
∣∣∣∣∣d a12

0 a22

∣∣∣∣∣ = ∓
(

d cos δ sin µ

sin λp

)
(19.5.18)

� =
∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = ∓
(

cos δ

sin λp

)
. (19.5.19)

Equations (19.5.16) to (19.5.19) yield

ρ = d
sin α sin λp

(cos2 α + sin2 α sin2 λp)0.5
(19.5.20)

where

d = rp − sp

2
cot α.



P1: JsY

CB672-19 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 1:28

19.5 Generation and Geometry of ZN Worms 567

Figure 19.5.5: Worm thread generation [Fig.
19.5.1(a)]: representation of generating lines in
Sa .

For the case where the blades are installed as shown in Fig. 19.5.1(a), we obtain that
(Fig. 19.5.5)

d = rp + wp

2
cot α. (19.5.21)

Here, wp is the distance between the blades measured as shown in Fig. 19.5.5.

Equations of Surfaces of Worm Thread
The surface of the worm thread is generated by the edge of the blade (the generating
line) that performs a screw motion about the worm axis. The vector equation of the
surface is represented in S1 by the following matrix equation:

r1(θ, u) = M1b(θ )Mba ra (u). (19.5.22)

Here, ra (u) is the vector equation of the generating line that is represented in coordinate
system Sa ; matrix Mba is represented by (19.5.1); matrix M1b is represented by (19.4.3).

The surface unit normal is represented as follows:

n1(u, θ ) = ± N1

|N1| , N1 = ∂r1

∂u
× ∂r1

∂θ
. (19.5.23)

Choosing the proper sign in Eqs. (19.5.23), we may obtain that the surface normal will
be directed toward the worm thread.

Surfaces and surface unit normals of ZN worms are represented as follows:

(i) Surface side I, right-hand worm:

x1 = ρ sin(θ + µ) + u cos δ cos(θ + µ)
y1 = −ρ cos(θ + µ) + u cos δ sin(θ + µ)

z1 = ρ
cos α cot λp

cos δ
− u sin δ + pθ.

(19.5.24)
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Here,

cos µ = cos α

cos δ
, sin µ = sin α sin λp

cos δ
,

cos δ = (cos2 α + sin2 α sin2 λp)1/2, sin δ = sin α cos λp.

(19.5.25)

Surface unit normal components:

nx1 = −1
k

[(p + ρ tan δ) sin(θ + µ) + u sin δ cos(θ + µ)]

ny1 = −1
k

[−(p + ρ tan δ) cos(θ + µ) + u sin δ sin(θ + µ)]

nz1 = −u cos δ

k
.

(19.5.26)

Here,

k = [(p + ρ tan δ)2 + u2]0.5.

(ii) Surface side II, right-hand worm:

x1 = ρ sin(θ + µ) − u cos δ cos(θ + µ)
y1 = −ρ cos(θ + µ) − u cos δ sin(θ + µ)

z1 = −ρ
cos α cot λp

cos δ
+ u sin δ + pθ.

(19.5.27)

Here, cos µ = −cos α/cos δ, sin µ = sin α sin λp/cos δ; the expressions for cos δ

and sin δ are the same as those in Eqs. (19.5.25).
Surface unit normal components:

nx1 = 1
k

[−(p + ρ tan δ) sin(θ + µ) + u sin δ cos(θ + µ)]

ny1 = 1
k

[(p + ρ tan δ) cos(θ + µ) + u sin δ sin(θ + µ)]

nz1 = u cos δ

k
.

(19.5.28)

(iii) Surface side I, left-hand worm:

x1 = −ρ sin(θ − µ) + u cos δ cos(θ − µ)
y1 = ρ cos(θ − µ) + u cos δ sin(θ − µ)

z1 = ρ
cos α cot λp

cos δ
− u sin δ − pθ.

(19.5.29)

Here,

cos µ = cos α

cos δ
, sin µ = sin α sin λp

cos δ
= tan δ tan λp. (19.5.30)
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Surface unit normal components:

nx1 = 1
k

[(p + ρ tan δ) sin(θ − µ) − u sin δ cos(θ − µ)]

ny1 = 1
k

[−(p + ρ tan δ) cos(θ − µ) − u sin δ sin(θ − µ)]

nz1 = −u cos δ

k
.

(19.5.31)

(iv) Surface side II, left-hand worm:

x1 = −ρ sin(θ − µ) − u cos δ cos(θ − µ)
y1 = ρ cos(θ − µ) − u cos δ sin(θ − µ)

z1 = −ρ
cos α cot λp

cos δ
+ u sin δ − pθ.

(19.5.32)

Here,

cos µ = −cos α

cos δ
, sin µ = sin α sin λp

cos δ
= tan δ tan λp. (19.5.33)

Surface unit normal components:

nx1 = 1
k

[(p + ρ tan δ) sin(θ − µ) + u sin δ cos(θ − µ)]

ny1 = 1
k

[−(p + ρ tan δ) cos(θ − µ) + u sin δ sin(θ − µ)]

nz1 = u cos δ

k
.

(19.5.34)

Kinematic Interpretation of Surface Generation
The visualization of generation of the worm surface is based on the following consid-
erations:

(i) The generating line L( j ) ( j = I, II ) may be represented in plane �( j ) that is tangent
to the cylinder of radius ρ (superscripts I and II indicate the generating lines I and
II, respectively).

(ii) L( j ) and the worm axis represent two crossed straight lines. Thus, L( j ) may be
represented in a coordinate system Sτ

( j ) whose unit vectors we designate as e( j )
1 ,

e( j )
2 , and e( j )

3 . The unit vector e( j )
3 is directed along the worm axis and e( j )

3 = kb.
Unit vector e( j )

1 is directed along the shortest distance between the unit vectors of
the generating line and the worm axis. Unit vector e( j )

2 is determined as the cross
product of e( j )

1 and e( j )
3 (see below).

(iii) Coordinate systems S ( j )
τ ( j = I, II ) and Sb (Figs. 19.5.6 and 19.5.7) are rigidly

connected to each other and perform a screw motion with the screw parameter p
about the worm axis. Point M( j ) of the intersection of L( j ) with e( j )

1 generates in
screw motion a helix on the cylinder of radius ρ. The unit tangent to the helix at
point M( j ) and the unit vector b( j ) of L( j ) do not coincide in the case of ZN worms
and form a certain angle.
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Figure 19.5.6: Representation of generating line
I in Sτ .

(iv) We may consider now two rigidly connected straight lines with unit vectors b( j )

and τ that lie in tangent plane �( j ) and have a common point M( j ) as the point of
their intersection. Both of these straight lines perform the same screw motion, and
straight line L( j ) generates the worm surface that is a convolute surface. Line L( j )

would generate a screw involute surface if L( j ) were to coincide with τ ( j ).

For further derivations, we consider the following equation:

Ob N = Ob O( j )
τ + O( j )

τ M( j ) + M( j )N . (19.5.35)

Here, N is the point of intersection of both generating lines (Fig. 19.5.3), and

Ob N = d ib. (19.5.36)

Figure 19.5.7: Representation of generating
line II in Sτ .
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Vectors Ob O( j )
τ , O( j )

τ M( j ), and M( j )N may be represented in Sb as

Ob O( j )
τ = λ( j )kb ( j = I, II ) (19.5.37)

O( j )
τ M( j ) = ρ e( j )

1b (19.5.38)

where

e( j )
1b = ± b( j )

b × kb∣∣b( j )
b × kb

∣∣ (19.5.39)

M( j )N = m b( j )
b (19.5.40)

e( j )
2b = e( j )

3b × e( j )
1b . (19.5.41)

The subscript “b” in e( j )
1b and e( j )

2b indicates that these vectors are represented in Sb.
The determination of the proper sign in Eq. (19.5.39) is based on the following

considerations:

(i) Equations (19.5.35) to (19.5.39) yield

d
(
ib · e( j )

1b

) = ρ. (19.5.42)

(ii) Taking into account that d and ρ are positive, we get

ib · e( j )
1b > 0. (19.5.43)

(iii) Equations (19.5.42) and (19.5.43) yield that the upper (lower) sign in Eq. (19.5.39)
corresponds to the case where j = I ( j = II ).

Using expressions (19.5.39) and (19.5.40), we can determine the direction cosines
for vectors e( j )

1b and e( j )
2b ( j = I, II ) in coordinate system Sb. We can determine as well

the location of origin O( j )
τ ( j = I, II ) in Sb using vector equation (19.5.35). Then we

obtain the following matrices for coordinate transformation,

M(I )
τb =



tan λp tan δ −cos α

cos δ
0 0

cos α

cos δ
tan λp tan δ 0 0

0 0 1 −d cos α tan δ

cos δ

0 0 0 1


(19.5.44)

M(II )
τb =



sin α sin λp

cos δ

cos α

cos δ
0 0

−cos α

cos δ

sin α sin λp

cos δ
0 0

0 0 1
d cos α tan δ

cos δ

0 0 0 1


. (19.5.45)



P1: JsY

CB672-19 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 1:28

572 Worm-Gear Drives with Cylindrical Worms

The generating lines are represented in S ( j )
τ by the following equations (Figs. 19.5.6

and 19.5.7):

b(I )
τ = [ 0 cos δ − sin δ ]T (19.5.46)

b(II )
τ = [ 0 − cos δ sin δ ]T. (19.5.47)

The tangent to the helix at point M( j ) is represented in S ( j )
τ by

τ ( j )
τ = [ 0 cos λρ sin λρ ]T (19.5.48)

where

λρ = arctan
(

p
ρ

)
. (19.5.49)

Using similar derivations for a right-hand worm, we obtain the equations of gener-
ating lines for the left-hand worm. The generating lines are represented in coordinate
systems S ( j )

τ ( j = I, II ) that enable us to determine the orientation of the generating
line in plane �( j ) that is tangent to the cylinder of radius ρ (Figs. 19.5.6 and 19.5.7).

The unit vectors of the right and left generating lines are represented in S (I )
τ and S (II )

τ

as follows:

b(I )
τ = [ 0 − cos δ − sin δ ]T (19.5.50)

b(II )
τ = [ 0 cos δ sin δ ]T. (19.5.51)

The cross section of the worm surface is an extended involute (Fig. 19.5.8) that is
traced out by point Bo of the segment Bo M; this segment is rigidly connected to the

Figure 19.5.8: Extended involute as the
profile of ZN worm cross section.
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Figure 19.5.9: Cross section of ZN worm.

straight line that rolls over the circle of radius p/ tan δρ . The cross section of a ZN worm
with three threads is represented in Fig. 19.5.9.

Particular Cases
The surface of Archimedes worm (ZA) is a particular case of the screw convolute surface
(ZN). Equations of surface ZA can be derived from the equations of surface ZN taking
ρ = 0 and δ = α, µ = 0 and µ = π for the surface sides I and II, respectively. The screw
involute surface can be derived from the equations of convolute screw surface (ZN) by
considering that the generating line is the tangent to the helix on the cylinder of radius
ρ (see below).

Problem 19.5.1
Consider that the worm surface represented by Eqs. (19.5.24) is cut by the plane y1 = 0.
Axis x1 is the axis of symmetry of the space in axial section. The point of intersection
of the axial profile with the pitch cylinder is determined with the coordinates

x1 = rp, z1 = −wax

2
= − pax

4
= − π

4Pax
.

Here, wax is the nominal value of the space width in axial section that is measured along
the generatrix of the pitch cylinder; pax is the distance between two neighboring threads
along the generatrix of the pitch cylinder; Pax = π/pax is the worm axial diametral pitch.

Derive the system of equations to be applied to determine sp (Fig. 19.5.3) considering
rp, p, wax, and α as given.

Solution
Angle θ can be obtained from the following equation:

rp

(
sin θ

tan λp
+ tan λp θ

)
+ wax

2
= 0. (19.5.52)
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Then, sp can be expressed as

sp = 2rp

[
(1 − cos θ ) tan α − sin θ

sin λp

]
. (19.5.53)

While solving the nonlinear equation, we take for the first guess sin θ ≈ θ .

Directions
(1) Equation (19.5.52) can be derived considering the following system of equations:

x1 = ρ sin(θ + µ) + u cos δ cos(θ + µ) = rp (19.5.54)

y1 = −ρ cos(θ + µ) + u cos δ sin(θ + µ) = 0 (19.5.55)

z1 = ρ
cos α cot λp

cos δ
− u sin δ + pθ = −wax

2
. (19.5.56)

Equation (19.5.55) yields

u cos δ = ρ

tan(θ + µ)
. (19.5.57)

Equations (19.5.54) and (19.5.55) considered simultaneously yield

ρ = rp sin(θ + µ). (19.5.58)

We may consider Eqs. (19.5.54), (19.5.55), and (19.5.56) as a system of three
linear equations in the unknowns u and ρ. If such a system indeed exists, the rank
of the augmented matrix must be equal to 2. This requirement yields an equation
that coincides with Eq. (19.5.52) represented above.

(2) The derivation of Eq. (19.5.53) is based on the following considerations:
(a) According to Eq. (19.5.20), we have

ρ =
(
rp − sp

2
cot α

) sin α sin λp

(cos2 α + sin2 α sin2 λp)0.5
.

(b) We transform this equation using the substitutions [see Eqs. (19.5.58) and
(19.5.25)]

ρ = rp sin(θ + µ), cos µ cos δ = cos α, sin µ cos δ = sin α sin λp

cos δ = (cos2 α + sin2 α sin2 λp)0.5.

After transformations, we obtain Eq. (19.5.53) represented above.

19.6 GENERATION AND GEOMETRY OF ZI (INVOLUTE) WORMS

Surface Equations
The worm surface is generated by a straight line that performs a screw motion and is
tangent to the helix Mo M on the base cylinder (Fig. 19.6.1). The position vector O1N
of a current point of the surface side I for a right-hand worm is represented as

O1N = O1K + K M + MN . (19.6.1)
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Figure 19.6.1: Generation of screw involute
surface for the surface side I of a right-hand
worm.

Here,

O1K = rb(cos θ i1 + sin θ j1), KM = pθ k1,

MN = u cos λb(sin θ i1 − cos θ j1) − u sin λb k1

(19.6.2)

where rb is the radius of the base cylinder, λb is the helix lead angle, p = rb tan λb is the
screw parameter, and variables u and θ are the surface parameters.

Equations (19.6.1) and (19.6.2) yield

x1 = rb cos θ + u cos λb sin θ

y1 = rb sin θ − u cos λb cos θ

z1 = −u sin λb + pθ.

(19.6.3)

The surface unit normal directed toward the worm thread is represented by

n1 = N1

|N1| , N1 = ∂r1

∂θ
× ∂r1

∂u
. (19.6.4)

Then we derive that

n1 = [− sin λb sin θ sin λb cos θ − cos λb]T

(19.6.5)
(provided u cos λb �= 0).

The orientation of surface unit normal n1 does not depend on u. This means that the
unit normals along the generating line have the same orientation, and the worm surface
is a ruled developed one. (We recall that the surfaces of ZA worms and ZN worms are
ruled but undeveloped surfaces.)
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Figure 19.6.2: Derivation of screw involute sur-
face for the surface side II of a right-hand worm.

It is easy to verify that N1 = 0 when u = 0. Thus, the surface point is singular at the
point of tangency of the generating line with the helix. At such a point, vectors ∂r1/∂u
and ∂r1/∂θ are collinear.

The cross section of the worm surface by z1 = c is an involute curve with the radius
of base circle rb.

The derivation of surface side II of the right-hand worm is based on drawings repre-
sented in Fig. 19.6.2. Using considerations similar to those discussed above, we obtain
the following equations for the surface and its unit normal:

x1 = rb cos θ + u cos λb sin θ

y1 = −rb sin θ + u cos λb cos θ

z1 = u sin λb − pθ

(19.6.6)

n1 = [− sin λb sin θ − sin λb cos θ cos λb
]T

(19.6.7)
(provided u cos λb �= 0).

Our next goal is to represent the surface equations for both sides with the x1 axis as
the axis of symmetry for the cross section z1 = 0. Figure 19.6.3 yields that

µ = wt

2rp
− inv αt . (19.6.8)

Here, wt is the cross section space width on the pitch cylinder and αt is the profile angle
in transverse section (formed between the position vector O1 P and the tangent to the
profile at point P ). It is known from the involute trigonometry that

inv αt = tan αt − αt , αt = arccos
(

rb

rp

)
. (19.6.9)
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Figure 19.6.3: Involute worm cross sections: (a) with profile I ; (b) with profile II.

We recall that the transverse and axial shape angles, αt and αax, are related by
Eq. (19.3.20), and the radius of the base cylinder is represented by Eq. (19.3.21). The
final expressions for both sides of the worm surface, for right-hand and left-hand worms,
are as follows:

(i) Surface side I, right-hand worm:

x1 = rb cos(θ + µ) + u cos λb sin(θ + µ)
y1 = rb sin(θ + µ) − u cos λb cos(θ + µ)
z1 = −u sin λb + pθ

(19.6.10)

n1 = [− sin λb sin(θ + µ) sin λb cos(θ + µ) − cos λb]T. (19.6.11)

Angles θ and µ are measured clockwise from O1MI to the direction of the y1 axis
for an observer located on the negative axis z1.
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(ii) Surface side II, right-hand worm:

x1 = rb cos(θ + µ) + u cos λb sin(θ + µ)
y1 = −rb sin(θ + µ) + u cos λb cos(θ + µ)
z1 = u sin λb − pθ

(19.6.12)

n1 = [− sin λb sin(θ + µ) − sin λb cos(θ + µ) cos λb]T. (19.6.13)

Angles θ and µ are measured counterclockwise from O1MII to the direction of
negative axis y1 for an observer located on the negative axis z1.

(iii) Surface side I, left-hand worm:

x1 = rb cos(θ + µ) + u cos λb sin(θ + µ)
y1 = rb sin(θ + µ) − u cos λb cos(θ + µ)
z1 = u sin λb − pθ

(19.6.14)

n1 = [− sin λb sin(θ + µ) sin λb cos(θ + µ) cos λb]T. (19.6.15)

Angles θ and µ are measured clockwise from O1MI to the direction of the y1 axis
for an observer located on the negative axis z1.

(iv) Surface side II, left-hand worm:

x1 = rb cos(θ + µ) + u cos λb sin(θ + µ)
y1 = −rb sin(θ + µ) + u cos λb cos(θ + µ)
z1 = −u sin λb + pθ

(19.6.16)

n1 = [− sin λb sin(θ + µ) − sin λb cos(θ + µ) − cos λb]T. (19.6.17)

Angles θ and µ are measured counterclockwise from O1MII to the direction of
negative axis y1 for an observer located on the negative axis z1.

Methods for Generation
The worm surface can be generated (i) by a blade, (ii) by a milling cutter, and (iii) by
a grinding plane. Generation by a blade is based on simulation of the screw motion
of the generating straight line that is the tangent to the helix on the base cylinder
(Fig. 19.6.4). The coincidence of the blade edge with the generating line is provided if
the face plane of the blade is tangent to the worm base cylinder, and the profile angle of
the edge is equal to the lead angle λb (Fig. 19.6.4). Each side surface of the worm must
be generated separately.

Figure 19.6.4: Generation of involute worm by a blade.
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Figure 19.6.5: Generation of involute worm by
plane: installment of grinding plane with respect
to (a) b–b, and (b) h–h.

Generation by a plane becomes possible because the worm surface is a developed
ruled surface. Such a method is used for grinding, for instance, by D. Brown Co.
(Fig. 19.6.5). The grinding is performed by a plane. The head with the grinding wheel
has two degrees of freedom and can be installed with respect to the worm axis by turn-
ing about the mutually perpendicular axes a–a and b–b. The third degree of freedom –
rotation of the grinding wheel about the h–h axis – is not related with the process of
generation and provides the desired velocity of grinding. The turn of the grinding wheel
about the a–a and b–b axes provides that the grinding plane �t becomes tangent to the
worm surface �1. Plane �t and surface �1 contact each other at every instant along a
straight line that is the generating line L. The normals to �1 along L and axis h–h of
the grinding wheel have the same orientation. The relative motion of the worm with
respect to the grinding wheel is the screw motion about the worm axis with the screw
parameter p of the screw involute surface. The worm surface is originated as the family
of straight lines L that are generated in the screw motion described above.

The installation of the grinding wheel with respect to the worm is based on the
following considerations:

(i) We set up three coordinate systems (Fig. 19.6.6): (a) movable system Sa that is
rigidly connected to the grinding wheel, (b) movable coordinate system Sb that
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Figure 19.6.6: Installation of grinding
wheel and applied coordinate systems:
initial installation of grinding wheel with
(a) position l1 of vector c, (b) position l2

of c, and (c) position l3 of c.

is rigidly connected to the grinding head, and (c) fixed coordinated system So

that is rigidly connected to the frame where the head with the grinding wheel is
mounted. Coordinate system Sb may be rotated about the b–b axis of the frame,
and coordinate system Sa may be rotated about the a–a axis that is mounted in Sb.

(ii) Consider that initially axis h–h of the grinding wheel and the axis of the worm lie
in parallel planes and form angle γ [Fig. 19.6.6(a)]. The unit vector c of the axis
of the grinding wheel will be in position l1.

(iii) Then, consider that coordinate systems Sa and Sb are turned about the xb axis
(about the b–b axis) under the angle q [Fig. 19.6.6(b)]. Unit vector c will be in
position l2.

(iv) Figure 19.6.6(c) shows that coordinate system Sa is turned about the yb axis (axis
a–a) under angle τ . Unit vector c will take position l3.

We may represent unit vector c in coordinate system So using the following
matrix equation:

co = MobMba ca . (19.6.18)

Equation (19.6.18) yields

co = sin τ cos γ io + (sin γ cos q + cos γ sin q cos τ ) jo

+ (− sin γ sin q + cos γ cos q cos τ ) ko. (19.6.19)

(v) The unit normal n1 to the worm surface was represented in S1 by Eq. (19.6.5).
Changing the direction of n1 for the opposite one, after derivations, we represent in



P1: JsY

CB672-19 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 1:28

19.7 Geometry and Generation of K Worms 581

coordinate system So the unit normal no of the worm surface as

no = [sin λb sin(φ1 + θ ) − sin λb cos(φ1 + θ ) cos λb]T (19.6.20)

where φ1 is the angle of worm rotation in the screw motion.

Taking into account that no = co, we may obtain two independent equations that
relate four parameters: (φ1 + θ ), γ , q, and τ . Two of these parameters must be chosen,
and then the remaining two can be derived. Considering, for instance, that (φ1 + θ ) =
π/2 + αt , we may use the following computation procedure for determination of τ and
q considering that γ is chosen.

Step 1: Determination of τ .

sin τ = sin λb cos αt

cos γ
= sin λp cos αn

cos γ
. (19.6.21)

Equation (19.6.21) provides two solutions for τ , but it is assumed that the solution
with the smaller value of τ is to be chosen.

Step 2: Determination of q.
The unique solution for q is determined with the following equations:

sin q = sin λb sin αt cos γ cos τ − sin γ cos λb

1 − cos2 γ sin2 τ

= sin αn cos γ cos τ − sin γ cos λb

1 − sin2 λp cos2 αn

(19.6.22)

cos q = cos γ cos τ cos λb + sin γ sin λb sin αt

1 − cos2 γ sin2 τ

= cos γ cos τ cos λb + sin γ sin αn

1 − sin2 λp cos2 αn
.

(19.6.23)

The profile angles αt and αn, in the transverse and normal sections, respectively, are
related by Eq. (19.3.18).

19.7 GEOMETRY AND GENERATION OF K WORMS

Generation
The most important advantage of involute worm-gear drives is the possibility of grinding
the worm surface by a plane. An alternative method for grinding, developed for K
worms, is based on application of a grinding cone. The axes of the grinding wheel and
the worm being generated are crossed. The same method for generation can be used for
milling by a cutter that is shown in Fig. 19.7.1. The axial section of the tool (grinding
wheel or milling cutter) has the shape of the blade that is used for the generation of N
worms (Fig. 19.5.3), but the K worm surface differs from the N worm surface because
the K worms are generated by the tool surface, not by a blade.
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Figure 19.7.1: Cutter for milling of K worms: (a) illustration of the cutter; (b) illustration of parameters
a , sc/2, and rc of the cutter.

Applied Coordinate Systems
We use coordinate systems Sc and S1 rigidly connected to the cutter (tool) and the worm.
So is a fixed coordinate system used for description of applied tool settings and worm
motion. We consider that the tool in the process of generation is at rest, and the worm
being generated performs the screw motion about its axis with the screw parameter p
(Fig. 19.7.2); the axes of the tool and the worm are crossed forming the angle γc ; usually,
γc = λp, where λp is the lead angle on the worm pitch cylinder. In the process of grinding,
the tool performs rotation about its axis as well, but this is related to the desired velocity
of cutting (grinding) only and may be ignored when the mathematical aspects of worm
generation are considered.

Worm Surface Equations
There is a family of tool surfaces �c that is generated in coordinate system S1. The
worm surface �1 is determined as the envelope to the family of tool surfaces. Surface
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Figure 19.7.2: Coordinate systems applied for generation of K worms.

�1 is represented as the family of lines of contact of surfaces �c and �1 by the following
equations:

r1(uc , θc , ψ) = M1oMocrc (uc , θc ) (19.7.1)

Nc (θc ) · v(c1)
c (uc , θc ) = f (uc , θc ) = 0. (19.7.2)

Equation (19.7.1) represents the family of tool surfaces; (uc , θc ) are the Gaussian
coordinates of the tool surface, and ψ is the angle of rotation in the screw motion.
Equation (19.7.2) is the equation of meshing. Vectors Nc and v(c1)

c are represented
in Sc and indicate the normal to �c and the relative (sliding) velocity, respectively. It
is proven below [see Eq. (19.7.8)] that Eq. (19.7.2) does not contain parameter ψ .
Equations (19.7.1) and (19.7.2) considered simultaneously represent the surface of the
worm in terms of three related parameters (uc , θc , ψ).

For further derivations we will consider that the surface side I of a right-hand worm
is generated. The cone surface is represented by the equations (Fig. 19.7.3)

rc = uc cos αc (cos θc ic + sin θc jc ) + (uc sin αc − a) kc . (19.7.3)
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Figure 19.7.3: Generating cone surface.

Here, uc determines the location of a current point on the cone generatrix; “a” deter-
mines the location of the cone apex.

The unit normal to the cone surface is determined as

nc = Nc

|Nc | , Nc = ∂rc

∂uc
× ∂rc

∂θc
, (19.7.4)

which yields

nc = [− sin αc cos θc − sin αc sin θc cos αc]T. (19.7.5)

The relative velocity is represented as the velocity in screw motion (Fig. 19.7.4)

v(c1)
c = −ωc × rc − Rc × ωc − p ωc (19.7.6)

where Rc = −Ec ic is the position vector of point O ′
1 of the line of action of ω. Equation

(19.7.6) yields

v(c1)
c = ω


− sin γc zc + cos γc yc

− cos γc (xc + Ec ) − p sin γc

sin γc (xc + Ec ) − p cos γc

 . (19.7.7)

The equation of meshing of the grinding surface with the worm surface after elimi-
nation of (−ω sin γc cos θc ) is represented as

nc · v(c1)
c = f (uc , θc ) = a sin αc − (Ec sin αc cot γc + p sin αc ) tan θc

− (Ec − p cot γc ) cos αc

cos θc
− uc = 0 (19.7.8)

where uc > 0. Equation (19.7.8) with the given value of uc provides two solutions for
θc and determines two curves, I and II in the plane (uc , θc ) (Fig. 19.7.5). Only curve I is
the real contact line in the space of parameters (uc , θc ).
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Figure 19.7.4: Installment of grinding cone: (a)
illustration of installment parameter Ec ; (b) illust-
ration of installment parameter γc .

Figure 19.7.5: Line of contact between generating cone and K worm surface: representation in plane
of parameters.
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Figure 19.7.6: Contact lines between generating cone and worm
on worm surface.

Equations (19.7.3) and (19.7.8) considered simultaneously represent in Sc the line
of contact between �c and �1. The line of contact is not changed in the screw motion
of the worm because equation of meshing (19.7.8) does not contain parameter of mo-
tion ψ . The worm surface �1 is represented by Eqs. (19.7.1) and (19.7.8) considered
simultaneously.

Figure 19.7.6 shows the contact lines on �1 between �1 and �c . The design param-
eters of the worm surface are related with the equations

tan αc = tan αax cos λp (19.7.9)

where αax is the profile angle of the worm in its axial section, and λp is the lead angle
on the worm pitch cylinder, and

sc ≈ wax cos λp (19.7.10)

where wax is the width of worm space in the axial section, and wax is measured on the
pitch cylinder. The exact value of required sc can be determined using the equations of
the axial section of the generated worm.

The design parameters rc and a are represented as

rc = Ec − rp (19.7.11)

a = rc tan αc + sc

2
. (19.7.12)

The derivation of Eqs. (19.7.11) and (19.7.12) is based on Figs. (19.7.1) and
(19.7.2).
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The final expressions for both sides of the right-hand and left-hand worms and the
surface unit normals are represented by the following equations:

(i) Surface side I, right-hand worm:

x1 = uc (cos αc cos θc cos ψ + cos αc cos γc sin θc sin ψ

− sin αc sin γc sin ψ) + a sin γc sin ψ + Ec cos ψ

y1 = uc (− cos αc cos θc sin ψ + cos αc cos γc sin θc cos ψ

− sin αc sin γc cos ψ) + a sin γc cos ψ − Ec sin ψ

z1 = uc (sin αc cos γc + cos αc sin γc sin θc ) − pψ − a cos γc

(19.7.13)

nx1 = cos ψ sin αc cos θc + sin ψ(cos γc sin αc sin θc + sin γc cos αc )

ny1 = − sin ψ sin αc cos θc + cos ψ(cos γc sin αc sin θc + sin γc cos αc )

nz1 = sin γc sin αc sin θc − cos γc cos αc

(19.7.14)

where

uc = a sin αc − (Ec sin αc cot γc + p sin αc ) tan θc − (Ec − p cot γc ) cos αc

cos θc
.

(19.7.15)

(ii) Surface side II, right-hand worm:

x1 = uc (cos αc cos θc cos ψ + cos αc cos γc sin θc sin ψ

+ sin αc sin γc sin ψ) − a sin γc sin ψ + Ec cos ψ

y1 = uc (− cos αc cos θc sin ψ + cos αc cos γc sin θc cos ψ

+ sin αc sin γc cos ψ) − a sin γc cos ψ − Ec sin ψ

z1 = uc (− sin αc cos γc + cos αc sin γc sin θc ) − pψ + a cos γc

(19.7.16)

nx1 = cos ψ sin αc cos θc + sin ψ(cos γc sin αc sin θc − sin γc cos αc )

ny1 = − sin ψ sin αc cos θc + cos ψ(cos γc sin αc sin θc − sin γc cos αc )

nz1 = sin γc sin αc sin θc + cos γc cos αc

(19.7.17)

where

uc = a sin αc + (Ec sin αc cot γc + p sin αc ) tan θc − (Ec − p cot γc ) cos αc

cos θc
.

(19.7.18)
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(iii) Surface side I, left-hand worm:

x1 = uc (cos αc cos θc cos ψ + cos αc cos γc sin θc sin ψ

+ sin αc sin γc sin ψ) − a sin γc sin ψ + Ec cos ψ

y1 = uc (− cos αc cos θc sin ψ + cos αc cos γc sin θc cos ψ

+ sin αc sin γc cos ψ) − a sin γc cos ψ − Ec sin ψ

z1 = uc (sin αc cos γc − cos αc sin γc sin θc ) + pψ − a cos γc

(19.7.19)

nx1 = cos ψ sin αc cos θc + sin ψ(cos γc sin αc sin θc − sin γc cos αc )

ny1 = − sin ψ sin αc cos θc + cos ψ(cos γc sin αc sin θc − sin γc cos αc )

nz1 = − sin γc sin αc sin θc − cos γc cos αc

(19.7.20)

where

uc = a sin αc + (Ec sin αc cot γc + p sin αc ) tan θc − (Ec − p cot γc ) cos αc

cos θc
.

(19.7.21)

(iv) Surface side II, left-hand worm:

x1 = uc (cos αc cos θc cos ψ + cos αc cos γc sin θc sin ψ

− sin αc sin γc sin ψ) + a sin γc sin ψ + Ec cos ψ

y1 = uc (− cos αc cos θc sin ψ + cos αc cos γc sin θc cos ψ

− sin αc sin γc cos ψ) + a sin γc cos ψ − Ec sin ψ

z1 = uc (− sin αc cos γc − cos αc sin γc sin θc ) + pψ + a cos γc

(19.7.22)

nx1 = cos ψ sin αc cos θc + sin ψ(cos γc sin αc sin θc + sin γc cos αc )

ny1 = − sin ψ sin αc cos θc + cos ψ(cos γc sin αc sin θc + sin γc cos αc )

nz1 = − sin γc sin αc sin θc + cos γc cos αc

(19.7.23)

where

uc = a sin αc − (Ec sin αc cot γc + p sin αc ) tan θc − (Ec − p cot γc ) cos αc

cos θc
.

(19.7.24)

Particular Case
It can be proven that for the case when γc = 0 the generated worm surface is a screw
involute surface. This statement is correct for all four types of worm surfaces represented
by Eqs. (19.7.13), (19.7.16), (19.7.19), and (19.7.22), respectively.

The proof is based on the following considerations:

(i) The equation of meshing (19.7.15) provides that

sin θc = p cot αc

Ec
. (19.7.25)
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This means that θc is constant and �c contacts �1 along a straight line, the gener-
atrix of the cone.

(ii) The worm surface is generated by a straight line, that is, it is a ruled surface. It is a
developed surface as well because the surface normal does not depend on surface
coordinate uc . Recall that uc determines the location of a current point on the
generating line.

(iii) Considering the equations of the worm surface and the unit normal to the surface,
we may represent a current point of the surface normal by the equation

R1(uc , ψ, m) = r1(uc , ψ) + mn1(ψ) (19.7.26)

where the variable parameter m determines the location of the current point on
the surface normal. Function R1(uc , ψ, m) represents the one-parameter family of
curves that are traced out in S1 by a current point of the surface normal.

(iv) The envelope to the family of curves is determined with Eq. (19.7.26) and the
equation (see Section 6.1)

(
∂R1

∂uc
× ∂R1

∂ψ

)
· ∂R1

∂m
= 0. (19.7.27)

(v) Equations (19.7.26) and (19.7.27) yield that the normals to the worm surface are
tangents to the cylinder of radius rb and form the angle of (90◦ − λb) with the worm
axis.
Here,

rb = Ec sin θc = p cot αc , λb = αc . (19.7.28)

Problem 19.7.1
Consider that the worm surface represented by Eqs. (19.7.13) is cut by the plane y1 = 0.
Axis x1 is the axis of symmetry of the space in axial section. The point of intersection
of the axial profile with the pitch cylinder is determined with the coordinates

x1 = rp, y1 = 0, z1 = −wax

2
= − pax

4
= − π

4Pax
.

Here, wax is the nominal value of the space width in axial section that is measured along
the generatrix of the pitch cylinder; pax is the distance between two neighboring threads
along the generatrix of the pitch cylinder, and Pax = π/pax is the worm diametral pitch
in axial section. Derive the system of equations to be applied to determine sc (Fig. 19.7.1)
considering rp, rc , Ec , αc , p, and wax as given.
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Solution

uc = a sin αc − (Ec sin αc cot γc + p sin αc ) tan θc − (Ec − p cot γc ) cos αc

cos θc

tan ψ = uc (cos αc sin θc cos γc − sin αc sin γc ) + a sin γc

uc cos αc cos θc + Ec

uc cos αc cos θc + Ec

cos ψ
− rp = 0

uc (sin αc cos γc + cos αc sin γc sin θc ) − pψ − a cos γc + wax

2
= 0

where

a = rc tan αc + sc

2
.

The derived equation system contains four equations in four unknowns: θc , ψ , uc , and
a . The solution of the system for the unknowns provides the sought-for value of sc .

Problem 19.7.2
Consider the particular case of the installment of the tool when γc = 0. Derive (i) the
equation of meshing (19.7.27), and (ii) the equations of the envelope to the family
of normals to the worm surface (19.7.13). Recall that the envelope is represented by
Eqs. (19.7.26) and (19.7.27) which have to be considered simultaneously.

Solution
(i)

uc cos αc + m sin αc + Ec cos θc = 0.

(ii)

X1 = Ec sin θc sin(θc − ψ)

Y1 = −Ec sin θc cos(θc − ψ)

Z1 = uc

sin αc
+ Ec cot αc cos θc − pψ − a .

19.8 GEOMETRY AND GENERATION OF F-I WORMS (VERSION I)

F worms with concave–convex surfaces have been proposed by Niemann and Heyer
(1953) and applied in practice by the Flender Co., Germany. The great advantage of the
F worm-gear drives is the improvement of conditions of lubrication that is achieved due
to the favorable shape of contact lines between the worm and the worm-gear surfaces.
We consider two versions of F worms: (i) the original one, F-I, and (ii) the modified
one, F-II, proposed by Litvin (1968). Both versions of worm-gear drives are designed
as nonstandard ones: the radius r (o)

p of the worm operating pitch cylinder differs from
the radius rp of the worm pitch cylinder, and r (o)

p − rp ≈ 1.3/Pax. To avoid pointing of
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Figure 19.8.1: Installation of grinding wheel
generating worm F-I: (a) illustration of instal-
lation parameter γc ; (b) illustration of installa-
tion parameter Ec .

teeth of worm-gears, the tooth thickness of the worm on the pitch cylinder is designed
as tp = 0.4pax = 0.4π/Pax.

Installment of the Grinding Wheel for F-I
The surface of the grinding wheel is a torus. The axial section of the grinding wheel
is the arc α–α of radius ρ [Fig. 19.8.1(b)]. In the following discussion we consider the
generation of the surface side II of the right-hand worm.

The radius ρ is chosen as approximately equal to the radius rp of the worm pitch
cylinder. The installation of the grinding wheel with respect to the worm is shown in
Fig. 19.8.1(a). The axes of the grinding wheel and the worm form the angle γc = λp,
where λp is the lead angle on the worm pitch cylinder, and the shortest distance between
these axes is Ec . Figure 19.8.2(a) shows the section of the grinding wheel and the
worm by a plane that is drawn through the zc axis, which is the axis of rotation of the
grinding wheel, and the shortest distance Oc O1 [Fig. 19.8.1(b)]. It is assumed that the
line of shortest distance passes through the mean point M of the worm profile; a and b
determine the location of center Ob of the circular arc α–α with respect to Oc .

Here,

b = ρ cos αn (19.8.1)

where ρ is the radius of arc α–α.
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(a) (b)

Figure 19.8.2: Generation of grinding wheel with torus surface: (a) section of the grinding wheel and
(b) applied coordinate systems.

Equations of Generating Surface Σc

We set up coordinate systems Sc and Sp that are rigidly connected to the grinding
wheel; coordinate systems Sb and Sa are rigidly connected to the circular arc of radius ρ

(Fig. 19.8.2). The circular arc α–α is represented in Sb by the equation

rb = ρ[− sin θ 0 cos θ 1]T. (19.8.2)

Figure 19.8.2(a) shows coordinate systems Sa and Sb in the initial position. The
surface of the grinding wheel is generated in Sc while the circular arc with coordinate
systems Sa and Sb is rotated about the z p axis [Fig. 19.8.2(b)].

The coordinate transformation is based on the following matrix equation:

rc (θ, ν) = McpMpa Mabrb = Mcbrb. (19.8.3)

Here,

Mcp =


1 0 0 0

0 1 0 0

0 0 1 −b

0 0 0 1

 , Mpa =


cos ν sin ν 0 0

− sin ν cos ν 0 0

0 0 1 0

0 0 0 1



Mab =


1 0 0 −d

0 1 0 0

0 0 1 0

0 0 0 1

 , Mcb =


cos ν sin ν 0 −d cos ν

− sin ν cos ν 0 d sin ν

0 0 1 −b

0 0 0 1

 .

(19.8.4)

We use the following designations [Fig. 19.8.1(b)]:

a = rp + ρ sin αn (19.8.5)

d = Ec − a = Ec − (rp + ρ sin αn) (19.8.6)
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and

b = ρ cos αn.

Equations (19.8.2) to (19.8.4) yield

xc = −(ρ sin θ + d) cos ν

yc = (ρ sin θ + d) sin ν

zc = ρ cos θ − b.

(19.8.7)

The unit normal to �c is represented as

nc = Nc

|Nc | , Nc = ∂rc

∂θ
× ∂rc

∂ν
.

Then we obtain

nc = [sin θ cos ν − sin θ sin ν − cos θ ]T. (19.8.8)

Equations of Meshing of Grinding Wheel and Worm
The unit normal nc is directed toward the generating surface and outward to the worm
surface. The worm surface is generated as the envelope to the family of surfaces that
is generated in S1 by �c in its relative motion with respect to the worm surface �1.
Coordinate system S1 is rigidly connected to the worm.

The equation of meshing is

nc · v(c1)
c = 0 (19.8.9)

where v(c1)
c is the velocity in relative motion of the grinding wheel with respect to the

worm. Vectors in Eq. (19.8.9) are represented in Sc .
We consider that the worm performs the screw motion with the screw parameter p

(Fig. 19.7.4) with respect to the grinding wheel, and v(c1)
c is represented by Eqs. (19.7.7).

After transformations, the equation of meshing of the grinding wheel surface with the
worm surface is represented by

f (θ, ν) = tan θ − Ec − p cot γc − d cos ν

b cos ν + (Ec cot γc + p) sin ν
= 0. (19.8.10)

The equation of meshing does not contain parameter ψ in screw motion because the
relative motion is the screw one. Equation (19.8.10) with the given value of θ provides
two solutions for ν, but only the solution for 0 < ν < 90◦ should be used for further
derivations. Recall that Eq. (19.8.10) is derived for the case when the surface side II of
a right-hand worm is generated.

Lines of Contact on Worm Surface
The line of contact between �c and �1 is a single line on �c and is represented in Sc

by Eqs. (19.8.7) and (19.8.10) considered simultaneously. Figure 19.8.3 shows the line
of contact in the space of parameters θ , ν; the dashed line represents the line of contact
that is out of the working part of the grinding wheel.

The worm surface is represented in S1 as the set of contact lines between surfaces
�c and �1. Using this approach, we have derived the equations of the worm surfaces
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Figure 19.8.3: Line of contact between grinding wheel and worm F-I surfaces.

for both sides, considering the right-hand and left-hand worms. Axis x1 in the derived
equations is the axis of symmetry for any section of the worm space by a plane that is
drawn through the x1 axis. An axial section of the worm space is obtained by intersecting
the space by the plane y1 = 0. To provide the above-mentioned location of the x1 axis, as
the axis of symmetry of the axial section of the space, we have to consider the following:

(i) The initially applied coordinate system S∗
1 is substituted by a parallel coordinate

system S1 whose origin is displaced along the z∗
1 axis at the distance ao (Fig.

19.8.4).
(ii) The coordinates of the point of intersection of the axial section of the worm space

with the pitch cylinder must be

x1 = rp, y1 = 0, z1 = wax

2
(19.8.11)

where wax is the space width on the pitch cylinder.

Figure 19.8.4: Derivation of axial section of worm
F-I.
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The results of derivations of the worm surface and the surface unit normal are as
follows:

(i) Surface side I , right-hand worm:

x1 = (ρ sin θc + d)(− cos ν cos ψ + sin ν sin ψ cos γc )

+ (ρ cos θc − b) sin ψ sin γc + Ec cos ψ

y1 = (ρ sin θc + d)(cos ν sin ψ + sin ν cos ψ cos γc )

+ (ρ cos θc − b) cos ψ sin γc − Ec sin ψ

z1 = (ρ sin θc + d) sin ν sin γc + (b − ρ cos θc ) cos γc − pψ + ao

(19.8.12)

where

ao = −wax

2
− (ρ sin θc + d) sin ν sin γc − (b − ρ cos θc ) cos γc + pψ. (19.8.13)

nx1 = sin θc (− cos ν cos ψ + sin ν sin ψ cos γc ) + cos θc sin ψ sin γc

ny1 = sin θc (cos ν sin ψ + sin ν cos ψ cos γc ) + cos θc cos ψ sin γc

nz1 = sin θc sin ν sin γc − cos θc cos γc .

(19.8.14)

Parameters θc and ν in Eqs. (19.8.12) and (19.8.14) are related to the equation of
meshing,

tan θc = Ec − p cot γc − d cos ν

b cos ν − (Ec cot γc + p) sin ν
. (19.8.15)

(ii) Surface side II, right-hand worm:

x1 = (ρ sin θc + d)(− cos ν cos ψ + sin ν sin ψ cos γc )

− (ρ cos θc − b) sin ψ sin γc + Ec cos ψ

y1 = (ρ sin θc + d)(cos ν sin ψ + sin ν cos ψ cos γc )

− (ρ cos θc − b) cos ψ sin γc − Ec sin ψ

z1 = (ρ sin θc + d) sin ν sin γc − (b − ρ cos θc ) cos γc − pψ + ao

(19.8.16)

where

ao = wax

2
− (ρ sin θc + d) sin ν sin γc + (b − ρ cos θc ) cos γc + pψ. (19.8.17)

nx1 = sin θc (− cos ν cos ψ + sin ν sin ψ cos γc ) − cos θc sin ψ sin γc

ny1 = sin θc (cos ν sin ψ + sin ν cos ψ cos γc ) − cos θc cos ψ sin γc

nz1 = sin θc sin ν sin γc + cos θc cos γc .

(19.8.18)

Parameters θc and ν in Eqs. (19.8.16) and (19.8.18) are related with the equation
of meshing,

tan θc = Ec − p cot γc − d cos ν

b cos ν + (Ec cot γc + p) sin ν
. (19.8.19)
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(iii) Surface side I, left-hand worm:

x1 = (ρ sin θc + d)(− cos ν cos ψ + sin ν sin ψ cos γc )

− (ρ cos θc − b) sin ψ sin γc + Ec cos ψ

y1 = (ρ sin θc + d)(cos ν sin ψ + sin ν cos ψ cos γc )

− (ρ cos θc − b) cos ψ sin γc − Ec sin ψ

z1 = − (ρ sin θc + d) sin ν sin γc + (b − ρ cos θc ) cos γc + pψ + ao

(19.8.20)

where

ao = −wax

2
+ (ρ sin θc + d) sin ν sin γc − (b − ρ cos θc ) cos γc − pψ. (19.8.21)

nx1 = sin θc (− cos ν cos ψ + sin ν sin ψ cos γc ) − cos θc sin ψ sin γc

ny1 = sin θc (cos ν sin ψ + sin ν cos ψ cos γc ) − cos θc cos ψ sin γc

nz1 = − sin θc sin ν sin γc − cos θc cos γc .

(19.8.22)

Parameters θc and ν in Eqs. (19.8.20) and (19.8.22) are related to the equation of
meshing,

tan θc = Ec − p cot γc − d cos ν

b cos ν + (Ec cot γc + p) sin ν
. (19.8.23)

(iv) Surface side II, left-hand worm:

x1 = (ρ sin θc + d)(− cos ν cos ψ + sin ν sin ψ cos γc )

+ (ρ cos θc − b) sin ψ sin γc + Ec cos ψ

y1 = (ρ sin θc + d)(cos ν sin ψ + sin ν cos ψ cos γc )

+ (ρ cos θc − b) cos ψ sin γc − Ec sin ψ

z1 = − (ρ sin θc + d) sin ν sin γc − (b − ρ cos θc ) cos γc + pψ + ao

(19.8.24)

where

ao = wax

2
+ (ρ sin θc + d) sin ν sin γc + (b − ρ cos θc ) cos γc − pψ. (19.8.25)

nx1 = sin θc (− cos ν cos ψ + sin ν sin ψ cos γc ) + cos θc sin ψ sin γc

ny1 = sin θc (cos ν sin ψ + sin ν cos ψ cos γc ) + cos θc cos ψ sin γc

nz1 = − sin θc sin ν sin γc + cos θc cos γc .

(19.8.26)

Parameters θc and ν in Eqs. (19.8.24) and (19.8.26) are related with the equation
of meshing,

tan θc = Ec − p cot γc − d cos ν

b cos ν − (Ec cot γc + p) sin ν
. (19.8.27)

Figure 19.8.5 shows the cross section and axial section of the F-I worm that have
been obtained for the following input parameters: N1 = 3; N2 = 31; rp = 46 mm; axial
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Figure 19.8.5: Cross section and axial section of worm F-I.

module max = 8 mm. The radius of the operating pitch cylinder is r po = rp + 1.25max =
56 mm; ρ = 46 mm; γc = λp = 14◦37′15′′; αn = 20◦; a = rp + ρ sin αn = 61.733 mm;
b = ρ cos αn = 43.226 mm.

19.9 GEOMETRY AND GENERATION OF F-II WORMS (VERSION II)

Method for Grinding
The grinding of F worms of version II can be performed by the same tool that is used
for generation of worms of version I. The difference is in the application of special
setting parameters. The geometry of F worms of version II has certain advantages in
comparison with the worms of version I: (i) the line of contact between the grinding
surface �c and the worm surface is a planar curve, the circular arc of the axial section
of the torus; and (ii) the shape of the line of contact does not depend on the diameter
of the grinding wheel and the shortest center distance Ec .

The main idea of the proposed method for grinding is based on application of axes
of meshing. There are two axes of meshing when a helicoid is generated by a peripheral
tool with a surface of revolution. One of the axes of meshing, I–I , coincides with the
axis of rotation of the tool (Fig. 19.9.1); the location and orientation of the other axis of
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Figure 19.9.1: Axes of meshing in the case of grinding of worm F-II.

meshing, II–II, parameters a and δ, respectively, are determined with the equations

a = p cot γc (19.9.1)

where p is the screw parameter and γc is the angle formed by the axes of the grinding
wheel and the worm, and

δ = arctan
(

p
Ec

)
(19.9.2)

where Ec is the shortest distance between the previously mentioned axes.
The installation of the grinding wheel is based on observation of the following re-

quirements:

(a) Center Ob of the circular arc α–α (Fig. 19.9.2) is located on the xc axis which is
the line of shortest distance between the axes of the grinding wheel and the worm.

(b) The distance a from the worm axis (Fig. 19.9.1) and the crossing angle γc must be
related by the equation

γc = arctan
( p

a

)
(19.9.3)

where p is the screw parameter of the screw motion of the worm in the process of
grinding.

The normal to �c already intersects the axis of the grinding wheel, that is the axis of
meshing, I–I , as well. The normal to �c also intersects the other axis of meshing, II–II,
because the Ob center of the circular arc α–α is located on II–II.
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Figure 19.9.2: Grinding wheel for worm F-II.

Equation (19.9.3) requires only the relation between a and γc , but a can be chosen ar-
bitrarily. However, the shape of lines of contact between the worm and the worm-gear
surfaces, �1 and �2, depends on a . Based on preliminary investigation, the recom-
mended choice is

a = rp + p sin αn. (19.9.4)

Summarizing, we may formulate the difference in the installations of the grinding
wheel for generation of worms F-I and F-II as follows:

Version 1: b �= 0; the line of shortest distance passes through the middle point M of
circular arc α–α; γc = λp; a = rp + ρ sin αn (Figs. 19.8.1 and 19.8.2).

Version 2: b = 0; the line of shortest distance passes through Ob; γc �= λp, but γc and
a are related with Eq. (19.9.1) (Fig. 19.9.1).

Equation of Meshing
We may derive for the F-II worm the equation of meshing between surfaces �c and
�1 considering the previously derived Eq. (19.8.10) but taking b = 0, d = Ec − a , and
a tan γc = p. After the derivations, we obtain the following equation of meshing for the
F-II worm:

sin θ (Ec cot γc + p) sin ν − (Ec − a)(1 − cos ν) cos θ = 0. (19.9.5)

There are two solutions to Eq. (19.9.5): (i) with ν = 0 and any value of θ , and (ii)
with the relation between θ and ν determined as

tan
ν

2
− (Ec cot γc + p) tan θ

Ec − a
= 0. (19.9.6)

The meaning of the first solution is that the line of contact between �c and �1 is the
circular arc α–α, the axial section of the grinding wheel. The second solution provides
a contact line on �c that is out of the working part of the grinding wheel. Both contact
lines in the space of parameters θ and ν are shown in Fig. 19.9.3.
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Figure 19.9.3: Line of contact between
grinding wheel and worm F-II surfaces.

Following an approach similar to that applied for F-I worms, we have derived the
following equations for the surface of F-II worms and the surface unit normal:

(i) Surface side I, right-hand worm:

x1 = −ρ(sin θc cos ψ − cos θc sin ψ sin γc ) + a cos ψ

y1 = ρ(sin θc sin ψ + cos θc cos ψ sin γc ) − a sin ψ

z1 = −ρ cos θc cos γc − pψ + ao

(19.9.7)

where

ao = −wax

2
+ ρ cos θc cos γc + pψ. (19.9.8)

nx1 = − sin θc cos ψ + sin γc cos θc sin ψ

ny1 = sin θc sin ψ + sin γc cos θc cos ψ

nz1 = − cos γc cos θc .

(19.9.9)

(ii) Surface side II, right-hand worm:

x1 = −ρ(sin θc cos ψ + cos θc sin ψ sin γc ) + a cos ψ

y1 = ρ(sin θc sin ψ − cos θc cos ψ sin γc ) − a sin ψ

z1 = ρ cos θc cos γc − pψ + ao

(19.9.10)

where

ao = wax

2
− ρ cos θc cos γc + pψ. (19.9.11)

nx1 = − sin θc cos ψ − sin γc cos θc sin ψ

ny1 = sin θc sin ψ − sin γc cos θc cos ψ

nz1 = cos γc cos θc .

(19.9.12)
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(iii) Surface side I, left-hand worm:

x1 = −ρ(sin θc cos ψ + cos θc sin ψ sin γc ) + a cos ψ

y1 = ρ(sin θc sin ψ − cos θc cos ψ sin γc ) − a sin ψ

z1 = −ρ cos θc cos γc + pψ + ao

(19.9.13)

where

ao = −wax

2
+ ρ cos θc cos γc − pψ. (19.9.14)

nx1 = − sin θc cos ψ − sin γc cos θc sin ψ

ny1 = sin θc sin ψ − sin γc cos θc cos ψ

nz1 = − cos γc cos θc .

(19.9.15)

(iv) Surface side II, left-hand worm:

x1 = −ρ(sin θc cos ψ − cos θc sin ψ sin γc ) + a cos ψ

y1 = ρ(sin θc sin ψ + cos θc cos ψ sin γc ) − a sin ψ

z1 = ρ cos θc cos γc + pψ + ao

(19.9.16)

where

ao = wax

2
− ρ cos θc cos γc − pψ. (19.9.17)

nx1 = − sin θc cos ψ + sin γc cos θc sin ψ

ny1 = sin θc sin ψ + sin γc cos θc cos ψ

nz1 = cos γc cos θc .

(19.9.18)

Axis x1 in all four cases is the axis of symmetry of the axial section of the worm
space (see Fig. 19.8.4).

19.10 GENERALIZED HELICOID EQUATIONS

Consider that the cross section of the worm is represented in parametric form in the
auxiliary coordinate system Sa as [Fig. 19.10.1(a)]

ra (θ ) = r (θ ) cos θ ia + r (θ ) sin θ ja (19.10.1)

where r (θ ) is the polar equation of the cross section. The worm surface now can be
represented as the surface that is generated by the curve ra (θ ) that is performing the
screw motion about the worm z1 axis [Fig. 19.10.1(b)]. The worm surface can be
determined by the matrix equation

r1(θ, ζ ) = M1a (ζ )ra (θ ) (19.10.2)
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Figure 19.10.1: For derivation of generalized heli-
coid.

where [Fig. 19.10.1(b)]

M1a =


cos ζ − sin ζ 0 0

sin ζ cos ζ 0 0

0 0 0 pζ

0 0 0 1

 . (19.10.3)

Using Eqs. (19.10.1) to (19.10.3), we represent the worm surface as follows:

r1(θ, ζ ) = r cos(θ + ζ ) i1 + r sin(θ + ζ ) j1 + pζ k1. (19.10.4)

For the following derivations we need angle µ that is formed between the position vector
ra (θ ) and the tangent to this curve [Fig. 19.10.1(a)]. It is known that

µ = arctan
(

r (θ )
rθ

) (
rθ = dr

dθ

)
. (19.10.5)
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An alternative equation for determination of µ is based on the expression [Fig.
19.10.1(a)]

µ = 90◦ − θ + δ = 90◦ − θ + arctan
(

Nya

Nxa

)
(19.10.6)

where Na is the normal to the planar curve ra (θ ).
The unit normal to surface (19.10.4) is determined with the equations

n1 = N1

|N1| , N1 = ∂r1

∂θ
× ∂r1

∂ζ
, (19.10.7)

which yield

n1 = 1
(p2 + r 2 cos2 µ)0.5

[p sin(θ + ζ + µ) i1 − p cos(θ + ζ + µ) j1 + r cos µ k1].

(19.10.8)

We recall that because the worm surface is a helicoid, the coordinates of the worm sur-
face and the surface unit normal are related by the following equation (see Section 5.5):

y1nx1 − x1ny1 − pnz1 = 0. (19.10.9)

The screw parameter p is positive for a right-hand worm.
The advantage of Eqs. (19.10.4) and (19.10.8) is that the worm surface and its normal

are represented in two-parameter form. However, this approach requires the analytical
or numerical determination of the worm cross section. The discussed approach is es-
pecially effective in the case when the worm is generated by the surface of a grinding
wheel and the worm surface is represented by three parameters.

19.11 EQUATION OF MESHING OF WORM AND WORM-GEAR SURFACES

The equation of meshing determines the relation between the worm surface �1 param-
eters and the angle of rotation φ1 of the worm that is in mesh with the worm-gear
surface �2. Surfaces �1 and �2 are in contact along a line (L) at every instant. The
determination of L is based on the requirement that at any point of L the following
equations must hold:

Ni · v(12)
i = 0 (i = 1, 2, f ). (19.11.1)

Here, the subscripts (1, 2, f ) designate coordinate systems S1, S2, and Sf that are rigidly
connected to the worm, the gear, and the frame (housing); Ni is the normal to the worm
surface; v(12)

i is the relative velocity of �1 with respect to �2 (see Chapter 2).
We can simplify the equation of meshing, taking into account that the worm is a

helicoid. For simplification of the equation of meshing, we can use Eq. (19.10.9) or the
equation

y f nxf − x f ny f − pnz f = 0. (19.11.2)
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Using Eq. (19.11.1) with i = 1, and Eq. (19.10.9), we represent the equation of meshing
in S1 as follows:

(z1 cos φ1 + E cot γ sin φ1)Nx1 + (−z1 sin φ1 + E cot γ cos φ1)Ny1

−
[
(x1 cos φ1 − y1 sin φ1 + E) − p

1 − m21 cos γ

m21 sin γ

]
Nz1 = 0. (19.11.3)

Here, m21 = N1/N2 is the gear ratio; (x1, y1, z1) are the coordinates of the worm sur-
face; (Nx1, Ny1, Nz1) are the projections of the normal N1 to the worm surface; γ is the
twist angle. The equation of meshing can be represented in the coordinate system Sf as

z f Nxf + E cot γ Ny f −
(

x f + E − p
1 − m21 cos γ

m21 sin γ

)
Nz f = 0. (19.11.4)

Consider now the case when the worm surface is represented as a generalized helicoid
(see Section 19.10). The equation of meshing is represented in this case as

r
[
r cos(θ + ζ + φ1) + E − p

1 − m21 cos γ

m21 sin γ

]
cos µ + Ep cot γ cos τ

= pz f sin τ = p2ζ sin τ. (19.11.5)

Here, r = r (θ ) is the magnitude of the position vector of the current point of the worm
cross section [Fig. 19.10.1(a)]; τ = θ + ζ + φ1 + µ. The coordinates of a current contact
point can be expressed in Sf by the equations

x f = r cos(θ + ζ + φ1), y f = r sin(θ + ζ + φ1), z f = pζ. (19.11.6)

Any of equations (19.11.3), (19.11.4), and (19.11.5) yields the relation between the
worm surface parameters (u, θ ) and the angle of worm rotation, that is,

f (u, θ, φ1) = 0. (19.11.7)

Equations

r1 = r1(u, θ ), f (u, θ, φ1) = 0 (19.11.8)

where r1 = r1(u, θ ) is the worm surface �1, represent in S1 the family of contact lines on
surface �1; φ1 is a fixed-in parameter of motion, the parameter of the family of contact
lines.

Contact lines on the worm-gear surface are represented by equations

r2(u, θ, φ1) = M21r1(u, θ ), f (u, θ, φ1) = 0 (19.11.9)

where M21 is the matrix that describes the coordinate transformation from coordinate
system S1 to coordinate system S2. Here, S1 and S2 are rigidly connected to the worm
and the worm-gear, respectively.

Figure 19.11.1 shows the contact lines on the surface of an Archimedes worm. Fig-
ure 19.11.2 shows the contact lines on the worm-gear surface.

It was mentioned in Section 6.6 that the contact lines on the generating surface may
have an envelope. In the case of a worm-gear drive, the generating surface is the worm



P1: JsY

CB672-19 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 1:28

19.11 Equation of Meshing of Worm and Worm-Gear Surfaces 605

Envelope

Contact Lines

Figure 19.11.1: Contact lines on worm surface.

surface. The envelope to contact lines on an Archimedes worm surface is shown in
Fig. 19.11.1. Figures 19.11.1 and 19.11.2 correspond to a worm-gear drive with the
following parameters: the number of worm threads and gear teeth are N1 = 2 and
N2 = 30, respectively; the axial worm module is max = 8 mm; the twist angle is γ = 90◦;
the shortest distance between the axes of the worm and the worm-gear is E = 176 mm.

Figure 19.11.2: Contact lines on worm-gear sur-
face.
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The instantaneous line contact exists only for an ideal worm-gear drive, without
misalignment and errors of manufacturing. In reality, the contact of surfaces �1 and �2

is an instantaneous point contact, which might be accompanied with the shift of the
bearing contact to the edge and an undesirable shape of the function of transmission
errors. Such transmission errors cause vibration during the meshing.

To minimize the influence of misalignment and errors of manufacturing, it is necessary
to localize the bearing contact between �1 and �2 using the proper mismatch between
the theoretical and real worm surfaces.

19.12 AREA OF MESHING

The area of meshing is the active part of the surface of action. The surface of action is the
set of lines of contact between the worm and worm-gear surfaces that are represented in
the fixed coordinate system S f . Knowing the area of meshing, we are able to determine
the working axial length of the worm and the working axial width of the worm-gear
(see below). The following derivations are based on representation of the worm surface
as a generalized helicoid (see Section 19.11).

Figure 19.12.1(b) shows the area of meshing of an orthogonal worm-gear drive that
is limited in plane (z f , y f ) with curves a–a and b–b. The area of meshing is represented

Figure 19.12.1: For derivation of area of meshing.
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in the fixed coordinate system Sf . Curve a–a corresponds to the entry into meshing of
those points of the worm surface that belong to the worm addendum cylinder of radius
ra [Fig. 19.12.1(a)]. Curve b–b corresponds to the entry into meshing of those points
of the worm-gear surface that belong to the gear addendum cylinder. Current point M
of curve a–a is determined by the following equations:

sin(θa + ζ + φ1) = y f

ra
(19.12.1)

z f =
ra

[
ra cos(θa + ζ + φ1) + E − p

m21

]
cos µa

p sin[µa + (θa + ζ + φ1)]
(19.12.2)

x f = ra cos(θa + ζ + φ1). (19.12.3)

The input for the solution of the system of Eqs. (19.12.1) to (19.12.3) is the current
value of y f ; ra , θa , and µa are considered as known. Equations of the system above are
represented in echelon form. Varying y f , we can determine the corresponding values
of z f and x f of curve a–a . Equation (19.12.1) provides two solutions for the angle
(θa + ζ + φ1), but only the solution that corresponds to x f < 0 must be used. This
consideration is based on the specific location of the area of meshing (Figs. 19.12.1 and
19.12.2).

Figure 19.12.2: Intersection of worm and worm-
gear surfaces by plane m−n.
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Figure 19.12.3: For derivation of curve b–b
shown in Fig. 19.12.1.

Let us now consider the determination of current point N of curve b–b [Fig.
19.12.1(b)]. We limit the discussion to the shape of the addendum surface of the worm-
gear that is shown in Fig. 19.2.2. Surface AB (or CD) of the worm-gear addendum
surface is a cylinder of radius R∗

a ; the axis of the cylinder coincides with the worm-gear
axis. Surface BC of the worm-gear addendum surface is a cylinder of radius ri ; the axis
of this cylinder coincides with the axis of the worm. The intersection of surface BC by
plane mn is the arc of the circle of radius Ra (Figs. 19.12.2 and 19.12.3). Point N of
curve b–b can be determined as the point of intersection of curve z f (x f ) and the circle
of radius Ra (Fig. 19.12.3). Curve z f (x f ) is obtained as the result of intersection of the
surface of action by plane y f = const.

The determination of current point N of curve b–b for the BC gear addendum surface
is based on the following equations:

y f − r (θ ) sin(θ + ζ + φ1) = f1(θ, (ζ + φ1)) = 0 (19.12.4)

z f −
r (θ )

[
r (θ ) cos(θ + (ζ + φ1)) + E − p

m21

]
cos µ(θ )

p sin[µ(θ ) + (θ + (ζ + φ1))]
= f2(θ, (ζ + φ1)) = 0

(19.12.5)

x f − r (θ ) cos(θ + (ζ + φ1)) = f3(θ, (ζ + φ1)) = 0 (19.12.6){
[E + x f (θ, (ζ + φ1))]2 + z2

f (θ, (ζ + φ1))
}0.5 − E + [r 2

i − y2
f (θ, (ζ + φ1))

]0.5

= f4(θ, (ζ + φ1)) = 0. (19.12.7)
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Here, ri = rd + c, where rd is the radius of the worm dedendum cylinder and c is the
clearance; usually, c = 0.25/P . Equations (19.12.5) and (19.12.6) are designated for
determination of x f (θ, (ζ + φ1)) and z f (θ, (ζ + φ1)) used in Eq. (19.12.7); coordinate
y f is considered as the input data; tan µ = r (θ )/rθ , where rθ = dr /dθ .

Equation system (19.12.4) to (19.12.7) may be considered as a system of two nonlin-
ear equations in two unknowns, θ and (ζ + φ1). The two-equation system is formed by
Eqs. (19.12.4) and (19.12.7) and can be solved by using a numerical subroutine [More
et al., 1980; Visual Numerics, Inc., 1998]. An iterative process for the solution based
on the following procedure can be applied as well:

Step 1: We use Eq. (19.12.4) considering y f as given and choosing a value of θ .
Then, we can determine sin(θ + ζ + φ1) from Eq. (19.12.4). This equation provides
two solutions for (θ + ζ + φ1), but only the solution with x f (θ + ζ + φ1) < 0 should be
selected (see the location of the area of meshing in Figs. 19.12.1 and 19.12.2).

Step 2: We determine the values of z f (θ + ζ + φ1) and x f (θ + ζ + φ1) using Eqs.
(19.12.5) and (19.12.6), respectively.

Step 3: We check if Eq. (19.12.7) is satisfied with the chosen value of θ and the
respective value of (ζ + φ1) determined from Eq. (19.12.4). If not, it is necessary to start
a new iteration with the new value of θ .

The determination of current point N of curve b–b (Fig. 19.12.1) for the AB (and
CD) gear addendum surface (Fig. 19.12.2) is based on the equation system that contains
Eqs. (19.12.4), (19.12.5), (19.12.6), and the equation

R∗
a − [(E + x f )2 + z2

f

]0.5 = f5(θ, (ζ + φ1)) = 0. (19.12.8)

Equation (19.12.8) is used instead of Eq. (19.12.7). Parameter R∗
a is shown in

Fig. 19.12.2.
Equations (19.12.4) and (19.12.8) considered simultaneously represent a system of

two nonlinear equations in the unknowns θ and (ζ + φ1). Equations (19.12.5) and
(19.12.6) are used in this case for determination of coordinates x f and z f for current
point N of curve b–b.

The determination of the area of meshing enables us to determine the length L of the
working part of the worm and the width B of the working part of the gear. The area of
meshing for a worm-gear drive with the ZA worm (Archimedes worm) is represented
in Figs. 19.12.4 and 19.12.5. The input data for computation is as follows: N1 = 2,
N2 = 30, rp = 46 mm, max = 8 mm. The operating pitch radius is r (o)

p = rp + ζmax,
where ζ = 0 (Fig. 19.12.4) and ζ = 1 (Fig. 19.12.5). The center distance is E = rp +
N2max/2 + ζmax.

19.13 PROSPECTS OF NEW DEVELOPMENTS

Introductory Remarks
Worm-gear drives with cylindrical worms are still an example of gear drives for which a
satisfactory bearing contact is obtained by lapping under a load in the gear drive house.
However, such lapping is expensive in terms of time and is not sufficiently effective.



P1: JsY

CB672-19 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 1:28

610 Worm-Gear Drives with Cylindrical Worms

Figure 19.12.4: Area of meshing for a standard
worm-gear drive with the ZA (Archimedes)
worm (ζ = 0).

The quality of gear drives of existing design depends substantially on the matching
of the hob to the worm of the drive. The instantaneous contact of the worm and the
worm-gear is a line contact. New trends toward localization of bearing contact have
still neglected the area of worm-gear drives. Modification of the geometry of worm-
gear drives is inevitable. The previous sections of this chapter cover the geometry of

Figure 19.12.5: Area of meshing for a non-
standard worm-gear drive with the ZA
(Archimedes) worm (ζ = 1).
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cylindrical worm-gear drives with instantaneous line contact of worms and worm-gears.
The purpose of this section is to briefly describe perspectives on a new geometry.

Double Crowning of the Worm
The approach toward modification of the geometry of worm-gear drives with brighter
prospects should be based on double crowning of the worm with respect to the hob.
This means that the surfaces of the worm will be properly deviated from the surfaces
of the hob. The basic principle of existing design is based on application of worms and
hobs that are identical to each other.

The proposed modification of geometry achieved by double crowning of the worm
is an extension of the approach that has been already developed for spiral bevel gears,
hypoid gears, helical gears, and spur gears. Double crowning of the worm means that
its surfaces are deviated in the profile and longitudinal directions, respectively, from the
hob surface.

Profile crowning of the worm with respect to the hob is equivalent to application of
two mismatched helicoids where one helicoid represents the worm of the drive and the
other one is the hob that generates the gear. The surfaces of mismatched helicoids are
in tangency along a common helix. The mismatch of helicoids is the precondition of
localization of contact between the surfaces of the worm of the drive and the worm-gear.

It was mentioned above that longitudinal crowning of the worm has to be applied
in addition to profile crowning. The purpose of longitudinal crowning is to reduce
the shift of the bearing contact, avoid edge contact, and reduce transmission errors.
All of these defects are caused by misalignments. Longitudinal crowning of the worm
provides a parabolic function of transmission errors of the worm-gear drive in the
process of meshing. Such a function is able to absorb discontinuous linear functions of
transmission errors caused by misalignments.

Double crowning of the worm as a combination of profile and longitudinal crowning
is especially effective for worm-gear drives with multi-thread worms. Gear drives with
multi-thread worms are more sensitive to misalignment that cause larger transmission
errors and vibrations. These defects are reduced due to the effect of application of a
parabolic function of transmission errors (see Sections 17.4, 17.6, and 17.7).

Application of Oversized Hob
Modification of the geometry of worm-gear drives has been based in the past on ap-
plication of oversized hobs [Colbourne, 1989; Seol & Litvin, 1996]. The main idea of
design of an oversized hob is based on the increase of the number of threads of the hob
with respect to the worm of the worm-gear drive. This approach requires an increase
in the pitch diameter of the hob.

We may illustrate the idea of application of an oversized hob considering the hob and
the worm of the drive to be in internal meshing and their axes crossed (Fig. 19.13.1).
The main features of meshing of the oversized hob with the worm are as follows:

(i) The pitch cylinder of the hob is larger than the one of the worm, and �λ and �r are
the crossing angle and the shortest center distance between the axes (Fig. 19.13.1).
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Figure 19.13.1: Tangency of pitch cylinders of worm
and hob. �λ is the crossing angle of axes; �r is the
shortest center distance.

(ii) Point P of tangency of the hob and the worm pitch cylinders belongs to the shortest
distance between the hob and the worm-gear, and to axes II–II of meshing (see
Section 6.11). It is easy to verify that the normals to the surfaces of the hob, worm,
and worm-gear pass through point “P” and that these surfaces are in simultaneous
tangency in the beginning of meshing.

(iii) The hob is provided with the same type of thread surface as that of the worm.
(iv) It is obvious that the surfaces of the hob and the worm-gear being generated are in

line contact at every instant, but surfaces of the worm and the worm-gear are in
point contact at every instant.

(v) The chosen oversized �r affects the magnitude of the major axis of the instanta-
neous contact ellipses and the level of transmission errors.

(vi) The generation of the worm-gear by an oversized hob must be accomplished with
the following installation parameters

Ehg = Ewg + �r, γhg = 90◦ − �γ

Figure 19.13.2: Example of TCA for localization of contact obtained by an oversized hob: (a) path of
contact; (b) function of transmission errors of parabolic type.
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where Ehg and Ewg are the center distances between the hob and the worm-gear and
between the worm and the worm-gear, respectively; �r = r ph − r pw; r ph and r pw

are the radii of pitch cylinders of the hob and the worm, respectively; �γ = λw − λh;
λw and λh are the lead angles of the worm and the hob, respectively.

For instance, in the case of an involute worm-gear drive the hob and the worm are
two involute helicoids. In the case of K worm-gear drives (see Section 19.7), the hob
and the worm are generated by a cone with the same profile angle.

Figure 19.13.2 shows the output of TCA for a K worm-gear drive wherein the worm-
gear has been generated by an oversized hob [Seol & Litvin, 1996]. The path of contact
is oriented across the worm-gear surface and is located around the center of the worm-
gear surface [Fig. 19.13.2(a)]. The function of transmission errors is of a parabolic type
[Fig. 19.13.2(b)].

For some cases of misalignment, an oversized hob that is too small fails to provide a
continuous function of transmission errors. In the opinion of the authors of this book,
localization of the bearing contact by double crowning of the worm is the approach
with much greater potential.



P1: GDZ/SPH P2: GDZ

CB672-20 CB672/Litvin CB672/Litvin-v2.cls April 15, 2004 16:11

20 Double-Enveloping Worm-Gear Drives

20.1 INTRODUCTION

The invention of the double-enveloping worm-gear drive is a breathtaking story with
two dramatic characters, Friedrich Wilhelm Lorenz and Samuel I. Cone, each acting in
distant parts of the world – one in Germany and the other in the United States [Litvin,
1998]. The double-enveloping worm-gear drive was invented by both Cone and Lorenz
independently, and we have to credit them both for it [Litvin, 1998]. The invention of
Samuel I. Cone in the United States has been applied by a company that bears the name
of the inventor, known by the name Cone Drive.

The invented gear drive is a significant achievement. The special shape of the worm
increases the number of teeth that are simultaneously in mesh and improves the con-
ditions of force transmission. The conditions of lubrication and the efficiency of the
invented drive (in comparison with a worm-gear drive with a cylindrical worm) are
substantially better due to the special shape of lines of contact between the worm and
gear surfaces (see below).

The theory of double-enveloping worm-gear drives has been the subject of intensive
research by many scientists. This chapter is based on the work by Litvin [1994]. We
consider in this chapter the Cone double-enveloping worm-gear drive.

20.2 GENERATION OF WORM AND WORM-GEAR SURFACES

Worm Generation
The worm surface is generated by a straight-lined blade (Fig. 20.2.1). The blade per-
forms rotational motion about axis Ob with the angular velocity Ω(b) = dΨb/dt , while
the worm rotates about its axis with the angular velocity Ω(1) = dΨ1/dt ; ψb and
ψ1 are the angles of rotation of the blade and the worm in the process for gener-
ation (Fig. 20.2.2). The shortest distance between the axes of rotation of the blade
and the worm is Ec . The generating lines of the blade in the process of generation
keep the direction of tangents to the circle of radius Ro. The directions of rotation
shown in Figs. 20.2.1 and 20.2.2 correspond to the case of generation of a right-hand
worm.

614
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Figure 20.2.1: Worm generation.

Worm-Gear Generation
The generation of the worm-gear is based on simulation of meshing of the worm and
the worm-gear in the process of worm-gear generation. A hob identical to the generated
worm is in mesh with the worm-gear being generated on the cutting machine. The axes
of rotation of the hob and the worm-gear are crossed; the shortest distance E between
the axes is the same as in the designed worm-gear drive; the ratio m21 between the
angular velocities of the hob (worm) and the worm-gear is also the same. Here,

m21 = ω(2)

ω(1)
= N1

N2
(20.2.1)

where N1 and N2 are the numbers of worm threads and gear teeth.

Figure 20.2.2: Coordinate systems ap-
plied for worm generation.
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Figure 20.2.3: Illustration of (a) applied coordinate systems S1, S2, and S f ; and (b) schematic of
double-enveloping worm-gear drive.

Applied Coordinate Systems
We limit the discussion to the case of an orthogonal worm-gear drive, with a crossing
angle of 90◦. Moveable coordinate systems S1 and S2 are rigidly connected to the worm
and the worm-gear, respectively (Fig. 20.2.3); Sf is a fixed coordinate system that is
rigidly connected to the housing of the worm-gear drive. In the process of meshing the
worm rotates about the z1 axis, while the gear rotates about the y2 axis.

Worm-Gear Surface
The analytical determination of the worm-gear surface �2 is based on the following
ideas:

(i) Consider that the worm (hob) surface �1 is known.
(ii) Using the method of coordinate transformation, we can derive a family of surfaces

�1 that is represented in coordinate system S2.
(iii) Surface �2 is the envelope to the family of surfaces �1. Obviously, �1 and �2 are

in line contact at every instant.
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Figure 20.2.4: Schematic of (a) unmodified and (b) modified gear drives.

Unmodified and Modified Gearing
The conjugation of surfaces �1 and �2 requires that the hob surface be the same as the
worm surface. The principle of conjugation will not be infringed if the same values of
mb1 and Ec are used for generation of the worm and the hob. Here,

mb1 = dψb

dt
÷ dψ1

dt
(20.2.2)

is the cutting ratio. However, mb1 and Ec may differ from m21 and E given for the
designed worm-gear drive.

Henceforth, we differentiate two types of gearing for double-enveloping worm-gear
drives: (i) unmodified gearing when mb1 = m21, and Ec = E ; and (ii) modified gearing
when Ec �= E (Ec > E). The cutting ratio mb1 for the modified gearing may be chosen
to be equal to m21 or to differ from it. Surfaces �1 and �2 are conjugated in both cases,
for unmodified and modified gearings, but there are some advantages when the modified
gearing is used.

Consider that Ec �= E is chosen. The decision regarding how to choose mb1 will affect
the radius ρ of the throat of the worm (hob) and other worm dimensions. The following
discussion provides an explanation of this statement.

The unmodified and modified gearings are shown in Figs. 20.2.4(a) and 20.2.4(b),
respectively. The gear ratio for an orthogonal drive satisfies the equation

m21 = ρ tan λ

E − ρ
= N1

N2
. (20.2.3)

The cutting ratio mb1 may be determined considering an imaginary worm-gear drive
that is represented in Fig. 20.2.4(b); the blade for worm cutting is considered as the
worm-gear tooth. Then, we obtain

mb1 = ρ∗ tan λ∗

Ec − ρ∗ . (20.2.4)

Here, λ and λ∗ are the worm lead angles at M and M∗.
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According to the existing practice of design, the lead angle at M is chosen to be the
same for both designs. We consider as given N1, N2, E , ρ, and Ec . Our goal is to
determine ρ∗ and mb1. Equations (20.2.3) and (20.2.4) with λ∗ = λ yield

mb1(Ec − ρ∗)
ρ∗ = N1(E − ρ)

ρN2
. (20.2.5)

Equation (20.2.5) just relates parameters mb1 and ρ∗, and the solution for mb1 and
ρ∗ is not unique. We may consider the two following cases:

(i) The cutting ratio mb1 is chosen to be equal to m21. Then, we obtain the following
solution for ρ∗:

ρ∗ = Ec

E
ρ. (20.2.6)

This means that the worm of the modified worm-gear drive will have an increased
throat radius ρ∗ and other dimensions in comparison with the worm of the un-
modified drive. The axial diametral pitch of the modified worm is

P ∗ = ρ

ρ∗ P . (20.2.7)

(ii) The radius of the throat is chosen to be the same for both designs. Thus, ρ∗ = ρ

and we obtain that

mb1 = N1(E − ρ)
N2(Ec − ρ)

(20.2.8)

P ∗ = P . (20.2.9)

The dimensions of the worm are the same for both designs, but mb1 �= m21. There are
other possible options for mb1 and ρ∗ in addition to those discussed.

20.3 WORM SURFACE EQUATIONS

We set up three coordinate systems for derivation of the worm surface (Fig. 20.2.2); S1

and Sb rigidly connected to the worm and the blade, respectively, and the fixed coordi-
nate system S0 rigidly connected to the machine for worm generation. The generating
straight line AB is represented in Sb by the equations (Fig. 20.3.1)

xb = u cos δ + Ro sin δ, yb = 0, zb = u sin δ − Ro cos δ (20.3.1)

where the variable parameter u determines the location of a current point on the blade,
and

δ = arcsin
(

Ro

R

)
− sp

2R
. (20.3.2)

Here, R is the radius of the reference circle where the thickness of the blade is given.
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Figure 20.3.1: Blade representation.

The worm surface �1 is generated as the family of straight lines and is a ruled surface.
We may derive the equations of the worm surface using Eqs. (20.3.1) and the coordinate
transformation from Sb to S1. Then we obtain

x1 = cos ψ1[u cos(δ + ψb) + Ro sin(δ + ψb) − Ec ]

y1 = sin ψ1[u cos(δ + ψb) + Ro sin(δ + ψb) − Ec ]

z1 = u sin(δ + ψb) − Ro cos(δ + ψb)

(20.3.3)

where ψb = ψ1mb1.
The generalized parameter ψ ≡ ψ1 and parameter u represent the surface coordinates

(Gaussian coordinates). Equations (20.3.3) with the fixed value of ψ represent on �1

the u-coordinate line, the generating straight line. Equations (20.3.3) with the fixed
parameter u represent in �1 the ψ-coordinate line, that is, a spatial curve. This curve
can be obtained by intersection of �1 by a torus. The axial section of the torus is the
circle of radius (u2 + R2

o)1/2. Equations (20.3.3) work for the modified and unmodified
worms. For the case of the unmodified worm-gear drive, we have to take in these
equations Ec = E , and mb1 = m21.

The surface normal is represented by vector equation N1 = ∂r1/∂u × ∂r1/∂ψ , which
yields

Nx1 = umb1 sin ψ1 − sin(δ + ψb) cos ψ1[u cos(δ + ψb) + Ro sin(δ + ψb) − Ec ]

= umb1 sin ψ1 − x1 sin(δ + ψb)

Ny1 = −umb1 cos ψ1 − sin(δ + ψb) sin ψ1[u cos(δ + ψb) + Ro sin(δ + ψb) − Ec ]

= −umb1 cos ψ1 − y1 sin(δ + ψb)

Nz1 = cos(δ + ψb)[u cos(δ + ψb) + Ro sin(δ + ψb) − Ec ].

(20.3.4)
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Surface (20.3.3) is an undeveloped one, because the surface normals along the generating
line are not collinear (the orientation of the surface normal depends on u).

20.4 EQUATION OF MESHING

We consider the meshing of surfaces �1 and �2. Worm surface �1 may be generated
as unmodified or modified. The worm and the gear perform rotational motions about
crossed axes as shown in Fig. 20.2.3. Surface �2 is the envelope to the family of �1 that
is represented in S2. The necessary condition of existence of an envelope (see Section 6.1)
is represented by the equation of meshing,

N1 · v(12)
1 = f (u, ψ1, φ) = 0. (20.4.1)

The subscript “1” shows that vectors N1 and v(12)
1 are represented in S1. Vector N1

is the normal to �1, and v(12)
1 is the sliding velocity that is determined in terms of con-

stant parameters ω(1), ω(2), E , and m21, and varied parameter φ ≡ φ1, because v(12)
1

is represented in S1 (see Section 2.1). Parameter φ is the generalized parameter of
motion. We recall that angle φ2 of rotation of worm-gear 2 is represented as

φ2 = m21φ1. (20.4.2)

Vector N1 is represented by Eqs. (20.3.4) in terms of varied surface parameters u and
ψ1 and constant parameters Ec and mb1. The designation f (u, ψ1, φ) = 0 indicates the
relation between the varied parameters. Using this relation, we are able to determine
the lines of contact between �1 and �2 and represent the lines of contact in S1, S2,
and Sf . The equation of meshing is derived for two cases: unmodified and modified
gearing.

Unmodified Gearing
We take in Eqs. (20.3.4) for the worm surface normal that mb1 = m21, and Ec = E .
Using Eq. (20.4.1), after transformations, we obtain

u2[(1 − cos θ ) cos(δ + ψb) + m21 sin θ sin(δ + ψb)]

+ u{Ro[(1 − cos θ ) sin(δ + ψb) − m21 sin θ cos(δ + ψb)]

− E(1 − cos θ )[1 + cos2(δ + ψb)]}
+ E cos(δ + ψb)(1 − cos θ )[E − Ro sin(δ + ψb)] = 0

(20.4.3)

where θ = ψ1 − φ1. Equation (20.4.3) may be represented as

2 sin
θ

2
(u2 P + uQ + M) = 0 (20.4.4)
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where

P = sin
θ

2
cos(δ + ψb) + m21 cos

θ

2
sin(δ + ψb) (20.4.5)

Q = Ro

[
sin

θ

2
sin(δ + ψb) − m21 cos

θ

2
cos(δ + ψb)

]
− E sin

θ

2

[
1 + cos2(δ + ψb)

] (20.4.6)

M = E sin
θ

2
cos(δ + ψb)[E − Ro sin(δ + ψb)]. (20.4.7)

Equation (20.4.4) is satisfied if at least one of the two following conditions is ob-
served:

(i)

sin
θ

2
= 0. (20.4.8)

(ii)

u2 P + uQ + M = 0. (20.4.9)

This means that two types of contact lines may exist simultaneously on �1:
(i) a straight line (the generating line), and (ii) a spatial curve determined with
Eq. (20.4.9). The existence on �1 of a contact line that coincides with the generat-
ing line AB (Fig. 20.3.1) does not depend on the shape of the generating line. The
contact line of type “i” will coincide with the generating line as well if the worm
is generated by a curved blade. The existence of contact lines of type “ii” means
that a part of surface �2 is generated as the envelope to the family of surfaces
�1.

Modified Gearing
The derivation of the equation of meshing in this case is also based on Eq. (20.4.1),
but it is assumed that the worm surface is generated with Ec �= E . However, the cutting
ratio mb1 may be equal to m21 or may differ from it. The performed derivations yield
the following equation of meshing when mb1 = m21:

u2[(1 − cos θ) cos(δ + ψb) + m21 sin θ sin(δ + ψb)]

+ u{Ro[(1 − cos θ ) sin(δ + ψb) − m21 sin θ cos(δ + ψb)]

− Ec (1 − cos θ)[1 + cos2(δ + ψb) − (E − Ec ) cos2(δ + ψb)]}
+ cos(δ + ψb)(E − Ec cos θ )[Ec − Ro sin(δ + ψb)] = 0

(20.4.10)

where ψb = mb1ψ1. Taking in Eq. (20.4.10) E = Ec , we obtain equation of meshing
(20.4.3) for the unmodified gearing.
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20.5 CONTACT LINES

We consider the contact lines on worm surface �1, on worm-gear surface �2, and in
the fixed coordinate system S f , respectively.

Contact Lines on Σ1

The contact lines on the worm surface �1 are represented by the equations

r1 = r1(u, ψ1), f
(
u, ψ1, φ

(i )) = 0 (i = 1, 2, . . . , n). (20.5.1)

Equations (20.5.1) represent the worm surface and the equation of meshing, and these
equations are considered simultaneously. The designation φ(i ) (i = 1, 2, . . . , n) indicates
that the generalized parameter φ is fixed-in when the instantaneous contact line is con-
sidered. Surface �1 is in tangency with �2 at every instant at two lines: one is the
generating straight line, the other is the line of contact between surface �1 and those
parts of surface �2 that are the envelope to the family of �1.

Contact Lines on Σ2

The contact lines on �2 are represented by the equations

r2
(
u, ψ1, φ

(i )) = M21r1
(
u, ψ1

)
, f

(
u, ψ1, φ

(i )) = 0 (i = 1, 2, . . . , n). (20.5.2)

Matrix M21 describes the coordinate transformation from S1 to S2. Surface �2 is rep-
resented by Eqs. (20.5.2) as the family of instantaneous contact lines. We may ex-
pect that �2 is represented by two parts because two contact lines exist simultane-
ously at every instant. In reality, �2 consists of three parts due to undercutting (see
below).

Contact Lines on the Surface of Action
The totality of contact lines in coordinate system Sf represents the surface of action,
which we designate by �f . The surface of action is represented by the equations

rf (u, ψ1, φ) = Mf 1(φ)r1(u, ψ1), f (u, ψ1, φ) = 0. (20.5.3)

Matrix Mf 1 describes the coordinate transformation from S1 to Sf .

20.6 WORM-GEAR SURFACE EQUATIONS

Using Eqs. (20.5.2), we may represent �2 in terms of three varied but related parameters
(u, ψ1, φ). We consider the cases of unmodified and modified gearings separately.
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Figure 20.6.1: Three parts of worm-gear surface.

Unmodified Gearing
Surface �2 is represented by the equations

x2 = u[cos θ cos(δ + ψb) cos φ2 + sin(δ + ψb) sin φ2]

+ Ro[cos θ sin(δ + ψb) cos φ2 − cos(δ + ψb) sin φ2]

− E(cos θ cos φ2 − cos φ2)

y2 = [u cos(δ + ψb) + Ro sin(δ + ψb) − E] sin θ

z2 = u[− cos θ cos(δ + ψb) sin φ2 + sin(δ + ψb) cos φ2]

− Ro[cos θ sin(δ + ψb) sin φ2 + cos(δ + ψb) cos φ2]

+ E(cos θ cos φ2 − sin φ2)

sin
θ

2
(u2 P + uQ + M) = 0

(20.6.1)

where θ = ψ1 − φ1, and P , Q, and M are represented by Eqs. (20.4.5), (20.4.6), and
(20.4.7), respectively.

It was previously mentioned that there are two lines of contact between �1 and �2

at every instant. Taking in Eq. (20.6.1) sin(θ/2) = 0, we obtain that these equations
represent in S2 a straight line A′B ′ (Fig. 20.6.1) that lies in the middle plane of the
worm-gear. This plane is determined with y2 = 0. All of the straight lines that form �1

coincide in turn with the single straight line A′B ′ on the worm-gear surface while the
worm is in mesh with the worm-gear.

Taking in (20.6.1) sin(θ/2) �= 0 and u2 P + uQ + M = 0, we obtain the equations
of that part of �2 that is the envelope to the family of �1. Unfortunately, this part of
surface �2 is partially undercut in the process for generation of �2. The undercutting
is performed by the edge of the hob. Considering the first three equations in equation
system (20.6.1) and taking ψb = −δ, ψ1 = m1bψb, φ1 = m12φ2, and m1b = m12, we
represent the undercut part of the worm-gear tooth surface by the equations

x2 = (q cos τ + E) cos φ2 − Ro sin φ2

y2 = q sin τ

z2 = −(q cos τ + E) sin φ2 − Ro cos φ2

(20.6.2)
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Figure 20.6.2: For explanation of existence of two contact
lines.

where

q = u − E, τ = −m12(δ + φ2).

Equations (20.6.2) represent a ruled surface that is generated by the edge of the hob.
Figure 20.6.1 shows three parts of surface �2. Part II is the envelope to the family of

�1. Parts I and III represent the ruled surface that is generated by the edge of the hob.
Parts II and III of �2 intersect each other along the straight line A′B ′ that lies in plane
y2 = 0.

The disadvantage of unmodified gearing of the double-enveloping worm-gear drive is
that surface �2 is partially undercut. However, the presence of two contact lines that ex-
ist simultaneously is the advantage of this type of gearing. This statement is based on the
following considerations: Let b be the point of contact line A′B ′ (Fig. 20.6.2), and a the
point of the other contact line. There is a closed space in coordinate system S f whose sec-
tion in Fig. 20.6.2 is a–b. While the worm is rotated in the direction shown in Fig. 20.6.2,
the oil is pumped into space a–b, and the hydrodynamic pressure in the oil film is in-
creased. We may expect that the best conditions of lubrication exist in the dashed
quadrant. The other advantage of the unmodified gearing is the shape of instantaneous
lines of contact (Fig. 20.6.3). Favorable conditions of lubrication with such a shape are
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Figure 20.6.3: Contact lines of unmodified worm-gear
drive.

provided because the linear velocity of the worm forms a small angle with the normal
to the contact line.

Modified Gearing
The lines of contact shown in Fig. 20.6.3 have been determined for a worm-gear drive
with the following parameters: module m = 2.5 mm (m = 1/P ); N1 = 1; N2 = 47;
δ = 20◦; E = 80 mm. We may determine surface �2 of the modified worm-gear with
Eqs. (20.6.1), representing the equation of meshing by (20.4.10). The application of
modified gearing enables us to avoid undercutting of �2, but the shape of contact lines
is less favorable (Fig. 20.6.4), at least when the worm is generated by a straight blade.

Figure 20.6.4: Contact lines of modified
worm-gear drive with parameters: (a) Ec =
85 mm, mb1 = 0.0196; (b) Ec = 90 mm,
mb1 = 0.0182.
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We expect that new methods for generation of modified worm-gear drives will remove
this obstacle.

The contact lines that are shown in Fig. 20.6.4 have been determined for worm-gear
drives with the following parameters:

(a) module m = 2.5 mm (m = 1/P ); N1 = 1; N2 = 47; δ = 20◦; E = 80 mm; Ec =
85 mm; mb1 = 0.0196.

(b) Ec = 90 mm; mb1 = 0.0182; other parameters are the same as in case (a).
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21.1 INTRODUCTION

Spiral bevel gears have found broad application in helicopter and truck transmissions
and reducers for transformation of rotation and torque between intersected axes. Design
and stress analysis of such gear drives has been a topic of research by many scientists in-
cluding the authors of this book [Krenzer, 1981; Handschuh & Litvin, 1991; Stadtfeld,
1993, 1995; Zhang et al., 1995; Gosselin et al., 1996; Litvin et al., 1998a, 2002a; Argyris
et al., 2002; Fuentes et al., 2002]. Reduction of noise and stabilization of bearing contact
of misaligned spiral bevel gear drives are still very challenging topics of research although
manufacturing companies [Gleason Works (USA), Klingelnberg–Oerlikon (Germany–
Switzerland)] have developed skilled methods and outstanding equipment for manufac-
ture of such gear drives.

The conditions of meshing and contact of spiral bevel gears depend substantially
on the machine-tool settings applied. Such settings are not standardized but have to
be determined for each case of design, depending on the parameters of the gears and
generating tools, to guarantee the required quality of the gear drives. This chapter covers
an integrated approach for the design and stress analysis of spiral bevel gears that has
been developed by the authors of the book and their associates. The approach provides
the solution to the following problems:

(1) Determination of machine-tool settings for generation of low-noise stable bearing
contact spiral bevel gear drives.

(2) Computerized analysis of meshing and contact of gear tooth surfaces.
(3) Investigation of formation of bearing contact and determination of contact and

bending stresses by application of the finite element method.

The procedures developed for items (2) and (3) above enable us to evaluate the qual-
ity of the design and to correct, if necessary, the applied machine-tool settings. These
computerized procedures have to be performed before the expensive process of man-
ufacturing. The solution to the problems previously enumerated is provided for two
types of spiral bevel gear drives: (i) face-milled generated gear drives and (ii) formate-
cut spiral bevel gear drives. Formate is a trademark of the Gleason Works, Rochester,
N.Y.

627
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21.2 BASIC IDEAS OF THE DEVELOPED APPROACH

The basic ideas of the approach presented in this chapter are as follows:

(1) The gear machine-tool settings are considered as given (adapted, for instance, from
the data of manufacturing). The to-be-determined pinion machine-tool settings
have to meet the assigned conditions of meshing and contact of the gear drive. This
is achieved by application of the procedure of local synthesis as follows:
(a) Mean point M of tangency of pinion and gear tooth surfaces �1 and �2 is

chosen on �2. Then, respective pinion machine-tool settings are determined
to provide that �1 will be in tangency with �2 at M.

(b) The input parameters of local synthesis are a , η2, and m′
21 that are taken at

the mean point M of tangency (Fig. 21.2.1). Here, 2a is the major axis of the
instantaneous contact ellipse; η2 determines the orientation of the tangent to
the contact path at M; and m′

21 = d2(φ2(φ1))/dφ2
1 is the second derivative of

the transmission function φ2(φ1).
The developed procedure of local synthesis provides a system of ten equations
for determination of ten parameters of pinion machine-tool settings [Litvin, 1994;
Litvin et al., 1998a]. Observation of assigned parameter a is based on application
of relations between the curvatures of contacting surfaces (see Chapter 8). Con-
sidering as known the gear and pinion machine-tool settings and the parameters
of generating tools, it becomes possible to derive the equations of the pinion and
gear tooth surfaces applying the theory of enveloping [Favard, 1957; Litvin, 1968;
Zalgaller, 1975; Zalgaller & Litvin, 1977; Litvin, 1994].

(2) Low noise of the gear drive is achieved by application of a predesigned parabolic
function of transmission errors of a limited value of maximal transmission errors,

Figure 21.2.1: Illustration of parameters η2 and a applied for local synthesis.
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of 6–8 arcsec (see Section 9.2). A predesigned parabolic function of transmission
errors is able to absorb almost-linear discontinuous functions of transmission errors
caused by errors of alignment. Such transmission errors are the source of high noise
and vibration.

(3) A longitudinal direction of the path of contact is considered in order to reduce
contact and bending stresses and avoid edge contact.

(4) Development and application of the tooth contact analysis (TCA) computer pro-
gram enables us to simulate the meshing and contact of pinion–gear tooth surfaces
�1 and �2. The algorithm of TCA is based on continuous tangency of �1 and
�2 wherein �1 and �2 are in point contact (see Section 9.4). The algorithm of
TCA requires solution of five nonlinear equations in six unknowns. One of the
unknowns, say angle φ1 of pinion rotation, is chosen as the input parameter, and
the solution is obtained by five functions of φ1. The procedure of computation for
TCA is an iterative process based on application of the Newton–Raphson method
[Visual Numerics, Inc., 1998].

The procedure of computations is based on simultaneous application of local syn-
thesis, TCA, and finite element analysis (FEA) and is performed by application of the
following four stages:

STAGE 1 Obtainment of a path of contact of the desired shape and direction. This stage
is based on the following three steps:

Step 1: The input parameter m′
21 for local synthesis is applied as a variable parameter,

whereas parameters a and η2 are considered the assigned ones. Angle η2 is the one that
provides a longitudinally oriented path of contact. Then, we may obtain the pinion
machine-tool settings by using the developed equations.

Step 2: Using the pinion and gear machine-tool settings, the equations of the pinion
and gear tooth surfaces are derived and the procedure of TCA is applied. The outputs
of TCA are the bearing contact and the function of transmission errors.

Step 3: By varying parameter m′
21, the shape of the path of contact is modified at

each iteration until the desired shape of the path of contact is obtained.
Figure 21.2.2(a) shows paths of contact L(1)

T , L(2)
T , and L(n)

T that might be obtained as
results of some iterations. We represent at this step the radial projection of the paths of
contact on a coordinate system St wherein the axial coordinate and the radius of the
points along the path of contact will be represented in axes xt and yt , respectively, as
shown in Fig. 21.2.2(b). The goal of the iterative process is to obtain a radial projection
of a straight-line shape as given by L(n)

T in Figure 21.2.2 for a longitudinally oriented
path of contact. Using a subroutine of regression [Visual Numerics, Inc., 1998], we may
represent L(i )

T in coordinate system St [Fig. 21.2.2(b)] as the following parabolic curve:

yt (xt , m′
21) = β0(m′

21) + β1(m′
21)xt + β2(m′

21)x2
t . (21.2.1)

The goal is accomplished by variation of m′
21 in the process of iteration until β2

becomes equal to zero. The solution of Eq. (21.2.1) for β2 = 0 is obtained by application
of the secant method [Press et al., 1992] that is illustrated by Fig. 21.2.3. Designations
β

(i )
2 (i = 1, 2, 3, . . . ) (Fig. 21.2.3) indicate the magnitude of β2 obtained in the process of
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Figure 21.2.2: (a) Representation of vari-
ous paths of contact on gear tooth surface;
(b) radial projection of paths of contact on
coordinate system St .

iteration. The drawings show the change of function β2(m′
21)(i ) by variation of (m′

21)(i )

(i = 1, 2, 3, . . . , n), when parameter β2 will become equal to zero.

STAGE 2 Whereas Stage 1 enables us to obtain the desired shape LT of the path of
contact, the shape of the function of transmission errors �φ

(1)
2 (φ1) and the magnitude

�� of maximal transmission errors do not satisfy the requirements of design for a
low-noise gear drive.

The goal of Stage 2 is to obtain a parabolic function of negative transmission errors
and of a limited value �� of maximal transmission errors. This goal is obtained by
application of modified roll for pinion generation and application of the TCA computer
program. We emphasize that the pinion machine-tool settings have already been ob-
tained as a result of Stage 1. The application of modified roll does not imply either a
change of machine-tool settings or a change in the shape of the path of contact. The
algorithm of Stage 2 is as follows.

Step 1: Stage 1 enables us to obtain function �φ
(1)
2 (φ1) numerically. We represent

�φ
(1)
2 (φ1) as a polynomial function up to the third member to be included [Visual

Numerics, Inc., 1998]:

�φ
(1)
2 (φ1) = a0 + a1φ1 + a2φ

2
1 + a3φ

3
1 , − π

N1
≤ φ1 ≤ π

N1
. (21.2.2)

Function (21.2.2) has to be transformed into a predesigned parabolic function of trans-
mission errors with limited magnitude of maximal errors. The advantage of a parabolic
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Figure 21.2.3: Schematic representation of
computational procedure for determination of
β2(m′

21).

function of transmission errors is that such a function is able to absorb linear functions
of transmission errors caused by errors of alignment and substantially reduce the level
of noise [Litvin, 1989, 1994, 1998].

Step 2: Transformation of function �φ
(1)
2 (φ1) is accomplished by application of mod-

ified roll for pinion generation. Modified roll means that the following function is exe-
cuted for pinion generation:

ψ1(ψc1) = m1cψc1 − b2ψ
2
c1 − b3ψ

3
c1. (21.2.3)

Here, ψ1 is the angle of pinion rotation during its generation; ψc1 is the angle of rotation
of the so-called cradle of the cutting machine (see Section 21.3 and Fig. 21.4.1); and
m1c is the first derivative of function ψ1(ψc1) taken at ψc1 = 0 (for mean contact point
M) and is obtained by the procedure of local synthesis [Litvin et al., 1998a]. The head-
cutter for pinion generation is mounted on the cradle and performs rotation with the
cradle (see Section 21.3).
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Transformation of function �φ
(1)
2 (φ1) into �φ2(φ1) is obtained by variation of coef-

ficients b2 and b3 of function (21.2.3). Here,

�φ2(φ1) = −a2φ
2
1 , − π

N1
≤ φ1 ≤ π

N1
(21.2.4)

|�φ2(φ1)|max = a2

(
π

N1

)2

= ��. (21.2.5)

The variation of b2 and b3 is performed independently and is illustrated by Fig. 21.2.4.
Figure 21.2.4(a) illustrates variation of coefficient b3 of modified roll, used to obtain

Figure 21.2.4: Schematic representation of computational procedure for determination of coefficients
b2 and b3 of modified roll.
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coefficient a3 = 0 in function (21.2.2). Function a3(b3) is determined from the output
of TCA by variation of modified roll. Figure 21.2.4(b) illustrates variation of coefficient
b2 of modified roll, used to obtain a parabolic function of transmission errors of an
assigned value of �� determined by Eq. (21.2.5).

STAGE 3. The purpose of Stage 3 is the selection of an optimal parabola coefficient for
the parabolic profile of the blades that will generate the gear tooth surfaces to avoid the
appearance of hidden areas of severe contact for high loaded spiral bevel gear drives.
In the first iteration, a straight-line profile for the blades will be considered (parabola
coefficient equal to zero). For further iterations, and based on the results obtained from
the investigation of formation of bearing contact (Stage 4), a larger parabola coefficient
is chosen until those areas of severe contact stresses are avoided and contact stresses are
reduced all over the path of contact (see Section 21.9).

We recall that Stages 1 and 2 are performed by simultaneous application of com-
puterized algorithms of local synthesis and tooth contact analysis (TCA). The bear-
ing contact on the gear tooth surface is designed to be directed longitudinally by the
proper selection of η2 (Fig. 21.2.1) which determines the orientation of the tangent
to the path of contact at M, controlling the shape of the radial projection of LT

(Fig. 21.2.2).

STAGE 4. The purposes of Stage 4 are investigation of formation of bearing contact and
determination of contact and bending stresses for more than one cycle of meshing. The
goals are obtained by application of the finite element method by a commercial finite
element analysis computer program [Hibbit, Karlsson & Sirensen, Inc., 1998].

Investigation of formation of bearing contact enables us to discover hidden areas of
severe contact due to the elastic deformation of the gear teeth. Such a contact may be
discovered if finite element models of several pairs of teeth are developed and analyzed
in contact positions corresponding to more than one cycle of meshing. Such contact
positions are obtained by application of a TCA computer program.

Hidden areas of severe contact are accompanied with a substantial increase of contact
stresses (see Section 21.9). Those areas of severe contact might be avoided by increas-
ing the mismatch of generating surfaces. We could achieve this goal by application of
a combination of straight-line profile blades and parabolic profile blades of the pair
of head-cutters that generate the pinion and the gear, respectively (see Section 21.9).
However, in some cases (for instance, of gear drives of a gear ratio close to 1), parabolic
blades have to be applied either for the pinion or the gear. Parabolic blades are also
applied for the generation of the formate-cut gear for better conditions of conjugation
of gear tooth surfaces (see Section 21.3).

21.3 DERIVATION OF GEAR TOOTH SURFACES

Introduction
We recall that two approaches to the design of spiral bevel gears are considered wherein
generated and formate-cut gear tooth surfaces are applied. Figure 21.3.1 shows schemat-
ically the generation of a spiral bevel gear as the envelope to the family of head-cutter
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Figure 21.3.1: Schematic representation of generation of a spiral bevel gear.

surfaces. The head-cutter is mounted on the cradle and performs a planetary motion:
(i) rotation in transfer motion (with the cradle) about the cradle axis, and (ii) rotation
in relative motion (relative to the cradle) about the head-cutter axis. The spiral bevel
gear (pinion) to be generated is installed with angle γmi with respect to the head-cutter
and rotates about the gear (pinion) axis. Angle γmi is called the machine root angle
and represents a setting for the gear to be generated. Rotation of the cradle and the
gear are related. The angular velocity of rotation of the head-cutter about its axis is not
related to the process of generation and is chosen to provide the desired velocity of cut-
ting. Henceforth, we consider that the head-cutter is provided with generating surfaces
formed by the blades when they are rotated about the head-cutter axis. Each space of
the gear or pinion is generated separately. The process of generation is interrupted after
generation of the current space is finished; then the workspace is indexed to the next
space, and the process of generation is repeated.

In the case of generation of a formate-cut gear, the cradle is held at rest. The head-
cutter that is installed on the cradle is rotated about its axis with the desired velocity of
cutting and generates the gear tooth surface as the copy of the surface of the head-cutter.
During generation of the formate-cut gear, the gear does not perform any rotation either
about its own axis or related to the cradle.

Applied Coordinate Systems
Coordinate systems Sm2 , Sa2 , and Sb2 are the fixed ones and they are rigidly connected
to the cutting machine (Fig. 21.3.2). The movable coordinate systems are S2 and Sc2

that are rigidly connected to the gear and the cradle, respectively. Coordinate system
Sg is rigidly connected to the gear head-cutter. It is considered that the head-cutter is a
cone or a surface of revolution, and the rotation of the head-cutter about the zg axis
does not affect the process of generation. The head-cutter is mounted on the cradle,
and coordinate system Sg is rigidly connected to the cradle coordinate system Sc2 .
The cradle and the gear perform related rotations about the zm2 axis and the zb2 axis,
respectively, for the case of a generated spiral bevel gear. Angles ψc2 and ψ2 are related
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Figure 21.3.2: Coordinate systems applied for gear generation: (a) and (b) illustration of tool in-
stallment for generation of right- and left-hand gears; (c) illustration of installment of machine-tool
settings.

and represent the current angles of rotation of the cradle and the gear. The ratio of gear
roll is designated as m2c2 and is determined as

m2c2 = ω(2)

ω(c2)
= dψ2

dt
÷ dψc2

dt
. (21.3.1)

Equation (21.3.1) is not applied for the case of a formate-cut spiral bevel gear because
there is no rotation of the gear or the cradle during generation.

The installment of the tool on the cradle is determined by parameters Sr2 and q2,
which are called the radial distance and the basic cradle angle. The installments of the
head-cutter on the cradle for generation of right-hand and left-hand gears are shown
in Figs. 21.3.2(a) and 21.3.2(b), respectively. Parameters �XB2 , �Em2 , �XD2 , and γm2

represent the settings of a generated spiral bevel gear [Fig. 21.3.2(c)].
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Figure 21.3.3: Blade and generating cones for gear straight-line head-cutter: (a) illustration of straight-
line profile of the blade; (b) and (c) generating tool cones for concave and convex sides.

Head-Cutter Surfaces
The blades of a head-cutter with straight-line profiles are shown in Fig. 21.3.3(a). Each
side of the blade generates two sub-surfaces. The segment of the straight line with the
profile angle αg generates the working part of the gear tooth surface. The circular arc
of radius ρw generates the fillet of the gear tooth surface. The generating surfaces of the
head-cutter are formed by rotation of the blade about the zg axis of the head-cutter; the
rotation angle is θg . Therefore, the generating surfaces are the conical surface and the
surface of the torus formed by the arc. A point on the generating surface is determined
by parameters sg and θg for the conical surface, and by λw and θg for the surface of the
torus. Parameter sg is considered as a positive value and angles αg and λw as the acute
ones. In the case of grinding, the profiles shown in Fig. 21.3.3(a) are the axial profiles
of the grinder that is applied instead of a head-cutter.

The conical surface and the torus surface of the head-cutter are designed as parts
(a) and (b) of the head-cutter generating surfaces. Surface �

(a)
g of the head-cutter is
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represented by vector function r (a)
g (sg , θg ) as

r (a)
g (sg , θg ) =


(Rg ± sg sin αg ) cos θg

(Rg ± sg sin αg ) sin θg

−sg cos αg

 (21.3.2)

where sg and θg are the surface coordinates, αg is the blade angle, and Rg is the cutter
point radius. The upper and lower signs in Eqs. (21.3.2) correspond to generation of
the concave and convex sides of the gear tooth surface, respectively.

The unit normal to the gear generating surface �
(a)
g is represented by the equations

n(a)
g (θg ) = Ng

|Ng | , Ng = ∂r (a)
g

∂sg
× ∂r (a)

g

∂θg
. (21.3.3)

Equations (21.3.2) and (21.3.3) yield

n(a)
g (θg ) =


cos αg cos θg

cos αg sin θg

± sin αg

 . (21.3.4)

Surface �
(b)
g is represented in Sg as

r (b)
g (λw, θg ) =


(Xw ± ρw sin λw) cos θg

(Xw ± ρw sin λw) sin θg

−ρw(1 − cos λw)

 , 0 ≤ λw ≤ π

2
− αg (21.3.5)

where

Xw = Rg ∓ ρw(1 − sin αg )/ cos αg .

Here, ρw is the edge radius of the head-cutter for the gear. The cutter point radius Rg

(Fig. 21.3.3) is determined for the generating tool cones for the concave and convex
sides of the gear tooth surfaces, respectively, as

Rg = Ru ± Pw2

2

where Ru is the cutter mean radius and Pw2 is the cutter point width.
The unit normal to the gear generating surface �

(b)
g is represented by the equations

n(b)
g (θg ) = N(b)

g∣∣N(b)
g

∣∣ , Ng = ∂r (b)
g

∂λw
× ∂r (b)

g

∂θg
. (21.3.6)
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Figure 21.3.4: Blade and generating revolution surfaces for the gear parabolic-profile head-cutter:
(a) illustration of parabolic profile of the blade; (b) and (c) generating tool surfaces for concave and
convex sides.

Equations (21.3.6) yield

n(b)
g (θg ) =


sin λw cos θg

sin λw sin θg

± cos λw

 . (21.3.7)

We recall that hidden areas of severe contact between contacting surfaces of the pinion
and the gear can be avoided by using blades of parabolic profile. Figure 21.3.4(a) shows
the blades of a head-cutter with parabolic profile. The segment (a) of the parabolic
profile generates the working part of the gear tooth surface. The circular arc of radius
ρw generates the fillet of the gear tooth surface. The generating surfaces of the parabolic-
profile head-cutter are formed by rotation of the blade about the zg axis of the head-
cutter [Figs. 21.3.4(b) and 21.3.4(c)]; the rotation angle is θg . Therefore, the generating
surfaces are (i) the surface of revolution formed by rotation of the blade of parabolic
profile (part a), and (ii) the surface of the torus formed by rotation of the circular arc
profiles (part b). A point on the generating surface is determined by parameters sg and
θg for the working surface and by λw and θg for the fillet surface. Angle αg is formed
between the tangent line of the blade at point M and the vertical center line of the blade.
Parameter sg measured from point M in the chosen direction is considered as a positive
one and angles αg and λw as the acute ones. The apex of the parabola is located at
point M determined by parameter sgo , called the parabola vertex location parameter.
We recall that in the case of grinding, the profiles shown in Fig. 21.3.4(a) represent the
axial profiles of the grinder.
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The surface of revolution and the torus surface of the head-cutter are designated as
parts (a) and (b) of the head-cutter generating surface. Surface �

(a)
g of the head-cutter

is represented by vector function r(a)
g (sg , θg ) as

r(a)
g (sg , θg ) =


(
Rg ± (sg + sgo ) sin αg ± acs2

g cos αg
)

cos θg(
Rg ± (sg + sgo ) sin αg ± acs2

g cos αg
)

sin θg

−(sg + sgo ) cos αg + acs2
g sin αg

 (21.3.8)

where sg and θg are the surface coordinates, αg is the blade angle at point M, ac is the
parabola coefficient, and Rg is the cutter point radius (Fig. 21.3.4) that is given by

Rg = Ru ± Pw2

2
. (21.3.9)

The upper and lower signs in Eqs. (21.3.8) and (21.3.9) correspond to the concave and
convex sides of the gear tooth surfaces, respectively.

The unit normal to the gear generating surface �
(a)
g is represented by the equations

n(a)
g (sg , θg ) = N(a)

g∣∣N(a)
g
∣∣ , N(a)

g = ∂r(a)
g

∂sg
× ∂r(a)

g

∂θg
. (21.3.10)

Equations (21.3.8) and (21.3.10) yield

n(a)
g (sg , θg ) =


(cos αg − 2acsg sin αg ) cos θg

(cos αg − 2acsg sin αg ) sin θg

± sin αg ± 2acsg cos αg

÷
√

1 + 4a2
c s2

g . (21.3.11)

Surface �
(b)
g is represented in Sg as

r (b)
g (λw, θg ) =


(Xw ± ρw sin λw) cos θg

(Xw ± ρw sin λw) sin θg

−ρw(1 − cos λw)

 , 0 ≤ λw ≤ π

2
− αw (21.3.12)

where angle αw is the pressure angle of the blade parabolic profile at the point E
of connection with the circular arc profile of the fillet of radius ρw (see Fig. 21.3.5).
Parameters Xw and αw (Figs. 21.3.4 and 21.3.5) depend on the parabola coefficient
and have to be determined numerically to guarantee the tangency of the circular arc
of radius ρw with a parabola of coefficient ac . The unit normal to the gear generating
surface �

(b)
g is determined by Eq. (21.3.6) and represented by Eq. (21.3.7).

Equations of the Generated Gear Tooth Surface
The derivation of the equations of the generated gear tooth surface is based on applica-
tion of two equations that have to be considered simultaneously: (i) the equation of the
family of head-cutter surfaces represented in coordinate system S2, and (ii) the equation
of meshing. Such equations have to be derived for surfaces �

(a)
2 and �

(b)
2 that represent

the working part of the tooth surface and the fillet.
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Figure 21.3.5: Illustration of pressure angle αw of parabolic profile at
point E of connection with the circular arc profile of the fillet.

Then, the surface �
(a)
2 will be represented as follows:

r(a)
2 (sg , θg , ψ2) = M2g (ψ2)r (a)

g (sg , θg ) (21.3.13)(
∂r (a)

2

∂sg
× ∂r (a)

2

∂θg

)
· ∂r (a)

2

∂ψ2
= f (a)

2g (sg , θg , ψ2) = 0. (21.3.14)

Here, ψ2 is the generalized parameter of motion; matrix M2g represents the coordinate
transformation from Sg to S2 (Fig. 21.3.2) and is given by

M2g (ψ2) = M2b2Mb2a2Ma2m2Mm2c2Mc2g (21.3.15)

where

Mc2g =



1 0 0 Sr2 cos q2

0 1 0 Sr2 sin q2

0 0 1 0

0 0 0 1



Mm2c2 =



cos ψc2 − sin ψc2 0 0

sin ψc2 cos ψc2 0 0

0 0 1 0

0 0 0 1



Ma2m2 =



1 0 0 0

0 1 0 �Em2

0 0 1 −�XB2

0 0 0 1
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Mb2a2 =



sin γm2 0 − cos γm2 0

0 1 0 0

cos γm2 0 sin γm2 −�XD2

0 0 0 1



M2b2 =



cos ψ2 sin ψ2 0 0

− sin ψ2 cos ψ2 0 0

0 0 1 0

0 0 0 1


.

An alternative approach for the derivation of the equation of meshing (21.3.14) is given
in Section 6.1 as

n(a)
g · v(g2) = f (a)

g (sg , θg , ψ2) = 0. (21.3.16)

Surface �
(a)
2 is represented in three-parameter form. Simultaneous consideration of

equations (21.3.13) and (21.3.14) or (21.3.13) and (21.3.16) enables us to represent
�

(a)
2 in two-parameter form as

R(a)
2 (θg , ψ2) = r (a)

2 (sg (θg , ψ2), θg , ψ2). (21.3.17)

Similar considerations for �
(b)
2 enable us to obtain

r (b)
2 (λw, θg , ψ2) = M2g (ψ2) r (b)

g (λw, θg ) (21.3.18)(
∂r (b)

2

∂λw
× ∂r (b)

2

∂θg

)
· ∂r (b)

2

∂ψ2
= f (b)

2g (λw, θg , ψ2) = 0. (21.3.19)

Equation of meshing (21.3.19) may also be represented as

n(b)
g · v(g2) = f (b)

g (λw, θg , ψ2) = 0. (21.3.20)

Surface �
(b)
2 may be represented in two-parameter form as

R(b)
2 (θg , ψ2) = r (b)

2 (λw(θg , ψ2), θg , ψ2). (21.3.21)

The derivation of gear tooth surfaces requires knowledge of gear machine-tool set-
tings. Such settings of a head-cutter or a grinding wheel are presented in Table 21.3.1. We
consider the gear machine-tool settings as known (adapted, for instance, from the data
of manufacturing), but the pinion machine-tool settings are determined in the process
of local synthesis (see Section 21.4).

Equations of the Formate-Cut Gear Tooth Surface
We recall that the formate-cut gear tooth surface is a copy of the surface of the head-
cutter, which is a surface of revolution. The cradle wherein the gear head-cutter is
mounted (Fig. 21.3.1) is held at rest during the process of cutting or grinding. The
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Table 21.3.1: Machine-tool settings of a generated gear

Name Notation Reference

Blade angle αg (Fig. 21.3.3)
Cutter (grinding wheel) radius Ru (Fig. 21.3.3)
Point width Pw2 (Fig. 21.3.3)
Cutter point radius (Rg = Ru ± Pw2/2) Rg (Fig. 21.3.3)
Radial setting Sr2 (Fig. 21.3.2)
Basic cradle angle q2 (Fig. 21.3.2)
Machine center to back �XD2 (Fig. 21.3.2)
Sliding base �XB2 (Fig. 21.3.2)
Blank offset �Em2 (Fig. 21.3.2)
Machine root angle γm2 (Fig. 21.3.2)
Ratio of gear roll m2c2 [Eq. (21.3.1)]
Edge radius of head-cutter ρw (Fig. 21.3.3)

rotation of the head-cutter about the zg axis is necessary for the cutting or grinding
process but does not affect the shape of gear tooth surfaces.

The surfaces �
(a)
2 and �

(b)
2 that represent the working part of the gear tooth surface

and the fillet of a formate-cut gear are represented as follows, respectively,

r(a)
2 (sg , θg ) = M2gr (a)

g (sg , θg ) (21.3.22)

r(b)
2 (λw, θg ) = M2gr(b)

g (λw, θg ). (21.3.23)

Here,

M2g = M2a2Ma2m2Mm2g (21.3.24)

where

Mm2g =



1 0 0 H2

0 1 0 ±V2

0 0 1 0

0 0 0 1



Ma2m2 =



1 0 0 0

0 1 0 0

0 0 1 −�XB2

0 0 0 1
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M2a2 =



sin γm2 0 − cos γm2 0

0 1 0 0

cos γm2 0 sin γm2 −�XD2

0 0 0 1


.

Parameters V2, H2, �XB2 , �XD2 , and γm2 (Fig. 21.3.6) are the gear machine-tool
settings. The upper and lower signs in front of V2 correspond to right-hand and left-
hand gears, respectively. The whole set of machine-tool settings for a formate-cut gear
is presented in Table 21.3.2.

Figure 21.3.6: Coordinate systems applied for cutting or grinding of a formate-cut gear: (a) for right-
hand gear; (b) for left-hand gear.
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Table 21.3.2: Machine-tool settings of a formate-cut gear

Name Notation Reference

Blade angle αg (Fig. 21.3.4)
Blade parabolic coefficient ac [Eq. (21.3.8)]
Parabola apex location sgo (Fig. 21.3.4)
Cutter (grinding wheel) radius Ru (Fig. 21.3.4)
Point width Pw2 (Fig. 21.3.4)
Cutter point radius Rg = Ru ± Pw2/2 (Fig. 21.3.4)
Horizontal setting H2 (Fig. 21.3.6)
Vertical setting V2 (Fig. 21.3.6)
Sliding base �XB2 (Fig. 21.3.6)
Machine center to back �XD2 (Fig. 21.3.6)
Machine root angle γm2 (Fig. 21.3.6)
Edge radius of head-cutter ρw (Fig. 21.3.4)

21.4 DERIVATION OF PINION TOOTH SURFACE

We limit the discussion to the generation of the pinion by straight-line blades of the
head-cutter. However, application of blades of parabolic profile for pinion generation
is beneficial in some cases, for instance for design of a gear ratio close to 1.

Applied Coordinate Systems
Coordinate systems applied for generation of the pinion are shown in Fig. 21.4.1. Co-
ordinate systems Sm1, Sa1, Sb1 are the fixed ones and they are rigidly connected to the
cutting machine. The movable coordinate systems S1 and Sc1 are rigidly connected to
the pinion and the cradle, respectively. They are rotated about the zb1 axis and the zm1

axis, respectively, and their rotations are related with a polynomial function ψ1 (ψc1)
wherein modified roll is applied (see below). The ratio of instantaneous angular ve-
locities of the pinion and the cradle is defined as m1c (ψ1 (ψc1)) = ω(1)(ψc1)/ω(c). The
magnitude m1c (ψ1) at ψc1 = 0 is called ratio of roll or velocity ratio. Parameters �XD1 ,
�XB1 , �Em1 , and γm1 are the basic machine-tool settings for pinion generation.

Coordinate system Sp [Figs. 21.4.1(a) and 21.4.1(b)] is applied for illustration of
installment of the head-cutter on the cradle and corresponds to generation of the right-
hand and left-hand pinion, respectively.

Head-Cutter Surfaces
The pinion generating surfaces are formed by surface �

(a)
p and �

(b)
p generated by straight-

line and circular arc parts of the blades. Surface �
(a)
p is represented as

r (a)
p (s p, θp) =


(R p ∓ s p sin αp) cos θp

(R p ∓ s p sin αp) sin θp

−s p cos αp

 (21.4.1)
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Figure 21.4.1: Coordinate systems applied for pinion generation: (a) and (b) illustration of tool in-
stallment for generation of right- and left-hand pinions; (c) illustration of installment of machine-tool
settings.

where s p and θp are the surface coordinates, αp is the blade angle, and R p is the cutter
point radius (Fig. 21.4.2). The upper and lower signs in Eq. (21.4.1) correspond to the
convex and concave sides of the pinion tooth, which are in mesh with the concave and
convex sides of the gear, respectively.

The unit normal to the pinion generating surface �
(a)
p is represented by the equations

n(a)
p (θp) = Np∣∣Np

∣∣ , Np = ∂r (a)
p

∂s p
× ∂r (a)

p

∂θp
. (21.4.2)

Equations (21.4.1) and (21.4.2) yield

n(a)
p (θp) =


cos αp cos θp

cos αp sin θp

∓ sin αp

 . (21.4.3)
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Figure 21.4.2: Blades and generating cones for pinion generating tool with straight blades: (a) con-
vex side blade; (b) convex side generating cone; (c) concave side blade; (d) concave side generating
cone.

For surface �
(b)
p , we obtain

r (b)
p (λ f , θp) =


(Xf ∓ ρ f sin λ f ) cos θp

(Xf ∓ ρ f sin λ f ) sin θp

−ρ f (1 − cos λ f )

 , 0 ≤ λ f ≤ π

2
− αp (21.4.4)

where

Xf = R p ± ρ f (1 − sin αp)/ cos αp

and ρ f is the edge radius of the head-cutter for the pinion (Fig. 21.4.2).
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The unit normal to the pinion generating surface of part (b) is represented by the
equations

n(b)
p (θp) = N(b)

p∣∣N(b)
p

∣∣ , Np = ∂r (b)
p

∂λ f
× ∂r (b)

p

∂θp
. (21.4.5)

Equations (21.4.4) and (21.4.5) yield

n(b)
p (θp) =


sin λ f cos θp

sin λ f sin θp

∓ cos λp

 . (21.4.6)

Families of Pinion Tooth Surfaces
Such families are represented as

r (a)
1 (s p, θp, ψc1) = M1p(ψc1) r (a)

p (s p, θp) (21.4.7)

r (b)
1 (λ f , θp, ψc1) = M1p(ψc1) r (b)

p (λ f , θp) (21.4.8)

where

M1p = M1b1Mb1a1Ma1m1Mm1c1Mc1 p

Mc1 p =



1 0 0 Sr1 cos q1

0 1 0 Sr1 sin q1

0 0 1 0

0 0 0 1



Mm1c1 =



cos ψc1 − sin ψc1 0 0

sin ψc1 cos ψc1 0 0

0 0 1 0

0 0 0 1



Ma1m1 =



1 0 0 0

0 1 0 �Em1

0 0 1 −�XB1

0 0 0 1
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Mb1a1 =



sin γm1 0 − cos γm1 0

0 1 0 0

cos γm1 0 sin γm1 −�XD2

0 0 0 1



M1b1 =



cos ψ1 sin ψ1 0 0

− sin ψ1 cos ψ1 0 0

0 0 1 0

0 0 0 1


.

When modified roll is applied in the process of generation, the rotation angles ψ1 of
the pinion and ψc1 of the cradle are related as

ψ1 = b1ψc1 − b2ψ
2
c1

− b3ψ
3
c1

(21.4.9)

= b1

(
ψc1 − b2

b1
ψ2

c1
− b3

b1
ψ3

c1

)
= m1c

(
ψc1 − Cψ2

c1
− Dψ3

c1

)
where b1, b2, and b3 are the modified roll parameters and C and D are the modified
roll coefficients. The derivative of function ψ1 (ψc1) taken at ψc1 = 0 determines the
so-called ratio of roll or velocity ratio, determined in Eq. (21.4.9) by b1 or m1c .

Equation of Meshing
The pinion tooth surface �1 is the envelope to the family of cutter surfaces. The modified
roll is applied in the process of generation. The equation of meshing is represented as

n(a)
m1

· v(p1)
m1

= f (a)
1p (s p, θp, ψc1) = 0 (21.4.10)

where n(a)
m1 is the unit normal to the surface, and v(p1)

m1 is the velocity in relative motion.
The vectors are represented in the fixed coordinate system Sm1 as follows:

n(a)
m1

= Lm1c1Lc1 pn(a)
p (θp) (21.4.11)

v(p1)
m1

= [(ω(p)
m1

− ω(1)
m1

)× rm1
]− (Om1 Oa2 × ω(1)

m1

)
. (21.4.12)

The 3 × 3 matrices Lm1c1 and Lc1 p in Eq. (21.4.11) and in similar derivations are the
sub-matrices of the 4 × 4 matrices Mm1c1 and Mc1 p, respectively. They are obtained by
elimination of the last row and column of Mm1c1 and Mc1 p, respectively. Elements of
matrices Lm1c1 and Lc1 p represent the direction cosines formed by the respective axes of
coordinate systems Sm1 and Sc1 for Lm1c1 and coordinate systems Sc1 and Sp for Lc1 p

(see Chapter 1).



P1: GDZ/SPH P2: GDZ

CB672-21 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 2:1

21.5 Local Synthesis and Determination of Pinion Machine-Tool Settings 649

Position vector rm1 in Eq. (21.4.12) is determined as

rm1 = Mm1c1Mc1 p r (a)
p (s p, θp)

Om1 Oa2 = [0 −�Em1 �XB1 ]
T

ω(1)
m1

= [cos γm1 0 sin γm1 ]
T

ω(p)
m1

= [0 0 m1c (ψc1 )]
T.

The ratio m1c (ψc1 ) is not constant because modified roll is applied and it can be repre-
sented as

m1c (ψc1 ) = ωc1

ω1
= dψc1/dt

dψ1/dt
= 1

dψ1/dψc1

= 1
m1c

(
1 − 2Cψc1 − 3Dψ2

c1

)
= 1

m1c − 2b2ψc1 − 3b3ψ2
c1

(21.4.13)

where C and D are the modified roll coefficients.
Finally, we obtain the equations for pinion tooth surface part (a) as

r (a)
1 (s p, θp, ψc1 ) = M1p(ψc1 ) r (a)

p (s p, θp) (21.4.14)

f1p(s p, θp, ψc1 ) = 0. (21.4.15)

Using similar derivations, the fillet surface may be represented as

r (b)
1 (λ f , θp, ψc1 ) = M1p(ψc1 ) r (b)

p (λ f , θp) (21.4.16)

f1p(λ f , θp, ψc1 ) = 0. (21.4.17)

21.5 LOCAL SYNTHESIS AND DETERMINATION OF
PINION MACHINE-TOOL SETTINGS

The purpose of local synthesis is to obtain favorable conditions of meshing and contact
at the chosen mean contact point M. Such conditions at M are defined by η2, a , and m′

21
(Fig. 21.2.1). The gear machine-tool settings are considered as known and they may be
adapted, for instance, from the manufacturing summary.

The procedure of local synthesis is a part of the proposed integrated approach for
the design of spiral bevel gears with localized bearing contact and reduced levels of
vibration and noise based on application of a longitudinally directed path of contact
and application of parabolic blades for generation of the gear to avoid hidden areas of
severe contact.

The procedure of local synthesis is represented as a sequence of three stages that
provide: (i) the tangency at M of gear tooth surface �2 and gear head-cutter surface
�g , (ii) the tangency at M of gear and pinion tooth surfaces �2 and �1, and (iii) the
tangency at M of pinion tooth surface �1 and pinion head-cutter surface �p. Finally,
we obtain that all four surfaces �2, �g , �1, and �p are in tangency at M. At all stages,



P1: GDZ/SPH P2: GDZ

CB672-21 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 2:1

650 Spiral Bevel Gears

the relationships between the principal curvatures and directions of meshing surfaces are
applied (provided in Section 21.6). Then, it becomes possible to obtain the sought-for
pinion machine-tool settings.

The procedure of local synthesis is applied for both cases of design of spiral bevel
gear drives: (i) face-milled generated gears, and (ii) formate-cut spiral bevel gears. The
procedure for the case of face-milled generated spiral bevel gear drives is represented
below. The procedure of local synthesis for formate-cut spiral bevel gear drives can be
considered as a particular case of the one applied for face-milled generated spiral bevel
gear drives and is discussed below.

Local Synthesis of Face-Milled Generated Spiral Bevel Gear Drives
The procedure of local synthesis of face-milled generated spiral bevel gear drives is
illustrated by the following three stages:

STAGE 1: TANGENCY OF SURFACES �2 AND �g AT CHOSEN POINT A . Point A on surface
�2 is chosen as a candidate for the mean contact point M of pinion–gear tooth surfaces.

Step 1: The meshing of surfaces �2 and �g is represented in coordinate system Sm2

(Fig. 21.3.2) by the following equations:

rm2 (sg , θg , ψ2) = Mm2g (ψ2) r g (sg , θg ) (21.5.1)

f2g (sg , θg , ψ2) = 0. (21.5.2)

Equation (21.5.1) represents in Sm2 the family of surfaces �g , and Eq. (21.5.2) is the
equation of meshing. The generated surface �2 is represented in S2 by the matrix equa-
tion

r2(sg , θg , ψ2) = M2g (ψ2) r g (sg , θg ) (21.5.3)

and the equation of meshing (21.5.2).
Step 2: Mean point A on surface �2 is chosen by designation of parameters LA and

RA (Fig. 21.5.1), where A is the candidate for the mean contact point M of surfaces �2

Figure 21.5.1: Representation of point A
in coordinate system S2.
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and �1. Then we obtain the following system of two equations in three unknowns: Z2(s ∗
g , θ

∗
g , ψ∗

2 ) = LA

X2
2(s ∗

g , θ
∗
g , ψ∗

2 ) + Y2
2 (s ∗

g , θ
∗
g , ψ∗

2 ) = R2
A

(21.5.4)

where X2, Y2, Z2 are the projections of position vector r2(s ∗
g , θ

∗
g , ψ∗

2 ) (see Eq. (21.5.3)).
The third equation for determination of these three unknowns is the equation of meshing
(21.5.2).

Step 3: Equations (21.5.2), (21.5.3), and (21.5.4) considered simultaneously allow
the determination of parameters (s ∗

g , θ
∗
g , ψ∗

2 ) for point A. Vector functions r g (sg , θg )
and ng (θg ) determine the position vector and surface unit normal for a current point of
surface �g . Taking in these vector functions sg = s ∗

g and θg = θ∗
g , we can determine the

position vector r (A)
g of point A and the surface unit normal at A.

Step 4: Parameters s ∗
g and θ∗

g and the unit vectors eg and eu of principal directions
on surface �g are considered as known. For a head-cutter with blades of straight-line
profiles:

eg = ∂r (a)
g

∂sg
÷
∣∣∣∣∣∂r (a)

g

∂sg

∣∣∣∣∣ =


± sin αg cos θg

± sin αg sin θg

− cos αg


(21.5.5)

eu = ∂r (a)
g

∂θg
÷
∣∣∣∣∣∂r (a)

g

∂θg

∣∣∣∣∣ =


− sin θg

cos θg

0

 . (21.5.6)

In this case, the generating surface is a conical surface, and the principal curvatures kg

and ku of �g can be determined by the following equations:
kg = 0

ku = cos αg

Rcg ± sg sin αg
.

(21.5.7)

The upper and lower signs correspond to the concave and convex sides of the gear tooth,
respectively.

The approach discussed in Section 21.6 enables the determination at point A of
(i) the principal curvatures ks and kq of �2, and (ii) the unit vectors es and eq of
principal directions on surface �2. The unit vectors es and eq are represented in Sm2 .
The general procedure presented in Section 8.4 can be applied for determination of
principal curvatures kg and ku of the surfaces of the blades of parabolic profile.

STAGE 2: TANGENCY OF SURFACES �2, �g , AND �1 AT MEAN CONTACT POINT M

Step 1: The derivations accomplished at Stage 1 enable the determination of the
position vector r(A)

2 and the surface unit normal n(A)
2 of point A of tangency of surfaces

�2 and �g . The goal now is to determine such a point M in the fixed coordinate system
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Figure 21.5.2: Coordinate systems S2, S�, and
S1 applied for local synthesis.

S� (Fig. 21.5.2) where three surfaces, �2, �g , and �1, will be in tangency with each
other.

It can be imagined that surface �g is rigidly attached to �2 at point A and that both
surfaces, �g and �2, perform motion as a rigid body turning about the gear axis on a
certain angle φ

(0)
2 . Using the coordinate transformation from S2 to S� (Fig. 21.5.2), we

may obtain r (A)
� and n(A)

� . The new position of point A in S� will be the point of tangency
of �2 and �1 (designated as M), if the following equation of meshing between �2 and
�1 is observed:

n(A)
�

(
φ

(0)
2

) · v(21,A)
�

(
φ

(0)
2

) = 0 (21.5.8)

Here, n(A)
� ≡ n(M)

� and v(21,A)
� ≡ v(21,M)

� ; v(21,A)
� is the relative velocity at point A deter-

mined with the ideal gear ratio

m(0)
21 = ω(2)

ω(1)
. (21.5.9)

The solution of Eq. (21.5.8) for φ
(0)
2 provides the value of the turning angle φ

(0)
2 . It is

evident that three surfaces, �2, �g , and �1, are now in tangency with each other at
point M. We emphasize that the procedure in Step 1 enables us to avoid the tilt of the
head-cutter for generation of the pinion.

Step 2: We consider as known at point M the principal curvatures ks and kq of surface
�2, and the unit vectors es and eq of principal directions on �2. The unit vectors es and
eq are represented in S�. The goal is to determine at point M the principal curvatures
kf and kh of surface �1, and the unit vectors e f and eh of principal directions on �1.
This goal can be achieved by application of the procedure described in Section 21.6. It
is shown in Section 21.6 that the determination of kf , kh, e f , and eh becomes possible
if parameters m′

21, η2 (or η1), and a/δ are assumed to be known or are used as input
data.

STAGE 3: TANGENCY OF SURFACES �2, �g , �1, AND �p AT MEAN CONTACT POINT M . We
consider in this stage two sub-stages: (a) derivation of basic equations of surface tan-
gency, and (b) determination of pinion machine-tool settings that satisfy the equations
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of surface tangency. Tangency of �2, �g , and �1 at mean contact point M has already
been provided in the previous stages. The position vector r (M)

� of point M and the surface
unit normal n(M)

� at point M were determined in coordinate system S�. Let us imagine
now that coordinate system S1 that coincides with S� (Fig. 21.5.2) and surface �1 are
installed in coordinate system Sm1 (Fig. 21.4.1). Angle ψ

(0)
1 shown in Fig. 21.4.1 is the

installment angle of the pinion. Using coordinate transformation from S1 to Sm1 , we
may determine in Sm1 position vector r (M)

m1 of point M and the surface unit normal n(M)
m1 .

In Section 21.6 the conditions of improved meshing and contact of pinion and gear
tooth surfaces �1 and �2 are considered, and the relationships between the principal
curvatures and directions of surfaces for such conditions of meshing and contact are de-
termined [see Eqs. (21.6.27)]. The point of tangency of surfaces �1 and �p is designated
in Section 21.6 as point B. The pinion generating surface �p is installed in Sm1 , taking
that the cradle angle ψc1 is equal to zero. The position vector of point B of surface �p

and the surface unit normal at B are represented in Sm1 as r (B)
m1 and n(B)

m1 . The tangency
of �1 and �p at the mean contact point M is satisfied, if the following vector equations
are observed:

n(M)
m1

= n(B)
m1

(21.5.10)

r (M)
m1

= r (B)
m1

(21.5.11)

n(M)
m1

· v(1p)
m1

= 0 (21.5.12)

where Eq. (21.5.12) is the equation of meshing. Observation of Eqs. (21.5.10) to
(21.5.12) means that all four surfaces (�2, �g , �1, and �p) are in contact at point
M.

Using Eqs. (21.5.10) to (21.5.12) and Eq. (21.6.27), it becomes possible to obtain
the settings of the pinion and the head-cutter that guarantee the improved conditions
of meshing and contact at point M. The machine-tool settings to be determined are as
follows:

(i) �XB1 , �Em1 , �XD1 (Figs. 21.4.1 and 21.5.3) and m1p = ω(1)/ω(p). Setting �XB1

and �XD1 are related by the equation (Fig. 21.5.3)

�XB1 = −(�XD1 − ∣∣OR O1
∣∣ ) sin γm1 (21.5.13)

Figure 21.5.3: For derivation of pinion
machine-tool settings.
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where ∣∣OR O1
∣∣ = [(Am + Fw/2) sin γ1 − bp cos γ1]

tan γm1

− [(Am + Fw/2) cos γ1 + bp sin γ1].

Here, Am is the mean cone distance, Fw is the face width, bp is the pinion dedendum,
and γ1 is the pitch cone angle of the pinion. Equation (21.5.13) is determined for
the case of design of a spiral bevel gear with different apexes of the pitch and root
cones.

(ii) Design parameter R p of the head-cutter (Fig. 21.4.2).
(iii) Parameters Sr1 and q1 that determine the installment of the head-cutter on the

cradle (Fig. 21.4.1).
(iv) Parameter ψ

(0)
1 that determines the initial installment of coordinate system S1

with respect to Sb1 (Fig. 21.4.1), and surface parameter θp of the head-cutter sur-
face �p.

After completion of the first sub-stage (the derivation of equations of tangency of
surfaces �2, �g , �1, and �p, we may start the next sub-stage, the derivation of pin-
ion machine-tool settings that provide the tangency of surfaces mentioned above. The
procedure for computation is as follows:

Step 1: Calculate the values of θp and ψ
(0)
1 (two unknowns). Equation (21.5.10) is

used for determination of θp and ψ
(0)
1 , taking into account that

n(B)
m1

(θp) =


cos αp cos θp

cos αp sin θp

∓ sin αp

 (21.5.14)

and (Fig. 21.4.1)

n(M)
m1

= Lm1b1Lb11n(M)
1 (21.5.15)

where n(M)
1 ≡ n(M)

� because S1 coincides with S� (Fig. 21.5.2). Here (Fig. 21.4.1),

Lm1b1 =


sin γm1 0 cos γm1

0 1 0

− cos γm1 0 sin γm1

 (21.5.16)

Lb11 =


cos ψ

(0)
1 − sin ψ

(0)
1 0

sin ψ
(0)
1 cos ψ

(0)
1 0

0 0 1

 . (21.5.17)
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Equations (21.5.10) and (21.5.14)–(21.5.17) yield the following expressions for θp

and ψ
(0)
1 :

cos θp = n�z ± sin γm1 sin αp

cos γm1 cos αp
(21.5.18)

sin ψ
(0)
1 = −n�y cos θp cos αp + n�x sin γm1 sin θp cos αp + n�yn�z cos γm1

sin γm1

(
n2

�x + n2
�y

) (21.5.19)

cos ψ
(0)
1 = sin θp cos αp − n�x sin ψ

(0)
1

n�y
(21.5.20)

where αp is the given value of the profile angle of the head-cutter and n�x, n�y, n�z are the
three components of vector n(M)

� . The great advantage of the approach developed is that
the requirement of the coincidence of the normals does not require a nonstandard profile
angle αp or the tilt of the head-cutter with respect to the cradle. Using θp, it becomes
possible to determine the unit vectors ep and et of principal directions on surface �p at
point M.

Step 2: Determination of machine-tool settings �XB1 (�XD1 ), �Em1 , m1p, and the
design parameter R p of the head-cutter (five unknowns).

As a reminder, �XB1 and �XD1 are related by Eq. (21.5.13). The determination
of the machine-tool settings mentioned above is based on application of the system
of equations (21.6.27) and Eq. (21.5.12) that represent a system of four nonlinear
equations with four unknowns: �XD1 , �Em1 , m1p, and R p. Also, the design parameters
mentioned above provide improved conditions of meshing and contact at the mean
contact point M.

Step 3: Determination of machine-tool settings Sr1 and q1 (Fig. 21.4.1) and the pinion
surface parameter s p (three unknowns).

Determination of the three parameters is based on application of Eq. (21.5.11), con-
sidering that generating surface �p is a cone. The final equations are as follows:

Sr1 cos q1 + (Rp ∓ sp sin αp) cos θp = X(M)
m1

(21.5.21)

Sr1 sin q1 + (Rp ∓ sp sin αp) sin θp = Y (M)
m1

(21.5.22)

−sp cos αp = Z(M)
m1

. (21.5.23)

We can summarize all the stages as follows:

(i) It is necessary to determine ten unknowns: six machine-tool settings (�XB1 , �Em1 ,
�XD1 , q1, Sr , m1p), two surface parameters (θp, s p), one cutter parameter Rp, and
one position parameter ψ

(0)
1 which defines the pinion turn (Fig. 21.4.1).

(ii) The equation system for determination of the unknowns is formed as follows:

n(M)
m1

= n(B)
m1

(21.5.24)

r (M)
m1

= r (B)
m1

(21.5.25)

n(M)
m1

· v(1p)
m1

= 0 (21.5.26)

�XB1 = −(�XD1 − ∣∣OR O1
∣∣ ) sin γm1 . (21.5.27)
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In addition, the three following curvature equations are applied:

tan 2σ (1p) = −2d13d23

d2
23 − d2

13 − (kf − kh)d33

kt − kp = −2d13d23

d33 sin 2σ (1p)

kt + kp = kf + kh + d2
13 + d2

23

d33
.

(21.5.28)

Equation (21.5.24) is equivalent to two independent scalar equations; Eq.
(21.5.25) is equivalent to three scalar equations; and Eqs. (21.5.26), (21.5.27),
and (21.5.28) represent five scalar equations. Thus, the system of equations pro-
vides ten scalar equations for determination of ten unknowns. The solution for the
unknowns requires: (1) a solution of a subsystem of four nonlinear equations (see
Step 2), and solution of six remaining equations represented in echelon form (each
of the six equations contains one unknown to be determined).

Local Synthesis of Formate-Cut Spiral Bevel Gear Drives
The local synthesis procedure for formate-cut spiral bevel gear drives is based on the
same four stages previously represented for generated spiral bevel gear drives. The only
modification of the procedure of local synthesis for generated spiral bevel gears affects
Stage 1. Stages 2, 3, and 4 are applied without modification for the case of formate-cut
spiral bevel gears.

The formate-cut gear tooth surface is the copy of the surface of the generating tool.
The cradle and the gear being cut or ground are held at rest. Only the head-cutter is
rotating around its own axis of rotation with the desired velocity of cutting or grinding.
Therefore, principal curvatures ks and kq of �2 and the unit vectors es and eq of principal
directions on surface �2 coincide with the principal curvatures kg and ku and the unit
vectors eg and eu, respectively, of principal directions on surface �g of the surface
of revolution of the generating tool. The procedure represented in Section 21.6 for
determination of (i) the principal curvatures ks and kq of �2, and (ii) the unit vectors
es and eq of principal directions on surface �2 at point A is not applied for the case of
formate-cut spiral bevel gear drives.

21.6 RELATIONSHIPS BETWEEN PRINCIPAL CURVATURES AND
DIRECTIONS OF MATING SURFACES

The relationships represented below are used for the procedure of local synthesis for
the determination of the pinion machine-tool settings. Henceforth, two types of instan-
taneous contact of meshing surfaces are considered: (i) those along a line, and (ii) those
at a point. Line contact is provided in meshing of the surface being generated with the
tool surface. Point contact is provided for the generated pinion and gear tooth surfaces.
The determination of the required relationships is based on the approach proposed in
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Chapter 8. The basic equations in the approach developed are as follows:

v(2)
r = v(1)

r + v(12) (21.6.1)

·
n

(2)

r = ·
n

(1)

r +ω(12) × n (21.6.2)

d
dt

[
n · v(12)] = 0. (21.6.3)

Equations (21.6.1) and (21.6.2) relate the velocities of the contact point and the tip
of the unit normal in their motions over the contacting surfaces. Equation (21.6.3)
represents the differentiated equation of meshing. Equations (21.6.1) and (21.6.2) yield
a skew-symmetric system of three linear equations in two unknowns x1 and x2 of the
following structure:

ai1 x1 + ai2 x2 = ai3 (i = 1, 2, 3). (21.6.4)

Here, x1 and x2 are the projections of the velocity of the contact point in the motion
over one of the surfaces on the principal directions of the mating surface. In the case
of surfaces in line contact, the solution for the unknowns is indefinite and the rank of
the system matrix of the linear equations is 1. In the case of surfaces in point contact,
the solution for the unknowns is definite, and the rank of the system matrix is 2. The
properties mentioned above are used for the derivation of the sought-for relationships
between the principal curvatures and directions of the surfaces in mesh.

Meshing of Surfaces Σg and Σ2

The tool surface �g generates the gear tooth surface �2. Surfaces �g and �2 are in
line contact and their meshing is considered in coordinate system Sm2 (Fig. 21.3.2).
Equations (21.6.1) to (21.6.3) yield a system of three linear equations,

ci1v
(2)
g + ci2v

(2)
u = ci3 (i = 1, 2, 3) (21.6.5)

where

v (2)
g = v(2)

r · eg , v (2)
u = v(2)

r · eu, (21.6.6)

and eg and eu are the unit vectors of principal directions on �g .
The following are considered known: point A of tangency of �g and �2, the common

surface unit normal and the relative velocity v (g2)
g , and the principal directions and

curvatures kg and ku of surface �g at A. The goal is to determine (i) the principal
curvatures ks and kq of surface �2, and (ii) angle σ (g2) that is formed between the
unit vectors eg and es that represent the first principal directions on �g and �2. The
solution is based on the property that the rank of the system matrix (21.6.5) is 1 and is



P1: GDZ/SPH P2: GDZ

CB672-21 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 2:1

658 Spiral Bevel Gears

represented as follows:

tan 2σ (g2) = −2c13c23

c2
23 − c2

13 − (kg − ku)c33

kq − ks = −2c13c23

c33 sin 2σ (g2)

kq + ks = kg + ku + c2
13 + c2

23

c33
.

(21.6.7)

Here,

c13 = −kgv (g2)
g + [(n × ω(g2)

) · eg
]

c23 = −kuv (g2)
u + [(n × ω(g2)

) · eu
]

c33 = −kg
(
v (g2)

g
)2 − ku

(
v (g2)

u
)2 + [(n × ω(g2)

) · v(g2)
]

− n · [(ω(g) × v(2)
tr
)− (ω(2) × v(g)

tr
)]

(21.6.8)

where

v (g2)
g = v(g2) · eg , v (g2)

u = v(g2) · eu . (21.6.9)

Meshing of Surfaces Σ2 and Σ1

Surfaces �1 and �2 are in point contact and their meshing is considered in fixed co-
ordinate system S� (Fig. 21.5.2). Equations (21.6.1) to (21.6.3) yield a system of three
linear equations [Litvin, 1989, 1994],

ai1v
(1)
s + ai2v

(1)
q = ai3 (i = 1, 2, 3) (21.6.10)

where

v (1)
s = v(1)

r · es , v (1)
q = v(1)

r · eq (21.6.11)

a11 = ks − kf cos 2σ (12) − kh sin 2σ (12)

a12 = a21 = 0.5(kf − kh) sin 2σ (12)

a13 = a31 = −ks v (12)
s + [(n × ω(12)

) · es
]

a22 = kq − kf sin 2σ (12) − kh cos 2σ (12)

a23 = a32 = −kqv (12)
q + [(n × ω(12)

) · eq
]

a33 = ks
(
v (12)

s
)2 + kq

(
v (12)

q
)2 − [(n × ω(12)

) · v(12)
]

− n · [(ω(1) × v(2)
tr
)− (ω(2) × v(1)

tr
)]+ m′

21

(
n × k2

) · r .

(21.6.12)

The following are considered known: point M of tangency of surfaces �1 and �2, the
common surface unit normal, the relative velocity v(12), the principal curvatures ks and
kq and directions on �2 at M, and the elastic deformation δ of surfaces at M. The goal
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is to determine the principal curvatures kf and kh and the angle σ (12) formed by the unit
vectors e f and es .

The velocity v(i )
r (i = 1, 2) of the contact point on surface �i has a definite direction

and therefore the rank of the system matrix (21.6.10) is 1. This property yields the
following relation:∣∣∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣ = F
(
kf , kh, ks , kq, σ (12), m′

21

) = 0. (21.6.13)

The sought-for solution for kf , kh, and σ (12) can be obtained if the following pa-
rameters are chosen: the derivative m′

21; the ratio a/δ, where a is the major axis of
the contact ellipse; the direction at M of the tangent to the contact path on one of the
contacting surfaces �1 or �2. The relation between the directions at M of the tangents
to the contact paths on both surfaces is represented by the equation

tan η1 = −a13v (12)
q + (a33 + a13v (12)

s
)

tan η2

a33 + a23
(
v (12)

q − v (12)
s tan η2

) . (21.6.14)

Choosing η2 at point M, we can determine η1.

Procedure of Determination of kf , kh, and σ(12)

Step 1: Determine η1 choosing η2.
Step 2:

v (1)
s = a33

a13 + a23 tan η1
(21.6.15)

v (1)
q = a33 tan η1

a13 + a23 tan η1
. (21.6.16)

Step 3:

A = δ

a2
. (21.6.17)

Step 4:

K� =

a2
13 + a2

23(
v (1)

s
)2 + (v (1)

q
)2 − 4A2

a13v (1)
s + a23v (1)

q(
v (1)

s
)2 + (v (1)

q
)2 + 2A

. (21.6.18)

Step 5: 
a11

a12

a22

 = 1(
v (1)

s
)2 + (v (1)

q
)2


a13v (1)
s − a23v (1)

q + (v (1)
q
)2

K�

a13v (1)
q + a23v (1)

s − v (1)
s v (1)

q K�

−a13v (1)
s + a23v (1)

q + (v (1)
s
)2

K�

 . (21.6.19)
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Step 6:

tan 2σ (12) = 2a12

g2 − (a11 − a22)
(21.6.20)

where g2 = ks − kq .
Step 7:

g1 = 2a12

sin 2σ (12)
. (21.6.21)

Step 8:

K (1)
� = K (2)

� − K� (21.6.22)

where K (2)
� = ks + kq .

Step 9:

kf = (K (1)
� + g1

)
/2. (21.6.23)

Step 10:

kh = (K (1)
� − g1

)
/2. (21.6.24)

The procedure provided above can be used to obtain the sought-for curvatures kf and
kh at point M of tangency of surfaces �2 and �1 and the principal directions on �1

at M.

Meshing of Surfaces Σ1 and Σp

The tool surface �p generates the pinion tooth surface �1. Surfaces �p and �1 are in
line contact and point B is the given point of the instantaneous line of contact. The
meshing of surfaces is considered in Sm1 (Fig. 21.4.1). At point B the following data
are assumed as given: the curvatures kf and kh of surface �1; the unit vectors e f and
eh of principal directions on �1; the surfaces’ unit normals; the relative velocity v(12).
The goal is to determine the principal curvatures kp and kt of surface �p, and the angle
σ (1p) that is formed by the unit vectors e f and ep.

Equations (21.6.1) to (21.6.3) yield a system of three linear equations,

di1v
(p)
f + di2v

(p)
h = di3 (i = 1, 2, 3) (21.6.25)

where

v (p)
f = v(p)

r · e f , v (p)
h = v(p)

r · eh. (21.6.26)

The direction of v(p)
r is indefinite because surfaces �p and �1 are in line contact. There-

fore, the rank of the system matrix of equations is equal to 1. Using this property, the
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following equations are obtained:

tan 2σ (1p) = −2d13d23

d2
23 − d2

13 − (kf − kh)d33

kt − kp = −2d13d23

d33 sin 2σ (1p)

kt + kp = kf + kh + d2
13 + d2

23

d33
.

(21.6.27)

Here,

d13 = −kf v (1p)
f + [(n × ω(1p)

) · e f
]

d23 = −khv (1p)
h + [(n × ω(1p)

) · eh
]

d33 = −kf
(
v (1p)

f

)2 − kh
(
v (1p)

h

)2 + [(n × ω(1p)
) · v(1p)

]
− n · [(ω(1) × v(p)

tr
)− (ω(p) × v(1)

tr
)]

(21.6.28)

where

v (1p)
f = v(1p) · e f , v (1p)

h = v(1p) · eh. (21.6.29)

21.7 SIMULATION OF MESHING AND CONTACT

The main goal of simulation of meshing and contact is the determination of the bearing
contact that corresponds to the pinion machine-tool settings obtained in Section 21.5.
We recall that the gear machine-tool settings are adapted from the data of manufacturing
of the gear. The combination of adapted gear machine-tool settings and determined
pinion machine-tool settings has to provide favorable conditions of meshing and contact.

The expected shape of the function of transmission errors and formation of the bearing
contact are tested by computerized simulation of meshing and contact and application of
stress analysis based on the finite element method (see Section 21.8). The TCA computer
program developed for simulation of meshing and contact allows us to obtain the path
of contact and the function of transmission errors at each stage of iteration (see Section
9.4). The following is a description of the approach applied for tooth contact analysis
(TCA).

Applied Coordinate Systems
The meshing of gear tooth surfaces is considered in the fixed coordinate system Sh that
is rigidly connected to the housing (Fig. 21.7.1). Movable coordinate systems S1 and
S2 are rigidly connected to the pinion and the gear, respectively. Auxiliary coordinate
systems Sb1 and Sb2 are used to represent the rotation of the pinion (with respect to Sb1 )
and the gear (with respect to Sb2 ). The errors of alignment are simulated by respective
installation of Sb1 and Sb2 with respect to Sh (Fig. 21.7.1).

The errors of assembly are �A1 – the axial displacement of the pinion, �γ – the
change of the shaft angle γ , �E – the shortest distance between the axes of the pinion
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Figure 21.7.1: Coordinate systems applied for simulation of meshing: (a) illustration of pinion rotation;
(b) illustration of misalignment �A1; (c) illustration of misalignment �A2, �E , and �γ ; (d) illustration
of gear rotation.

and the gear when the pinion–gear axes are not intersected but crossed, �A2 – the axial
displacement of the gear. In the case of an aligned gear drive we consider that �A1, �γ ,
�E , and �A2 are all equal to zero.

Simulation Algorithm
During the process of meshing, the pinion and gear tooth surfaces must be in continuous
tangency, and this condition is provided if their position vectors and normals coincide
at any instant. Pinion and gear tooth surfaces are represented in coordinate system Sh

as follows:

r (1)
h

(
s p, θp, ψ1, φ1

) = Mhb1Mb11 (φ1) r1
(
s p, θp, ψ1

)
(21.7.1)

f1p(s p, θp, ψ1) = 0 (21.7.2)

r (2)
h

(
sg , θg , ψ2, φ2

) = Mhb2Mb22 (φ2) r2
(
sg , θg , ψ2

)
(21.7.3)

f2g (sg , θg , ψ2) = 0. (21.7.4)
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Here,

Mb11 =



cos φ1 sin φ1 0 0

− sin φ1 cos φ1 0 0

0 0 1 0

0 0 0 1



Mhb1 =



1 0 0 0

0 1 0 0

0 0 1 �A1

0 0 0 1



Mb22 =



cos φ2 − sin φ2 0 0

sin φ2 cos φ2 0 0

0 0 1 0

0 0 0 1



Mhb2 =



cos(γ + �γ ) 0 − sin(γ + �γ ) −�A2 sin(γ + �γ )

0 1 0 �E

sin(γ + �γ ) 0 cos(γ + �γ ) �A2 cos(γ + �γ )

0 0 0 1


.

Vector equation r1
(
s p, θp, ψ1

)
and equation f1p(s p, θp, ψ1) = 0 represent the pinion

tooth surface in coordinate system S1 by three related parameters. Similarly, vector
equation r2

(
sg , θg , ψ2

)
and equation f2g (sg , θg , ψ2) = 0 represent the gear tooth surface

in coordinate system S2 by three related parameters.
Unit normals to tooth surfaces of the pinion and the gear are represented in Sh by the

following equations:

n(1)
h

(
s p, θp, ψ1, φ1

) = Lh1 (φ1) n1
(
s p, θp, ψ1

)
(21.7.5)

f1p(s p, θp, ψ1) = 0 (21.7.6)

n(2)
h

(
sg , θg , ψ2, φ2

) = Lhb2Lb22 (φ2) n2
(
sg , θg , ψ2

)
(21.7.7)

f2g (sg , θg , ψ2) = 0. (21.7.8)
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Here,

Lh1 =


cos φ1 sin φ1 0

− sin φ1 cos φ1 0

0 0 1



Lb22 =


cos φ2 − sin φ2 0

sin φ2 cos φ2 0

0 0 1



Lhb2 =


cos(γ + �γ ) 0 − sin(γ + �γ )

0 1 0

sin(γ + �γ ) 0 cos(γ + �γ )

 .

Conditions of continuous tangency of pinion and gear tooth surfaces are represented
by the following equations:

r (1)
h (s p, θp, ψ1, φ1) − r (2)

h (sg , θg , ψ2, φ2) = 0 (21.7.9)

n(1)
h (s p, θp, ψ1, φ1) − n(2)

h (θg , ψ2, φ2) = 0 (21.7.10)

f1p(s p, θp, ψ1) = 0 (21.7.11)

f2g (sg , θg , ψ2) = 0. (21.7.12)

Surfaces �1 and �2 are represented in Sh by three related parameters. Equations
(21.7.11) and (21.7.12) are the equations of meshing of surfaces �1 and �p, and �2 and
�g , respectively. Equations (21.7.9), (21.7.10), (21.7.11), and (21.7.12) describe that
surfaces �1 and �2 have coinciding position vectors and surface unit normals at their
point of tangency. Vector equations (21.7.9) and (21.7.10) yield three and two scalar
equations, respectively. The system of equations from (21.7.9) to (21.7.12) provides
seven equations for determination of seven unknowns. The angle of rotation of the
pinion, φ1, is considered as the input parameter in the range −π/N1 < φ1 < π/N1. Pa-
rameters s p, θp, ψ1, sg , θg , ψ2, and φ2 are the sought-for unknowns that are determined
by solving the seven equations mentioned above [Visual Numerics, Inc., 1998]. It is
assumed that the Jacobian of the system (21.7.9), (21.7.10), (21.7.11), and (21.7.12)
differs from zero at each iteration.

The paths of contact on the pinion and gear tooth surfaces are represented by the
following functions:

r1(s p(φ1), θp(φ1), ψ1(φ1)) (21.7.13)

r2(sg (φ1), θg (φ1), ψ2(φ1)). (21.7.14)
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The function of transmission errors is defined as

�φ2(φ1) = φ2(φ1) − N1

N2
φ1. (21.7.15)

The bearing contact is formed as a set of instantaneous contact ellipses. The lengths
of the major and minor axes of the instantaneous contact ellipse and their orientation
are determined using the approach proposed in Section 9.3. The computation proce-
dure is based on relations between the principal curvatures and directions between the
contacting surfaces. The elastic approach of surfaces is considered to be known. The
avoidance of interference in the neighborhood of the contact point M may be tested
following the approach represented in Litvin et al. [1998a]. An example of design and
optimization of a spiral bevel gear drive is represented in Section 21.9.

21.8 APPLICATION OF FINITE ELEMENT ANALYSIS FOR THE DESIGN OF
SPIRAL BEVEL GEAR DRIVES

Application of finite element analysis (FEA) enables:

(1) Determination of contact and bending stresses for pinion and gear
(2) Investigation of formation of bearing contact and transfer of load to the next

contacting pair of teeth
(3) Detection and avoidance of areas of severe contact stresses for high-loaded gear

drives.

Application of the finite element method requires the development of the finite element
model formed by the finite element mesh, the definition of contacting surfaces, and the
establishment of boundary conditions to load the gear drive with the desired torque.
The authors apply a general purpose computer program [Hibbit, Karlsson & Sirensen,
Inc., 1998] to perform the finite element analysis.

A modified approach for the performance of finite element analysis has been ap-
plied for the design of spiral bevel gear drives (see Section 9.5). One of the main
ideas of the applied FEA approach is the automatization of the contacting model of
gear teeth by direct application of tooth surfaces (see Section 9.5). This approach en-
ables us to determine contact and bending stresses for the whole cycle of meshing,
investigate the formation of the bearing contact and determine, if they exist, hidden
areas of severe contact wherein the contact stresses are substantially increased (see
Section 21.9).

Figures 21.8.1 and 21.8.2 illustrate a finite element mesh with three pairs of teeth
and a whole gear drive finite element mesh, respectively. Finite elements of first order
enhanced by incompatible modes of deformation to improve their bending behavior
[Hibbit, Karlsson & Sirensen, Inc., 1998] are used to build the finite element mesh. The
material is steel with the properties of Young’s modulus E = 2.068 · 108 mN/mm2 and
a Poisson’s ratio of ν = 0.29.
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Figure 21.8.1: Finite element model of three pairs of contacting teeth.

21.9 EXAMPLE OF DESIGN AND OPTIMIZATION OF A SPIRAL
BEVEL GEAR DRIVE

An example of design and optimization of a face-milled generated spiral bevel gear
drive of gear ratio 9 × 33 is considered. Table 21.9.1 shows the blank data of the gear
drive. Three different cases of design have been considered and they are summarized as
follows:

Figure 21.8.2: Finite element model of a whole gear mesh.
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Table 21.9.1: Blank data

Design features Pinion Gear

Number of teeth of pinion and gear 9 33
Module (mm) 4.8338 4.8338
Shaft angle (deg.) 90.0000 90.0000
Mean spiral angle (deg.) 32.0000 32.0000
Hand of spiral RH LH
Face width (mm) 27.5000 27.5000
Mean cone distance (mm) 68.9200 68.9200
Whole depth (mm) 9.4300 9.4300
Pitch angles (deg.) 15.2551 74.7449
Root angles (deg.) 13.8833 69.5833
Face angles (deg.) 20.4167 76.1167
Clearance (mm) 1.0300 1.0300
Addendum (mm) 6.6400 1.7600
Dedendum (mm) 2.7900 7.6700

• Case 1a: The existing design is obtained directly from the data of manufacturing
of the gear and the pinion of the gear drive. Application of TCA and FEA allows
simulation of the performance of the existing design and establishes the baseline level
of transmission errors and stresses before optimization.

• Case 1b: This is the result of application of the first iteration of stages 1 to 4
as described in Section 21.2 wherein a longitudinal path of contact is provided
and straight-line blade profiles have been used for generation of the pinion and
gear.

• Case 1c: This is the result of application of stages 1 to 4 wherein a longitudinal
path of contact is provided and blades of parabolic profile have been used for gear
generation. The pinion is generated by blades of straight-line profiles. The parabola
coefficient has been obtained to avoid hidden areas of severe contact.

For all cases of design, both sides of the gear space are generated simultaneously by
the head-cutter. The data of the gear head-cutter that generates the gear tooth surfaces
for the three cases of design are represented in Table 21.9.2. Table 21.9.3 shows the
pinion machine-tool settings considered for the existing design (Case 1a) and the pinion
machine-tool settings obtained from computations that provide improved conditions of
meshing and contact of the gear drive (Cases 1b and 1c of design).

We consider the convex side of the pinion tooth surface as the driving side and the
concave side of the gear tooth surface as the driven side. Figure 21.9.1 shows the results
of TCA for the case of design 1a corresponding to the existing design of the spiral bevel
gear drive. The path of contact for the existing design is directed across the surface.
The obtained shape of the function of transmission errors is a parabolic one with a
maximum level of about 8 arcsec.
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Table 21.9.2: Parameters and installment settings of the gear head-cutter for design
cases 1a, 1b, and 1c

Applied settings Cases 1a and 1b Case 1c

Average cutter diameter (mm) 127.0000 127.0000
Point width (mm) 2.5400 2.5400
Pressure angle, concave (outside blade) (deg.) 22.0000 22.0000
Pressure angle, convex (inside blade) (deg.) 22.0000 22.0000
Blade profile parabola coefficient, concave (1/mm) 0.0000 0.0020
Blade profile parabola coefficient, convex (1/mm) 0.0000 0.0000
Parabola vertex location, concave (mm) 0.0000 4.7279
Parabola vertex location, convex (mm) 0.0000 4.7069
Root fillet radius, concave and convex (mm) 1.5240 1.5240
Machine center to back (mm) 0.0000 0.0000
Sliding base (mm) −0.2071 −0.2071
Blank offset (mm) 0.0000 0.0000
Radial distance (mm) 64.3718 64.3718
Machine root angle (deg.) 69.5900 69.5900
Cradle angle (deg.) −56.7800 −56.7800
Velocity ratio 1.032331 1.032331

Application of finite element analysis allows us to investigate the formation of the
bearing contact for the whole cycle of meshing and investigate the transfer of load
between neighboring pairs of teeth.

Figures 21.9.2 and 21.9.3 show the bending and contact stresses obtained for the
pinion and gear, respectively, of design case 1a at the most unfavorable position of
meshing. A torque of 419.16 Nm has been applied to the pinion of the gear drive.
Severe areas of contact have been found for the pinion and the gear at the contact point
shown in Figs. 21.9.2 and 21.9.3 wherein high contact stresses occur.

In the first iteration of computation, after completion of stages 1 and 4, the pinion
machine-tool settings of case 1b are obtained. Application of finite element analysis
allows us to investigate the formation of the bearing contact for this new design of the
gear drive and detect a small area of severe contact for both the pinion and the gear
inside the cycle of meshing. Figure 21.9.4 shows the contact and bending stresses for the
pinion for design case 1b at the most unfavorable point of meshing inside the cycle of
meshing wherein such small areas of severe contact occur. Figure 21.9.5 shows similar
results for the gear for design case 1b. However, contact stresses for this case of design
have already been drastically reduced.

The appearance of those areas of severe contact wherein a longitudinal path of con-
tact is provided can be avoided if mismatch is provided between the profiles of the
head-cutters that generate the gear and the pinion. The author’s approach is based on
application of parabolic blades for generation of the gear whereas the pinion is still
generated by blades of straight-line profile. However, if more mismatch is necessary,
parabolic blades can also be applied for pinion generation.
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670 Spiral Bevel Gears

Figure 21.9.1: (a) Bearing contact, and (b) function of transmission errors of existing design
(case 1a).

Figures 21.9.6(a) and 21.9.6(b) show the bearing contact obtained for design cases
1b and 1c, respectively. Figure 21.9.6(c) shows the predesigned parabolic function of
transmission errors for both cases of design. Figure 21.9.7 shows the contact and bend-
ing stresses for the pinion for design case 1c at the same contact position as the one
represented in Fig. 21.9.4. It is shown in Fig. 21.9.7 that areas of severe contact have
been avoided for the pinion for design case 1c wherein parabolic blades have been
applied for generation of the gear.

Figure 21.9.8 shows the contact and bending stresses for the gear for design case 1c at
the same contact position as that in Fig. 21.9.5. It is shown in Fig. 21.9.8 that areas of
severe contact have been avoided for the gear for design case 1c as well. Figures 21.9.9
and 21.9.10 show the evolution of contact and bending stresses for the pinion and the
gear, respectively, for design cases 1a, 1b, and 1c.

A substantial reduction of contact stresses could be achieved for the pinion in design
cases 1b and 1c with respect to the existing design of the pinion of the gear drive. Design
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Figure 21.9.2: Contact and bending stresses for the pinion for design case 1a.

(Ave. Crit.: 75%)
S, Mises

+3.653e+06

+1.746e+01
+1.167e+05
+2.333e+05
+3.500e+05
+4.667e+05
+5.833e+05
+7.000e+05
+8.167e+05
+9.333e+05
+1.050e+06
+1.167e+06
+1.283e+06
+1.400e+06

Bending stress: 453 MPa(mN/mm2)

Area of severe contact

Figure 21.9.3: Contact and bending stresses for the gear for design case 1a.
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Figure 21.9.4: Contact and bending stresses for the pinion for design case 1b.

Figure 21.9.5: Contact and bending stresses for the gear for design case 1b.

672
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Figure 21.9.6: (a) and (b) bearing contact for design cases 1b and 1c, respectively, and (c) function of
transmission errors for both cases of design.
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Figure 21.9.7: Contact and bending stresses for the pinion for design case 1c.

Figure 21.9.8: Contact and bending stresses for the gear for design case 1c.

674
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Figure 21.9.9: Evolution of contact and bending stresses for the pinion for design cases 1a, 1b, and
1c.

case 1c enables us to avoid the appearance of a small area of severe contact at the top
edge of the pinion with a higher level of contact stresses as shown in Figure 21.9.9(a).
On the contrary, bending stresses for design cases 1b and 1c are higher than they are
for the existing case of design as shown in Fig. 21.9.9(b).

A substantial reduction of contact stresses could be achieved as well for the gear for
design cases 1b and 1c with respect to the existing design of the gear of the gear drive.
The same results as previously discussed for the pinion have been obtained for the gear
for design cases 1b and 1c as shown in Fig. 21.9.10.
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Figure 21.9.10: Evolution of contact and bending stresses for the gear for design cases 1a, 1b, and 1c.

21.10 COMPENSATION OF THE SHIFT OF THE BEARING CONTACT

Spiral bevel gear drives are very sensitive to the shortest distance between the axes
of the pinion and the gear, �E , when the pinion–gear axes are not intersected but
crossed. However, the shift of the bearing contact due to error of alignment �E can
be compensated by the axial displacement �A1 of the pinion. Figure 21.10.1 shows
an example of compensation of an error of alignment �E = 0.02 mm for design
case 1c.

Figure 21.10.1(a) shows the path of contact for design case 1c when no errors of
alignment occur. Figure 21.10.1(b) shows the path of contact for an error of alignment
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Figure 21.10.1: Design case 1c: (a) path of contact when no errors of alignment occur, (b) path of
contact for error of alignment �E = 0.02 mm, (c) path of contact when error of alignment �E =
0.02 mm is compensated by �A1 = −0.05 mm, (d) function of transmission errors for conditions of
item (c).
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�E = 0.02 mm. Figure 21.10.1(c) shows the path of contact for an error of alignment
�E = 0.02 mm and an axial displacement of the pinion �A1 = −0.05 mm. As shown
in Fig. 21.10.1(c), an axial displacement of the pinion may compensate the shift of the
path of contact caused by an error �E of the shortest distance between axes. Figure
21.10.1(d) shows the function of transmission errors when an error of alignment �E =
0.02 mm is compensated by an axial displacement of the pinion �A1 = −0.05 mm.
The function of transmission errors is still of parabolic shape.



P1: JDW

CB672-22 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 2:3

22 Hypoid Gear Drives

22.1 INTRODUCTION

Hypoid gear drives have found a broad application in the automotive industry for
transformation of rotation between crossed axes. Enhanced design and generation of
hypoid gear drives requires an approach based on the ideas discussed for spiral bevel
gears (see Chapter 21).

The contents of this chapter are limited to (i) design of pitch cones, (ii) pinion and
gear machine-tool settings, and (iii) equations of pinion–gear tooth surfaces. Design of
pitch cones for hypoid gears was the subject of research performed by Baxter [1961],
Litvin et al. [1974, 1990] and Litvin [1994]. Details of determination of machine-tool
settings for manufacture of hypoid gears are given in Litvin & Gutman [1981].

22.2 AXODES AND OPERATING PITCH CONES

Spiral bevel gears perform rotation about intersected axes, and their axodes are two
cones (Section 3.4). The line of tangency of these cones is the instantaneous axis of
rotation in relative motion. In the case of standard spiral bevel gears, the gear axodes
coincide with the pitch cones.

Hypoid gears perform rotation about crossed axes, the relative motion is a screw
motion, and instead of the instantaneous axis of rotation we have to consider the in-
stantaneous screw axis s–s (Section 3.5). The gear axodes are two hyperboloids of
revolution that are in tangency along the axis of screw motion s–s (Fig. 3.5.1). The
hypoid pinion–gear axodes (the hyperboloids of revolution) perform in relative motion
rotation about and translation along s–s .

The concept of axodes of hypoid gears has found a limited application in design and
is used merely for visualization of relative velocity. The main reason for this is that the
location of axodes is out of the zone of meshing of hypoid gears.

The design of blanks of hypoid gears is meant to determine operating pitch cones
instead of hyperboloids of revolution, the hypoid gear axodes. The operating pitch
cones (Fig. 22.2.1) must satisfy the following requirements:

(a) The axes of the pitch cones form the prescribed crossing angle γ between the axes
of rotation (usually, γ = 90◦).

679
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Figure 22.2.1: Operating pitch cones of
hypoid gears.

(b) The shortest distance E between the axes of the pitch cones is equal to the prescribed
value of the hypoid gear drive.

(c) The pitch cones are in tangency at the prescribed point P that is located in the zone
of meshing of the pinion–gear tooth surfaces.

(d) The relative (sliding) velocity at point P is directed along the common tangent to
the “helices” of contacting pitch cones. The term “helix” is used to denote a curve
obtained by intersection of the tooth surface by the pitch cone.

22.3 TANGENCY OF HYPOID PITCH CONES

A cone is represented in coordinate system Si by the equations (Fig. 22.3.1)

xi = ui sin γi cos θi

yi = ui sin γi sin θi (i = 1, 2)

zi = ui cos γi

(22.3.1)

Figure 22.3.1: Operating pitch cone and its param-
eters.
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where (ui , θi ) are the surface coordinates (the Gaussian coordinates). The surface unit
normal is represented by the equations

ni = Ni

|Ni | , Ni = ∂ri

∂ui
× ∂ri

∂θi
. (22.3.2)

Equations (22.3.1) and (22.3.2) yield (providing ui sin γi �= 0)

ni = [cos θi cos γi sin θi cos γi − sin γi ]T. (22.3.3)

To derive the equations of tangency of the pitch cones at the pitch point P , we represent
the pitch cones in the fixed coordinate system Sf .

The location and orientation of coordinate systems S1 and S2 with respect to Sf are
shown in Fig. 22.4.1. Coordinate transformation from S1 and S2 to Sf allows us to
represent in coordinate system Sf the pitch cones of the pinion and the gear and their
unit normals by the following vector functions:

r(1)
f (u1, θ1) =

 r1 cos θ1

r1 sin θ1

r1 cot γ1 − d1

 (22.3.4)

n(1)
f (θ1) =

 cos γ1 cos θ1

cos γ1 sin θ1

− sin γ1

 (22.3.5)

r(2)
f (u2, θ2) =

 r2 cos θ2 + E
−r2 cot γ2 + d2

r2 sin θ2

 (22.3.6)

n(2)
f (θ2) =

− cos γ2 cos θ2

− sin γ2

− cos γ2 sin θ2

 . (22.3.7)

Here, di (i = 1, 2) determines the location of the apex of the pitch cone.
The pitch cones are in tangency at the pitch point P , and the equations of tangency

are

r(1)
f (u1, θ1) = r(2)

f (u2, θ2) = r(P )
f (22.3.8)

n(1)
f (θ1) = n(2)

f (θ2) = n(P )
f (22.3.9)

where r(P )
f and n(P )

f are the position vector and the common normal to the pitch cones
at pitch point P . The mating pitch cones are located above and below the pitch plane.
Therefore, their surface unit normals have opposite directions at P and the coincidence
of the surface unit normals is provided with the negative sign in Eq. (22.3.9).

Vector equations (22.3.8) and (22.3.9) provide the six scalar equations

r1 cos θ1 = r2 cos θ2 + E = x(P )
f (22.3.10)

r1 sin θ1 = −r2 cos θ2 + d2 = y(P )
f (22.3.11)

r1 cot γ1 − d1 = r2 sin θ2 = z(P )
f , (22.3.12)



P1: JDW

CB672-22 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 2:3

682 Hypoid Gear Drives

where ri = ui sin γi is the radius of the pitch cone at P , and

cos γi cos θi = − cos γ2 cos θ2 = n(P )
xf (22.3.13)

cos γi sin θi = − sin γ2 = n(P )
y f (22.3.14)

− sin γ1 = − cos γ2 sin θ2 = n(P )
z f . (22.3.15)

Only two equations of the equation system (22.3.13) to (22.3.15) are independent
because |n(1)

f | = |n(2)
f | = 1.

Eliminating cos θi and sin θi , we obtain after some transformation the following equa-
tions:

r1

r2
= (E/r2) cos γ1√

cos2 γ1 − sin2 γ2

− cos γ1

cos γ2
(22.3.16)

d1 = − r2

cos γ2 sin γ1
+ E cos γ1 cot γ1√

cos2 γ1 − sin2 γ2

(22.3.17)

d2 = r2

cos γ2 sin γ2
− E sin γ2√

cos2 γ1 − sin2 γ2

(22.3.18)

x(P )
f = E −

r2

√
cos2 γ1 − sin2 γ2

cos γ2
(22.3.19)

y(P )
f = r2 tan γ2 − E sin γ2√

cos2 γ1 − sin2 γ2

(22.3.20)

z(P )
f = r2 sin γ1

cos γ2
(22.3.21)

n(P )
xf =

√
cos2 γ2 − sin2 γ1 (22.3.22)

n(P )
y f = − sin γ2 (22.3.23)

n(P )
z f = − sin γ1. (22.3.24)

The derived equations are the basis for the design of hypoid pitch cones (see Section
22.5).

22.4 AUXILIARY EQUATIONS

The plane of tangency of the pitch cones is determined as the plane that passes through
the cone apexes O1 and O2 and the pitch point P (Fig. 22.4.1). Unit vectors τ (1) and
τ (2) represent the generatrices of the pitch cones that lie in the pitch plane and intersect
each other at pitch point P . For further derivations we use the concept of the tooth
longitudinal shape and the sliding velocity at the pitch point.
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Figure 22.4.1: Pitch plane.

Tooth Longitudinal Shapes
The longitudinal shape of the tooth in the pitch plane is the curve of intersection of the
tooth surface with the pitch plane. It would be incorrect to call the longitudinal shape a
helix or a spiral. Figure 22.4.2 shows that the longitudinal shapes are in tangency at P .
The so-called “spiral” angle βi in the pitch plane is formed by the common tangent
to the longitudinal shape and the generatrix to the respective pitch cone that passes
through P .

The generatrices of the pitch cones form angle η that is represented by the equation

cos η = τ (1) · τ (2). (22.4.1)

Figure 22.4.2: Orientation of relative ve-
locity at the pitch point.
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The unit vectors τ (i ) (i = 1, 2) of generatrices OiP are represented by the equations

τ (1) = O1P

|O1P | =
∂r(1)

f

∂u1∣∣∣∣∣∂r(1)
f

∂u1

∣∣∣∣∣
= [sin γ1 cos θ1 sin γ1 sin θ1 cos γ1]T (22.4.2)

τ (2) = O2P

|O2P | =
∂r(2)

f

∂u2∣∣∣∣∣∂r(2)
f

∂u2

∣∣∣∣∣
= [sin γ2 cos θ2 − cos γ2 sin γ2 sin θ2]T. (22.4.3)

Using Eqs. (22.4.1), (22.4.2), and (22.4.3), we obtain

cos η = tan γ1 tan γ2. (22.4.4)

Taking into account that η = β1 − β2, we derive

cos(β1 − β2) = tan γ1 tan γ2. (22.4.5)

Sliding Velocity at the Pitch Point
The sliding velocity of the pinion with respect to the gear is represented at the pitch
point P by the equations

v(12) = v(1) − v(2) = [(ω(1) − ω(2))× r(P )]− (E × ω(2)) . (22.4.6)

Here, r(P ) = OfP is the position vector of P in coordinate system Sf ; angular velocity
vector ω(1) passes through the origin Of of Sf (Fig. 22.4.1); E is the position vector that
is drawn from Of to an arbitrary point of the line of action of ω(2).

Because vectors v(1) and v(2) are determined for point P , they lie in the pitch plane
and are perpendicular to the generatrices O1P and O2P of the pitch cones, respectively
(Fig. 22.4.2). Using Eq. (22.4.6), we obtain after some transformations the equations

v(12) = −ω1r1(tan β1 − tan β2) cos β1

 0
sin β1

cos β1

 (22.4.7)

m12 = ω1

ω2
= r2 cos β2

r1 cos β1
= N2

N1
(22.4.8)

where N1 and N2 are the numbers of teeth.
Vector v(12) is represented in coordinate system Se (e1, e2, e3) [see Litvin et al., 1989

and Litvin, 1994]. Here, e1 is the unit normal to the pitch plane, e3 = τ (1) is the unit
vector to the generatrix of the pinion pitch cone (Fig. 22.4.1), and e2 = e3 × e1.

tan β1 = m12r1 − r2 cos η

r2 sin η
. (22.4.9)

tan β2 = r1 cos η − m21r2

r1 sin η
. (22.4.10)
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22.5 DESIGN OF HYPOID PITCH CONES

The basic design parameters of pitch cones are βi , γi , and di (i = 1, 2). Here, γi is the
pitch cone angle (Fig. 22.3.1); βi is the “spiral” angle (Fig. 22.4.2); and di determines
the location of the pitch cone apex (Fig. 22.4.1).

Relations Between βi and γi (i = 1, 2)
Four parameters βi , γi are related with three equations of the following structure:

f1(γ1, γ2, β1) = 0 (22.5.1)

f2(γ1, γ2, β1, β2) = 0 (22.5.2)

f3(γ1, γ2, β1, β2) = 0. (22.5.3)

Parameter β1 is considered as given (usually, β1 = 45◦). Our goal is to derive equation
system (22.5.1) to (22.5.3). Equations (22.5.1) and (22.5.2) are the same for both types
of hypoid gear drives, with face-milled tapered teeth and face-hobbed teeth of uniform
depth. The third equation must be derived for each type of hypoid gear drive separately.
Face-milled teeth are generated by a surface, the cone surface of the head-cutter. Face-
hobbed teeth are generated by a line, the blade edge.

Derivation of Equations (22.5.1) and (22.5.2)
The derivation is based on the following procedure:

Step 1: Equations (22.3.16) and (22.4.8) yield

E
r2

cos γ1

(cos2 γ1 − sin2 γ2)0.5
− cos γ1

cos γ2
= N1 cos β2

N2 cos β1
. (22.5.4)

Thus,

cos β2 = cos β1

b
(22.5.5)

where

b = N1 cos γ2(cos2 γ1 − sin2 γ2)0.5

N2 cos γ1

[
E
r2

cos γ2 − (cos2 γ1 − sin2 γ2)0.5
] . (22.5.6)

Step 2: We represent Eq. (22.4.5) as

cos(β1 − β2) = cos β1 cos β2 + sin β1 sin β2 = a (22.5.7)

where

a = tan γ1 tan γ2. (22.5.8)
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Equations (22.5.5) and (22.5.7) yield(
cos2 β1

b
− a

)2

= (− sin β1 sin β2)2 = (1 − cos2 β1)(1 − cos2 β2)

= (1 − cos2 β1)
(

1 − cos2 β1

b2

)
. (22.5.9)

Using Eq. (22.5.9), we obtain after simple transformations that

cos2 β1 − (1 − a2)b2

1 + b2 − 2ab
= 0. (22.5.10)

We recall that b and a are expressed in terms of γ1 and γ2 considering N1, N2, E , and
r2 as known [see Eqs. (22.5.6) and (22.5.8)]. This means that Eqs. (22.5.10) can be
represented as

f1(γ1, γ2, β1) = cos2 β1 − (1 − a2)b2

1 + b2 − 2ab
= 0, (22.5.11)

and the derivation of Eq. (22.5.1) is completed.
Step 3: Equation (22.5.2) has been already obtained: it was represented by Eqs.

(22.5.7) and (22.5.8) that provide

cos(β1 − β2) − tan γ1 tan γ2 = 0.

Thus,

f2(β1, β2, γ1, γ2) = cos(β1 − β2) − tan γ1 tan γ2 = 0, (22.5.12)

and the derivation of Eq. (22.5.2) has been completed as well.

Derivation of Equation (22.5.3)
Case 1: Hypoid gear drive with face-milled teeth is considered
The derivation of the required equation is based on the concept of the limit normal
proposed by Wildhaber (Section 6.8) and applied by the Gleason Works for the design
of face-milled hypoid gear drives. In accordance with this approach, the limit normal to
the gear tooth surface at P forms with the pitch plane the angle αn that is represented
by the equation

tan αn =
r2

sin γ2
sin β2 − r1

sin γ1
sin β1

r2

cos γ2
+ r1

cos γ1

. (22.5.13)

Equation (22.5.13) may require that αn < 0. We have represented Eq. (22.5.13) in its
final form, dropping the details of its derivations. These derivations can be accomplished
by using the basic equation (6.7.3) (see Section 6.7).

Figure 22.5.1 shows the profiles of both gear tooth sides in the normal section that
passes through the pitch point P . The surface unit normals to the concave and convex
tooth sides are designated by n(1) and n(2); the unit vector of the limit normal is designated
by n. The unit normals n(1) and n(2) form the same angle with the line of action of n.
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Figure 22.5.1: Hypoid gear tooth profiles in normal section.

This results in the pressure angles α
(1)
n and α

(2)
n for both profiles being related as follows:

α(1)
n − |αn| = α(2)

n + |αn|. (22.5.14)

This means that in accordance with the Gleason approach, different pressure angles for
the gear concave and convex sides are provided: the pressure angle α

(1)
n on the concave

side is larger than the pressure angle α
(2)
n for the concave side.

An additional equation that relates the limiting profile angle αn with the design pa-
rameters of the pitch cones is based on the following consideration. A formate cut
hypoid gear is provided with a non-generated gear tooth surface that coincides with
the head-cutter surface. The intersection of the gear tooth surface with the pitch plane
represents a circle of radius rc where rc is the mean radius of the head-cutter. The radius
rc is represented by the equation

rc = tan β1 − tan β2

sin γ1

r1 cos β1
− sin γ2

r2 cos β2
−
(

tan β1 cos γ1

r1
+ tan β2 cos γ2

r2

)
tan αn

. (22.5.15)

Details of the derivations have been omitted. Equations (22.5.13) and (22.5.15) con-
sidered together provide the required equation (22.5.3).

Case 2: Hypoid gear drive with face-hobbed teeth
The derivation of Eq. (22.5.3) is based on the specific location of the head-cutter for
the generation of hypoid gears with face-hobbed teeth of uniform depth. Figure 22.5.2
shows the pitch cones being in tangency at point P . The generatrices of the pitch cones
O1P and O2P lie in the pitch plane that is tangent to both pitch cones and passes
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Figure 22.5.2: For orientation of the head-cutter axis
in the pitch plane: (a) determination of location of in-
stantaneous center I of rotation; (b) for derivation of
Eq. (22.5.26).

through points O1, O2, and P (Figs. 22.5.2 and 22.4.1). Vectors τ 1 and τ 2 are the unit
vectors of pitch cone generatrices O1P and O2P .

Consider now that point C is the point of intersection of the axis of the head-cutter
with the pitch plane. We assume the installment of the head-cutter satisfies the require-
ment that point C belongs to the extended line O1–O2. The head-cutter is provided
with Nw number of finishing blades. We may also consider that there is an imaginary
crown gear that is simultaneously in mesh with the pinion and the gear of the hypoid
gear drive. (The crown gear plays the same role as the rack that is in mesh with two spur
or helical gears.) The axode of the crown gear being in mesh with the hypoid pinion
and gear is the pitch plane or a circular cone. We assume as well that while the head-
cutter rotates about C with the angular velocity ωt , the imaginary crown gear rotates
about O2 with the angular velocity ωc . (The axes of rotation of the head-cutter and the
crown gear are perpendicular to the pitch plane.) The instantaneous center of rotation
of the head-cutter with respect to the crown gear is I [Fig. 22.5.2(a)] and its location is
determined with the equation

O2 I
IC

= ωt

ωc
= Nc

Nw
= N2

Nw sin γ2
. (22.5.16)
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Here,

Nc = N2

sin γ2
(22.5.17)

where Nc and N2, are the numbers of teeth of the crown gear and the hypoid gear,
respectively; γ2 is the gear pitch cone angle; Nc must be an integer number.

The finishing blade is located in the plane that is perpendicular to the pitch plane and
passes through line PI . Point P of the finishing blade generates in the pitch plane an
extended epicycloid whose normal at P coincides with PI . It is evident [Fig. 22.5.2(b)]
that

O1 A
O2 A

= C B
O2 B

. (22.5.18)

Further derivations are based on the expressions

O2 P = r2

sin γ2
= N2mn

2 sin γ2 cos β2
(22.5.19)

O1 P = r1

sin γ1
= N1mn

2 sin γ1 cos β1
(22.5.20)

CP = rw (22.5.21)

where mn is the normal module of teeth.

O1 A = O1 P sin(β1 − β2). (22.5.22)

O2 A = O2 P − O1 P cos(β1 − β2). (22.5.23)

C B = rw cos(β2 − δw). (22.5.24)

O2 B = O2 P − rw sin(β2 − δw). (22.5.25)

Equation (22.5.18) and expressions (22.5.19) to (22.5.25) yield the sought-for equa-
tion (22.5.3) that is represented by

f3(γ1, γ2, β1, β2) = rw cos(β2 − δw)
r2 − rw sin γ2 sin(β2 − δw)

− N1 cos β2 sin(β1 − β2)
N2 cos β1 sin γ1 − N1 cos β2 sin γ2 cos(β1 − β2)

= 0 (22.5.26)

where

sin δw = Nwr2 cos β2

N2rw
. (22.5.27)

The derivation of Eq. (22.5.27) is based on relations that follow from Fig. 22.5.2(b):

sin δw

sin ε
= CI

PI
,

O2 I
PI

= cos β2

sin λ
,

O2 P
CP

= sin ε

sin λ
. (22.5.28)

Computational Procedure for Determination of γ1, γ2, and β2

The equation system (22.5.1) to (22.5.3) consists of three nonlinear equations. The
input data for the solutions are β1, r2, E , N1, N2 (and Nw for the case of face-hobbed
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gears). In the case where pitch cone outer radius r ∗
2 and face width F are given instead

of pitch cone mean radius r2, the following relation between r ∗
2 , F , and r2 must be used

at each iteration:

r2 = r ∗
2 − F sin γ2

2
.

The solution of nonlinear equations for the unknowns is an iterative process. We may
consider that at each iteration the equations are represented in echelon form and can be
solved separately if one of the unknowns (for instance, γ2) is considered as given. Then
the third nonlinear equation will be used in the iterative process for checking.

A computer-aided solution for the unknowns γ1, γ2, and β2 is based on application of
a numerical subroutine for solution of nonlinear equations. However, while using such
a subroutine, it must be complemented with the following requirements:

tan γ1 tan γ2 < 1, cos2 γ1 − sin2 γ2 > 0.

For the first guess, choosing the initial value of γ2 so that γ2 < tan−1(N1/N2) is recom-
mended.

22.6 GENERATION OF FACE-MILLED HYPOID GEAR DRIVES

The discussions are limited to the presentation of basic machine-tool settings applied
for the generation of the gear and the pinion.

Gear Generation
The face-milled gear is generated as formate-cut, which means that each side of the
tooth surface is generated as a copy of the surface of the tool (of the head-cutter). The
tool surface is a cone. In the process of manufacturing, the gear is held at rest so that no
generating motions are provided. The advantage of using formate-cut gear generation
is the higher productivity of manufacturing. Two cones that are shown in Fig. 22.6.1(a)
represent both sides of the gear space. Henceforth, we consider the following coordinate
systems: St2 that is rigidly connected to the head-cutter, Sm2 that is rigidly connected to
the cutting machine, and S2 that is rigidly connected to the gear. In the case of formate
generation we may consider that all three coordinate systems, St2 , Sm2 , and S2 are rigidly
connected to each other. The following equations represent in coordinate system St2 tool
surfaces for both sides and the unit normals to such surfaces [Fig. 22.6.2(b)]:

rt2 =


−sG cos αG

(rc − sG sin αG) sin θG

(rc − sG sin αG) cos θG

1

 (22.6.1)

nt2 =

 sin αG

− cos αG sin θG

− cos αG cos θG

 . (22.6.2)
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Figure 22.6.1: Illustration of generating
cones for formate face-milled hypoid gear:
(a) generating cones; (b) for derivation of
equations of the generating cone.

Here, rt2 is the position vector and nt2 is the cone surface unit normal; rc is the cutter
tip radius; αG is the cutter blade angle (αG > 0 for the convex side and αG < 0 for the
concave side).

Figure 22.6.2 shows the installment of the generating cone on the cutting machine.
To represent in S2 the theoretical gear tooth surface �2 and the unit normal to �2, we
use the matrix equations

r2(sG, θG, dj ) = M2t2 rt2 (sG, θG) (22.6.3)

n2(sG, θG, dj ) = L2t2 nt2 (sG, θG) (22.6.4)

where

M2t2 = M2m2 Mm2t2 =


cos γm2 0 − sin γm2 0

0 1 0 0

sin γm2 0 cos γm2 XG

0 0 0 1




1 0 0 0

0 1 0 −V2

0 0 1 H2

0 0 0 1

 . (22.6.5)
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Figure 22.6.2: Machine-tool settings for
formate face-milled hypoid gear.

The surface Gaussian coordinates are sG and θG and dj (γm, V2, H2, and XG) are the
machine-tool settings.

Pinion Generation
Unlike the gear, the generation of the pinion is not formate-cut. The pinion tooth sur-
face is generated as the envelope to the family of tool surfaces that are cone surfaces
(Fig. 22.6.3). Henceforth, we consider the following coordinate systems: (i) the fixed
ones, Sm1 and Sq that are rigidly connected to the cutting machine (Figs. 22.6.4 and
22.6.5); (ii) the movable coordinate systems Sc and S1 that are rigidly connected to the
cradle of the cutting machine and the pinion, respectively; and (iii) coordinate system St1

that is rigidly connected to the head-cutter. In the process of generation the cradle with
Sc performs rotational motion about the zm1 axis with angular velocity ω(c), and the
pinion with S1 performs rotational motion about the xq axis with angular velocity ω(1)

(Fig. 22.6.5).
The tool (head-cutter) is mounted on the cradle and performs rotational motion

with the cradle. Coordinate system St1 is rigidly connected to the cradle. To describe
the installment of the tool with respect to the cradle we use coordinate system Sb

(Figs. 22.6.3 and 22.6.4). The required orientation of the head-cutter with respect to
the cradle is accomplished as follows: (i) coordinate systems Sb and St1 are rigidly
connected and then they are turned as one rigid body about the zc axis through the
swivel angle j = 2π − δ (Fig. 22.6.4); and (ii) then the head-cutter with coordinate
system St1 is tilted about the yb axis under the angle i [Fig. 22.6.3(b)]. (More details
about the settings of a tilted head-cutter are given in Litvin et al. [1988]. The head-cutter
is rotated about its axis zt1 , but the angular velocity in this motion is not related to the
generating process and depends only on the desired velocity of cutting.

The pinion setting parameters are Em1 – the machine offset, γm1 – the machine-root
angle, �B – the sliding base, and �A – the machine center to back (Fig. 22.6.5). The
head-cutter setting parameters are SR – radial setting, θc – initial value of cradle angle,
j – the swivel angle (Fig. 22.6.4), and i – the tilt angle [Fig. 22.6.3(b)].
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Figure 22.6.3: Pinion head-cutter: (a) initial
representation in coordinate system St1; (b)
representation in St1 after the tilt under the
angle i .

Pinion Tool Surface Equations
The head-cutter surface is a cone and is represented in St1 [Fig. 22.6.3(a)] as

rt1 (s, θ ) =


(rc + s sin α) cos θ

(rc + s sin α) sin θ

−s cos α

1

 . (22.6.6)

Here, (s, θ ) are the Gaussian coordinates, α is the blade angle, and rc is the cutter point
radius. Vector function (22.6.6) with positive α and negative α represents surfaces of two
head-cutters that are used to cut the pinion concave side and convex side, respectively.

The unit normal to the head-cutter surface is represented in St1 by the equations

nt1 = [− cos α cos θ − cos α sin θ − sin α]T. (22.6.7)
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Figure 22.6.4: Coordinate systems Sm1 ,
Sc , and Sb.

Figure 22.6.5: Pinion generation.
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The family of tool surfaces is represented in S1 by the matrix equation

r1(s, θ, φp) = M1qMqnMnm1Mm1cMcbMbt1rt1 (s, θ ). (22.6.8)

Here, Sn is an auxiliary fixed coordinate system whose axes are parallel to the Sm1 axes
and

Mbt1 =


cos i 0 sin i 0

0 1 0 0

− sin i 0 cos i 0

0 0 0 1



Mcb =


− sin j − cos j 0 SR

cos j − sin j 0 0

0 0 1 0

0 0 0 1



Mm1c =


cos q sin q 0 0

− sin q cos q 0 0

0 0 1 0

0 0 0 1



Mnm1 =


1 0 0 0

0 1 0 Em

0 0 1 −�B

0 0 0 1



Mqn =


cos γm 0 sin γm −�A

0 1 0 0

− sin γm 0 cos γm 0

0 0 0 1



M1q =


1 0 0 0

0 cos φ1 − sin φ1 0

0 sin φ1 cos φ1 0

0 0 0 1


with q = θc + mc1φ1 where θc is the initial cradle angle and mc1 = ω(c)/ω(1).

Equation of Meshing
This equation is represented as (see Section 6.1)

n(1) · v(c1) = N(1) · v(c1) = f (s, θ, φ1) = 0 (22.6.9)
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where n(1) and N(1) are the unit normal and the normal to the tool surface, and v(c1) is the
velocity in relative motion. Equation (22.6.9) is invariant with respect to the coordinate
system where the vectors of the scalar product are represented. These vectors in our
derivations have been represented in Sm1 as follows:

nm1 = Lm1cLcbLbt1nt1

v(c1)
m1

= [(
ω(c)

m1
− ω(1)

m1

)× rm1

]+ (Om1A × ω(1)
m1

)
.

Here,

rm1 = Mm1cMcbMbt1rt1

Om1A = [0 −Em1 �B]T

ω
(1)
m1 = −[cos γm1 0 sin γm1]T

(∣∣ ω(1)
m1

∣∣ = 1
)

ω
(c)
m1 = −[0 0 mc1]T.

Pinion Tooth Surface
Equations (22.6.8) and (22.6.9) represent the pinion tooth surface in three-parameter
form with parameters s, θ , and φ1. However, because Eq. (22.6.9) is linear with respect
to s , we can eliminate s and represent the pinion tooth surface in two-parameter form
as

r1(θ, φ1, dj ). (22.6.10)

Here, dj ( j = 1, . . . ,8) designate the installment parameters: Em1, γm1, �B, �A, SR ,
θc , j , and i . The unit normal to the pinion tooth surface is represented as

n1(θ, φ1, dk) (22.6.11)

where dk (k = 1, 2, 3, 4) designate the installment parameters γm1, θc , j , and i .
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23 Planetary Gear Trains

23.1 INTRODUCTION

Planetary gear trains were the subject of intensive research directed at determination of
dynamic response of the trains, vibration, load distribution, efficiency, enhanced design,
and other important topics [Lynwander, 1983; Ishida & Hidaka, 1992; Kudrjavtzev
et al., 1993; Kahraman, 1994; Saada & Velex, 1995; Chatterjee & Tsai, 1996; Hori &
Hayashi, 1996a, 1996b; Velex & Flamand, 1996; Lin & Parker, 1999; Chen & Tseng,
2000; Kahraman & Vijajakar, 2001; Litvin et al., 2002e].

This chapter covers gear ratio, conditions of assembly, relations of tooth numbers,
efficiency of a planetary train, proposed modification of geometry of tooth surfaces,
determination of transmission errors, etc. Special attention is given to the regulation of
backlash for improvement of load distribution.

23.2 GEAR RATIO

A planetary gear mechanism has at least one gear whose axis is movable in the process
of meshing.

Planetary Mechanisms of Figs. 23.2.1 (a) and (b)
Figures 23.2.1(a) and (b) represent two simple planetary gear mechanisms formed by
two gears 1 and 2 that are in external or internal meshing, respectively, and a carrier c
on which the gear with the movable axis is mounted. Gear 1 is fixed and planet gear 2
performs a planar motion of two components: (i) transfer rotation with the carrier, and
(ii) relative rotation about the carrier. The resulting motion of planet gear 2 with respect
to fixed gear 1 is rotation about the instantaneous center I of motion that is the point
of tangency of centrodes r1 and r2 (the pitch circles) of gears 1 and 2.

In addition to a planetary mechanism, we consider a respective inverted mechanism
formed by gears of the planetary mechanism. The carrier of the inverted mechanism
is fixed. The inversion is based on the idea that the gears of both mechanisms, the
planetary and the inverted one, perform rotation about the carrier with the same angular
velocity.

697
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Figure 23.2.1: Three-link planetary mechanisms with (a) external and (b) internal meshing of the
gears.

The angular velocities of the links of the planetary mechanism are related by the
following equation [Willis, 1841]:

ω2 − ωc

ω1 − ωc
= m(c)

21 . (23.2.1)

Here, ωk (k = 1, 2) is the angular velocity of gear k in absolute motion with respect
to the frame of the planetary mechanism; (ωk − ωc ) is the angular velocity of gear ωk in
its relative motion with respect to the carrier; ωc is the angular velocity of the carrier;
m(c)

21 is the gear ratio of the inverted mechanism wherein the transformation of motion
is performed from gear 2 to gear 1 while the carrier is held at rest. The gear ratio m(c)

21 is
considered as an algebraic quantity: m(c)

21 is negative (m(c)
21 < 0) if the direction of rotation

from gear 2 to gear 1 of the inverted mechanism is opposite. Similarly, m(c)
21 is positive

wherein directions of rotations of gears 2 and 1 of the inverted mechanism coincide.
Then, we obtain

(i) m(c)
21 = (−1)N1/N 2 for the inverted planetary gear train of Fig. 23.2.1(a).

(ii) Similarly, m(c)
21 = (+1)N1/N2 for the inverted planetary gear train of Fig. 23.2.1(b).

Taking into account that ω1 = 0 (gear 1 is fixed), we obtain from Eq. (23.2.1) the
following results:

ω2 − ωc = (±)
(

N1

N2

)
ωc (23.2.2)

ω2 =
(

1 ± N1

N2

)
ωc . (23.2.3)

Here, (ω2 − ωc ) is the angular velocity of rotation of gear 2 in its relative motion, in
rotation about the carrier c; ω2 is the angular velocity of gear 2 in its absolute motion,
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Figure 23.2.2: Planetary gear train with external meshing of gears.

that is rotation about the instantaneous center I (Figs. 23.2.1(a) and (b)); the angular
velocity of rotation of gear 1 about the carrier is (−1)ωc . The lower and upper signs in
Eqs. (23.2.2) and (23.2.3) correspond to planetary gear trains shown in Figs. 23.2.1(a)
and (b), respectively.

Planetary Mechanism of Fig. 23.2.2
The planetary mechanism shown in Fig. 23.2.2 is formed by two pairs of gears that are
in external meshing. Gear 1 is the fixed one. The relation between the angular velocities
of gears 4 and 1 is

ω4 − ωc

−ωc
= m(c)

41 (23.2.4)

where

m(c)
41 = m(c)

43 · m(c)
21 = (−1)

(
N3

N4

)
· (−1)

N 1

N2
= (N3)(N1)

(N4)(N2)
. (23.2.5)

Equations (23.2.4) and (23.2.5) yield

ω4

ωc
= 1 − m(c)

41 . (23.2.6)

The ratio (ω4/ωc ) represents the ratio between the angular velocities of link 4 (gear 4)
and link c (carrier c) of the planetary gear train. The negative or positive signs of the
ratio (ω4/ωc ) indicate that the rotation of gear 4 and the carrier c are performed in
either the opposite or the same direction.
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Numerical Example 23.2.1
Consider that N3 = 101, N1 = 99, N4 = N 2 = 100. Application of nonstandard tooth
element proportions for the gears is required. Then we obtain that

ω4

ωc
= 1 − m(c)

41 = 1 − 0.9999 = 0.0001.

In the case that N3 = N1 = 100, N4 = 101, N2 = 99, we obtain that

ω4

ωc
= − 1

9999
= −0.0001.

The negative sign of (ω4/ωc ) indicates that gear 4 and carrier c perform rotation in
opposite directions. The gear train previously discussed (Fig. 23.2.2) provides a high
reduction of the angular velocity of the driving link c (by 1000 times). However, gear
trains with such a large reduction of the speed of carrier c are not applied in the practice
due to the low efficiency of the train (see Section 23.5).

Planetary Mechanism of Fig. 23.2.3
The planetary mechanism shown in Fig. 23.2.3 is designed with two pairs of gears, 1–2
and 3–4, being in internal meshing. Gear 1 is fixed, planet gears 2 and 3 have a joint

Figure 23.2.3: Planetary gear train with
internal meshing of gears.
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shaft and are mounted on carrier c. Due to internal meshing of gears 1–2 and 3–4,
the efficiency of the planetary gear train is higher in comparison with the planetary
gear train shown in Fig. 23.2.2 (see Section 23.5). This advantage is the result of lower
relative velocity of sliding in internal meshing, especially if a small difference in the
number of teeth of contacting pairs of gears is used.

The relation ω4/ωc between the angular velocities of the driven and driving links is
determined from the equation

ω4 − ωc

−ωc
= m(c)

41 . (23.2.7)

The gear ratio m(c)
41 of the inverted mechanism is determined as follows:

m(c)
41 = m(c)

43 · m(c)
21 = (+1)

(
N3

N4

)
· (+1)

N 1

N2
= (N3)(N1)

(N4)(N2)
. (23.2.8)

Then we obtain

ω4

ωc
= 1 − (N3)(N 1)

(N4)(N2)
. (23.2.9)

Large reduction of angular velocity of driven gear 4 with respect to angular velocity
of carrier c in the examples previously discussed is obtained because m(c)

41 is positive.
This statement is correct for both planetary gear mechanisms of Figs. 23.2.2 and 23.2.3.
The gear ratio m(c)

14 is negative for a planetary gear mechanism with mixed-type meshing
of gears 1–2 and 3–4, as the combination of internal and external meshing of contacting
gears. In this case, a large reduction of angular velocity ω4 cannot be obtained.

Planetary Gear Train of Fig. 23.2.4
The gear train is applied in helicopter transmissions and other cases of design. Gear 3
(called the ring gear) is fixed and the carrier c carries n planet gears (n = 5 is shown in
Fig. 23.2.4). The relation between angular velocities ω1 of the sun gear and the carrier
c is based on the following equation:

ω1 − ωc

− ωc
= m(c)

13 . (23.2.10)

Here, m(c)
13 is the gear ratio of the inverted mechanism

m(c)
13 = m(c)

12 · m(c)
23 = (−1)

(
N 2

N1

)
· (+1)

(
N 3

N2

)
= (−1)

(
N 3

N1

)
. (23.2.11)

Equations (23.2.10) and (23.2.11) yield

ωc

ω1
= N1

N1 + N3
. (23.2.12)

The reduction of angular velocity ωc is obtained wherein gear 1 and carrier c are the
driving and driven links, respectively.

Bevel Gear Differential of Fig. 23.2.5
The bevel gear differential shown in Fig. 23.2.5 is applied for addition or subtrac-
tion of angular velocities of two input links. The mechanism contains four movable
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Figure 23.2.4: Schematic representation of planetary gear train applied in helicopter transmissions.

links: (a) the carrier c, (b) two sun gears 1 and 3, and (c) the planet gear 2 which
is mounted on carrier c. Usually, the discussed differential contains two planet gears
mounted on the carrier, but the application of the second planet gear is not necessary in
a kinematic sense. The discussed mechanism is a coaxial differential – the axes of rota-
tion of gears 1, 3, and the carrier coincide, but they may rotate with different angular
velocities ω1, ω3, and ωc . It is obvious that gears 1 and 3 have equal numbers of teeth
N1 and N 3.

Angular velocities of the links of the differential are related as

m(c)
31 = ω3 − ωc

ω1 − ωc
(23.2.13)

where m(c)
31 is the angular velocity ratio of the inverted mechanism.

Figure 23.2.5: Bevel gear differential: (a) schematic representation of the gear train; (b) for derivation
of gear ratio m(c)

31 .
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It is easy to prove that m(c)
31 = −1. This result is obtained from the following con-

siderations [Fig. 23.2.5(b)]. Suppose that the carrier is fixed and gears 1 and 2, and 3
and 2 are in contact at points A and B, respectively. Vectors VA and VB represent linear
velocities of corresponding gears at points A and B. Taking into account that N 1 = N3

and VA = −VB , we get that m(c)
31 = −1. The negative sign of m(c)

31 means that gears 1 and
3 of the inverted mechanism are rotated in opposite directions. Equation (23.2.13) with
m(c)

31 = −1 yields that

ωc = ω1 + ω3

2
. (23.2.14)

Let us consider the following cases of transformation of motion:

(1) Assume that one of the sun gears (of gears 1 and 3), for instance gear 1, is fixed.
Equation (23.2.14) with ω1 = 0 yields

ωc = ω3

2
. (23.2.15)

The discussed mechanism works as a planetary gear train.
(2) Consider now that gears 1 and 3 are rotated with equal angular velocities in the

same direction. Equation (23.2.14) with ω1 = ω3 yields that

ωc = ω1 = ω3. (23.2.16)

Consequently, gear 1, 3, and the carrier c are rotated with the same angular velocity.
The gear train is like a clutch: all movable links are rotated as one rigid body.

(3) Considering that gears 1 and 3 are rotated with equal angular velocities in oppo-
site directions (ω1 = −ω3), we get that ωc = 0 [see Eq. (23.2.14)]. The discussed
mechanism operates as a gear train with fixed axes of rotation.

23.3 CONDITIONS OF ASSEMBLY

Observation of Assigned Backlash Between Planet Gears
[Litvin et al., 2002e]
We consider the condition of assembly for the planetary mechanism shown in
Fig. 23.2.4. The obtained results may be extended for other planetary gear trains. Fig-
ure 23.3.1 shows two neighboring planet gears with the backlash kbm, where m is the
module of the gears and kb is the unitless coefficient. Our goal is to derive an equation
that relates N1, kb, and the gear ratio m(3)

c1 = ωc/ω1 of a planetary gear train wherein
gear 3 is fixed. The derivation is based on application of the following equation:

r2a = E12 sin
(π

n

)
− kbm

2
. (23.3.1)

Here, r2a is the radius of the addendum circle of gear 2; E12 is the shortest distance;
n is the number of planet gears. It is easy to verify that

E12 = N1 + N2

2
m (23.3.2)

r2a =
(

N2

2
+ 1
)

m. (23.3.3)
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Figure 23.3.1: For derivation of distance between two neighboring planet gears.

In addition to Eqs. (23.3.1) to (23.3.3), we use equation

N2 = N3 − N1

2
(23.3.4)

obtained from Fig. 23.2.4, and the equation [see Eq. (23.2.12)]

ωc

ω1
= N1

N1 + N3
= m(3)

c1 . (23.3.5)

Using the system of equations (23.3.1) to (23.3.5), we obtain the following relations
between N1, m(3)

c1 , and kb:

N1 = 2m(3)
c1 (2 + kb)

2m(3)
c1 + sin

(π

n

)
− 1

. (23.3.6)

Because N1 > 0, we obtain that

m(3)
c1 >

1 − sin
(π

n

)
2

. (23.3.7)

Inequality (23.3.7) represents the restriction for the minimum value of m(3)
c1 considering

as given the number n of planet gears.

Relation Between Tooth Numbers of Planetary Train of Fig. 23.2.4
The conditions of assembly of the planetary gear train shown in Fig. 23.2.4 yield, as
shown below, a relation between tooth numbers N1 and N3 and the number n of planet
gears. The number of teeth N2 of planet gears does not affect the conditions of assembly.
The derivations are based on the following considerations [Litvin et al., 2002e]:

Step 1: Consider initially the assembly of a train that is formed by gears 1, 3, and
planet gear 2(1) [Fig. 23.3.2(a)]. Carrier c is in the position shown in the figure and the

axes of tooth symmetry of gear 2(1) coincide with reference line O3O(1)
2 and the axes of

spaces of gears 1 and 3.
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Figure 23.3.2: Installment of planet gears 2(1) and 2(2).

NOTE: The drawings correspond to the case wherein the tooth number of 2(1) (i =
1, . . . , n) is even, but the following derivations are true for gear 2(i ) with an odd number
of teeth.

Step 2: Consider now that the neighboring planet gear 2(2) has to be installed in the
gear train wherein gears 1, 3, and 2(1) have the positions shown in Fig. 23.3.2(a). Gear
2(2) is mounted on carrier c; the axis of symmetry of gear 2(2) teeth coincides with

O3O (2)
2 that forms with O3O (1)

2 angle φc = 2π/N . The axis of space symmetry of

gear 3 forms (i) angle m(2)
3 (2π/N3) with line O3O (1)

2 (m(2)
3 is an integer number), and

(ii) angle δ
(2)
3 with the line O3O (2)

2 . Similarly, the axis of space symmetry of gear 1 forms

(i) angle m(2)
1 (2π/N1) with line O3O (1)

2 (m(2)
1 is an integer number), and (ii) angle δ

(2)
1

with the line O3O (2)
2 . The superscript “(2)” in the designations m(2)

3 and m(2)
1 , δ

(2)
3 and

δ
(2)
1 indicates that planet gear 2(2) is considered. Angles m(2)

k (2π/Nj ), δ
(2)
k (k = 1, 3) and

φc are measured counterclockwise from line O3O (1)
2 of center distance. It is evident that
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the planet gear 2(2) cannot be put into mesh with gears 1 and 3 [Fig. 23.3.2(b)] because
δ

(2)
3 and δ

(2)
1 differ from zero.

Step 3: To put gear 2(2) into mesh with gears 1 and 3, it is necessary to turn gears
1, 3, and 2(1) holding at rest carrier c. Gears 1 and 3 are turned in opposite directions

and therefore angles δ
(2)
1 , δ

(3)
3 indicate deviations from O3O (2)

2 of axes of symmetry
of spaces of gears 1 and 3 in opposite directions. The ratio δ

(2)
3 /δ

(2)
1 is determined as

N1/N 3 that is the gear ratio of the inverted gear drive formed by movable gears 1, 2(1),
3, and the fixed carrier c. The magnitude δ

(2)
k (k = 1, 3) must be less than the angular

distance between neighboring teeth. The magnitude m(2)
k (k = 1, 3) represents the integer

number of spaces of gear 1 and 3 located in the area formed by lines O3O(1)
2 and O3O(2)

2
[Fig. 23.3.2(b)].

Step 4: Figure 23.3.2(b) enables us to determine the magnitude of related turns δ
(2)
3

and δ
(2)
1 required for the assembly of planet gear 2(2) with gears 1 and 3. The generalized

conditions of assembly of a planet gear 2(k) (k = 2, . . . , n) in a gear drive with n planet
gears are represented by the following equations:

(i) Figure 23.3.2(b) extended for an assembly of planet gear 2(k) yields

m(k)
1

2π

N1
− δ

(k)
1 = (k − 1)2π

n

(
δ

(k)
1 <

2π

N1

)
(23.3.8)

m(k)
3

2π

N3
− δ

(k)
3 = (k − 1)2π

n

(
δ

(k)
3 <

2π

N3

)
(23.3.9)

δ
(k)
3

δ
(k)
1

= N1

N3
. (23.3.10)

(ii) Equations (23.3.8) to (23.3.10) yield the following relation:

(k − 1)(N1 + N3)
n

= m(k)
1 + m(k)

3 (k = 2, . . . , n) (23.3.11)

(iii) Taking into account that (m(k)
1 + m(k)

3 ) is an integer number, we obtain that (N1 +
N3)/n has to be an integer number as well. This condition is observed, for instance,
in the case where N1 = 62, N3 = 228, and n = 5.

Determination of m(k)
1 , m(k)

3 , δ
(k)
1 , and δ

(k)
3 (k = 1, . . . ,n)

Equations (23.3.8) and (23.3.9) and inequalities for δ
(i )
1 and δ

(i )
3 yield the following

inequalities for determination of m(k)
1 and m(k)

3 :

m(k)
1 − (k − 1)N 1

n
< 1 (k = 2, . . . , n) (23.3.12)

(k − 1)N3

n
− m(k)

3 < 1 (k = 2, . . . , n) (23.3.13)

where m(k)
1 and m(k)

3 are integer numbers. We recall that m(i )
1 and m(i )

3 are the integer

number of spaces of gears 1 and 3 that neighbor to the line of center distance O3O (i )
2 .

Figure 23.3.2(b) shows m(2)
3 and m(2)

1 of such spaces that neighbor to the line O3O (2)
2 .
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Table 23.3.1: Parameters m(k)
1 ,

m(k)
3 , δ

(k)
1 , and δ

(k)
3

i m(k)
1 m(k)

3 δ
(k)
1 δ

(k)
3

1 0 0 0 0

2 13 45 3
5·62 2π 3

5·228 2π

3 25 91 1
5·62 2π 1

5·228 2π

4 38 136 4
5·62 2π 4

5·228 2π

5 50 182 2
5·62 2π 2

5·228 2π

Determination of δ
(k)
1 and δ

(k)
3 that represent the turning angles of gears 1 and 3 for

the assembly of planet gear 2(i ) with gears 1 and 3 is based on the following equations:

δ
(k)
1 = m(k)

1
2π

N1
− (k − 1)2π

n
(k = 2, . . . , n) (23.3.14)

δ
(k)
3 = (k − 1)2π

n
− m(k)

3
2π

N3
(k = 2, . . . , n). (23.3.15)

Numerical Example 23.3.1
A planetary gear drive with N1 = 62, N3 = 228, and n = 5 is considered. It is easy
to verify that (N1 + N3)/n is an integer number and the requirement (23.3.11) is ob-
served indeed. The results of computations of m(k)

1 , m(k)
3 , δ

(k)
1 , and δ

(k)
3 are presented in

Table 23.3.1.

23.4 PHASE ANGLE OF PLANET GEARS

The concept of the phase angle is used in this chapter for computation of transmission
errors (see Sections 23.7 and 23.8). A phase angle determines the angle that is formed by
the axis of symmetry of the tooth (space) with the respective line of the center distance.
The phase angle is zero wherein the axis of tooth (space) symmetry coincides with the
respective line of center distance as shown in Fig. 23.3.2(a).

Figure 23.3.2(b) shows that axes of tooth (space) symmetry of gears 1, 2, and 3 will

coincide with O3O(2)
2 after the related turns through angles δ

(2)
1 and δ

(2)
3 of gear 1 and 3

are accomplished (the gear drive formed by gears 1, 2(1), and 3 is considered). However,
such a turn will cause the respective axes of tooth (space) symmetry of gears 1, 2(1), and

3 to be deviated from the line of center distance O3O(2)
2 . To restore the orientation of

tooth (space) axis of symmetry of gears 1, 2(1), and 3 as shown in Fig. 23.3.2(a), we
provide turns of gear 1 and 3 of the gear drive formed by 1, 2(1), 2(2), and 3 whereas
carrier c is held at rest. The turn of gears 1 and 3 of the gear drive (1, 2(1), 2(2), 3) is
performed in the direction that is opposite to the direction of the turns δ

(2)
1 and δ

(2)
2 . The
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Figure 23.4.1: Illustration of orientation of tooth (spaces) axes of symmetry of gears 1, 2(2), and 3

with respect to center distance O3 O (2)
2 .

turn mentioned above is accomplished for gears 1 and 3 of the gear drive formed by
(1, 2(1), 3).

Figure 23.4.1 shows the obtained orientation of respective axes of tooth (space) sym-
metry after the two sets of related turns are accomplished. Axes of tooth (space) symme-

try of gears 1, 2(1), and 3 are located on line O3O(1)
2 . Angles µ

(2)
1 , µ

(2)
2 , and µ

(2)
3 indicate

the deviation of the respective axes of tooth (space) symmetry of gears 1, 2(2), and 3

from O3O(2)
2 .

Figure 23.4.2 represents in enlarged scale the orientation of spaces of gear 1 in the
area determined by spaces of numbers 1 and m(k)

1 (k = 2, 3, 4, 5). The phase angle �
(k)
1

is formed by line O3O(k)
2 and the space number (m(k)

1 − 1) that neighbors to O3O(k)
2

and is measured clockwise, in the direction of rotation of gear 1 in the gear drive with
the carrier held at rest (Fig. 23.2.4).

Figure 23.4.2 yields the following equation for determination of the phase angle:

�
(k)
1 = (k − 1)2π

n
− (m(k)

1 − 1)
2π

N1
(k = 2, . . . , 5) (23.4.1)

Using the input data for numerical example 23.3.1, we obtain the following results:

�
(2)
1 = 2

5 · 62
2π ; �

(3)
1 = 4

5 · 62
2π ; �

(4)
1 = 1

5 · 62
2π ; �

(2)
1 = 3

5 · 62
2π.
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Figure 23.4.2: For derivation of phase angle �
(k)
1 .

23.5 EFFICIENCY OF A PLANETARY GEAR TRAIN

Let us compare a planetary gear train with a conventional one, with fixed gear axes,
designed for the same gear ratio of angular velocities of the input and output mechanism
links. The comparison shows the following:

(i) The planetary gear train has smaller dimensions than the conventional one. A
conventional design requires application of a set of conventional gear drives but
not a single train is applied for the assigned reduction of speed.

(ii) However, a planetary gear train usually has a much lower efficiency in comparison
with a conventional gear train. An exception is the planetary gear train shown in
Fig. 23.2.4 (see Example 23.5.2 below).

The determination of the efficiency of a planetary gear train is a complex problem. A
simple solution to this problem is proposed by Kudrjavtzev et al. [1993] and is based
on the following considerations:

(i) The efficiency of a planetary gear train is related to the efficiency of an inverted
train when the relative velocities of the planetary train and the inverted one are
observed to be the same. The inverted train is obtained from the planetary train
wherein the carrier is held at rest and gear j , which has been fixed in the planetary
train, is released.

(ii) Two cases of efficiency of a planetary train designated by η
( j )
i c and η

( j )
ci may be

considered. Here, designations in η
( j )
i c indicate that gear i and carrier c are the

driving and driven links of the planetary train. Respectively, designations in η
( j )
ci
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indicate that carrier c and gear i are the driving and driven links of the planetary
train. In both cases, the superscript ( j ) indicates that gear j is the fixed one.

(iii) We consider gear i or carrier c as the driving link of the planetary gear train if

Mkωk > 0, (k = 1, c) (23.5.1)

where Mk is the torque applied to link k; ωk is the angular velocity of link i in
absolute motion, in rotation about the frame of the planetary gear train.

(iv) It is assumed that a torque Mi of the same magnitude is applied to link i of the
planetary and inverted gear trains. Torque Mi is considered as positive if i (but not c)
is the driving link. In the case in which the driving link is the carrier, torque Mi

is the resisting moment and Mi < 0. The ratio (ωc/ωi ) may be obtained from the
kinematics of the planetary gear train using the following equation for the train
with fixed gear j :

ω1 − ωc

−ωc
= m(c)

i j . (23.5.2)

The determination of the efficiency of planetary gear trains is considered for two
typical examples. The discussed approach may be extended and applied to various
examples of planetary gear trains.

Example 23.5.1
The planetary gear train shown in Fig. 23.2.4 is considered for the following conditions:
(i) gear 3 is fixed ( j = 3); and (ii) gear 1 and carrier c are the driving and driven links,
respectively. Equation (23.5.2) yields

ωc

ω1
= N1

N3 + N1
. (23.5.3)

Consider now the inverted gear train where rotation is provided from gear 1 to gear 3
wherein the carrier is fixed. Torque M1 is applied to gear 1 and M1 is positive because
gear 1 is the driving gear in the planetary gear train. The angular velocity ω1 of gear 1
of the planetary gear train is of the same direction as M1, and M1ω1 > 0.

The efficiency η
(3)
1c of the planetary train is determined as

η
(3)
1c = M1ω1 − Pl

M1ω1
. (23.5.4)

Here, (M1ω1 − Pl ) is the output power, and M1ω1 is the input power (M1ω1 > 0). The
key for determination of η

(3)
1c is that the power Pl lost in the planetary gear train is

determined as the power lost in the inverted train. The input power of the inverted
train is M1(ω1 − ωc ) > 0, because M1 > 0 and (ω1 − ωc ) > 0. We consider as known
the coefficient � (c) = 1 − η(c) of the inverted train. Then, we may determine the power
lost in the inverted gear train as

Pl = � (c)M1(ω1 − ωc ). (23.5.5)

Equations (23.5.3), (23.5.4), and (23.5.5) yield

η
(3)
1c = 1 − ψ (c)

(
N3

N1 + N3

)
. (23.5.6)
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Example 23.5.2
The same planetary gear train is considered given the conditions that the driving and
driven links of the planetary gear train are the carrier and link 1, respectively. Gear 1
is now the driven link of the planetary gear train; M1 < 0 because M1 is the resisting
moment. We consider now the inverted train taking into account that M1(ω1 − ωc ) < 0,
because M1 < 0 and (ω1 − ωc ) > 0.

The power Pl lost in the inverted train is determined as follows:

Pl = 1
η(c)

(−M1)(ω1 − ωc ) − (−M1)(ω1 − ωc ) = 1 − η(c)

η(c)
(−M1)(ω1 − ωc ). (23.5.7)

Equation (23.5.7) provides that the lost power Pl is positive. (Recall that M1 < 0 and
(ω1 − ωc ) > 0.)

Then we obtain

η
(3)
c1 = Pdriven

Pdriven + Pl
= −M1ω1

−M1ω1 + 1 − η(c)

η(c)
(−M1)(ω1 − ωc )

= 1

1 + 1 − η(c)

η(c)

(
1 − ωc

ω1

) = 1

1 + 1 − η(c)

η(c)

(
N3

N1 + N3

) . (23.5.8)

It follows from Eq. (23.5.8) that the efficiency η
(3)
c1 > η(c). This means that the planetary

gear train shown in Fig. 23.2.4 has higher efficiency than the inverted gear train if the
rotation in the planetary gear train is transformed from the carrier c to the sun gear 1.

23.6 MODIFICATIONS OF GEAR TOOTH GEOMETRY

We limit the discussion to the modification of gear tooth geometry for the planetary
gear train shown in Fig. 23.2.4. Spur gears of involute profile are applied in the existing
design. The purposes of modification of tooth geometry are as follows:

(i) Improvement of bearing contact and reduction of transmission errors. This goal is
achieved by application of double-crowned planet gears.

(ii) Reduction of backlash between the planet gears and sun gear 1 and ring gear 3.
The reduction of backlash enables us to obtain a more uniform distribution of load
between the planet gears (see below).

Modification of Geometry of Planet Gears
The developed modification is based on double crowning of planet gears accomplished as
a combination of profile crowning and longitudinal crowning (see Litvin et al. [2001c]
and Chapter 15). Longitudinal crowning enables us to substitute instantaneous line
contact of tooth surfaces by point contact and avoid an edge contact. Longitudinal
crowning is achieved by tool plunging. Profile crowning of a planet gear enables us to
substitute the involute profile by a profile that is conjugated to a parabolic profile of
a rack-cutter (see Chapter 15). Then, a parabolic function of transmission errors can
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be predesigned. Such a function of transmission errors is able to absorb almost linear
functions of transmission errors caused by errors of alignment (see Section 9.2).

Modification of Tooth Geometry of Gears 1 and 3
The purpose of modification is to regulate backlash caused by angular errors of install-
ment of the planet gears on the carrier [Litvin et al., 2002e]. The goal mentioned above
is achieved as follows:

(i) The tooth surface of �1 is designed as an external screw involute one of a small
helix angle. Respectively, the tooth surface of �3 is designed as an internal screw
involute one of the same helix angle and direction as �1.

(ii) The regulation of backlash between a planet gear 2(i )and gears 1 and 3 is achieved
by axial translation of gear 2(i ) that is accomplished during the assembly. The
regulation has to be performed for the whole set of planet gears.

Figure 23.6.1 illustrates schematically how the backlash between planet gear 2(i ) and
gears 1 and 3 is regulated. Figure 23.6.1(a) shows the backlash �x(i ) existing before
regulation. Figure 23.6.1(b) shows that the backlash is eliminated by axial displacement
�z (i ) of planet gear 2(i ). The regulation described above has to be accomplished for all
planet gears of the set 2(i ) (i = 1, . . . , n).

23.7 TOOTH CONTACT ANALYSIS (TCA)

The TCA computer program enables simulation of misaligned gear drives for determi-
nation of transmission errors and conditions of contact.

Conventional Gear Drive
In the case of a conventional gear drive formed by two gears, there are two contacting
gear tooth surfaces and the simulation of meshing is based on the following procedure
(see Section 9.4).

(i) The gear tooth surfaces are represented in a mutual coordinate system Sf rigidly
connected to the housing of the gear drive.

(ii) The instantaneous tangency of gear tooth surfaces �1 and �2 is represented by the
following vector equations:

r(1)
f (u1, θ1, φ1) − r(2)

f (u2, θ2, φ2) = 0 (23.7.1)

n(1)
f (u1, θ1, φ1) − n(2)

f (u2, θ2, φ2) = 0. (23.7.2)

Here, designations (ui , θi ) (i = 1, 2) indicate surface parameters; φi (i = 1, 2) are
generalized parameters of motion of gears.

Vector equation (23.7.1) means that at a point M of tangency, surfaces �1 and �2

have a common position vector. Vector equation (23.7.2) confirms that the surfaces
have a common unit vector of the normals to the surfaces.
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Figure 23.6.1: Schematic illustration of regulation of backlash: (a) backlash between gears 1, 3, and
3(i ) before regulation; (b) elimination of backlash by axial displacement of �z(i ) of planet gear 2(i ).

Vector equations (23.7.1) and (23.7.2) yield a system of only five independent scalar
equations because |n(1)

f | = |n(2)
f | = 1. One of the parameters, let us say φ1, may be chosen

as the input one. Surfaces �1 and �2 are in point contact if the respective Jacobian for
the system of Eqs. (23.7.1) and (23.7.2) differs from zero (see Section 9.4). Then, at the
point of tangency of �1 and �2, the system of equations (23.7.1) and (23.7.2) can be
solved by functions (see Section 9.4)

{u1(φ1), θ1(φ1), u2(φ1), θ2(φ1), φ2(φ1)} ∈ C1. (23.7.3)
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Using functions (23.7.3) and surface equations, we can determine the path of contact
on surfaces �1 and �2, and the function of transmission errors (see Section 9.4).

Application of TCA for a Planetary Gear Drive (Fig. 23.2.4)
A planetary gear drive with several planet gears is a multi-body system. Considering the
misaligned gear drive as a system of rigid bodies, we may find out that only one planet
gear is in mesh at every instant. Conditions of tangency are determined as follows:

Step 1: The tooth surfaces of gears 1, 2(i ), and 3 are represented in fixed coordinate
system S3.

Step 2: The rotation of gears 1 and 2(i ) is determined by three parameters φ1, φ
(i )
2c , and

φc . Here, φ1 is the angle of rotation of gear 1, φ
(i )
2c is the angle of rotation of planetary

gear 2(i ) with respect to the carrier c, and φc is the angle of rotation of the carrier.
Step 3: The conditions of tangency of gears 1 and 2(i ), and gears 2(i ) and 3 provide

ten independent scalar equations. These equations contain eight surface parameters of
gears 1, 2(i ), and 3 and three motion parameters φ1, φ

(i )
2c , and φc . Considering φ1 as

the input parameter, we may obtain from the TCA computer program the transmission
function φc (φ1) and then determine the function of transmission errors of the misaligned
planetary gear train.

The solution of ten non-linear equations can be simplified by representing them as
two subsystems of five equations each and then applying an iterative process of solution.
Applying tooth contact analysis (TCA) for various planet gears 2(i ), we may determine
which of the planet gears is in mesh at the considered position φ1.

Function of Transmission Errors of Sub-Gear Drives
For the purpose of regulation of backlash, we may determine the backlash considering
sub-gear drives but not the planetary gear drive. The sub-gear drives used for such an
approach are formed by gears (1, 2(i )), (2(i ), 3), and (1, 2(i ),3) (i = 1, n).

Transformation of rotation of the sub-gear drives is performed whereas the carrier is
held at rest. Applying TCA for the sub-gear drives, it becomes possible to determine the
functions of transmission errors and the backlash as well. Then, it becomes possible to
minimize and equalize the backlash of five planetary gears by regulation.

The resulting function of transmission errors of the sub-gear drive (1, 2(i ), 3) is deter-
mined as

�φ3(φ1) = φ3(φ2(φ1)) − N1

N3
φ1 (23.7.4)

where φ3(φ2(φ1)) is obtained from the TCA computer program. An approximate solu-
tion for �φ3(φ1) is represented as

�φ3(φ1) ≈ N2

N3
�φ2(φ1) + �φ3

(
N1

N2
φ1

)
. (23.7.5)

An additional goal of application of developed TCA is the analysis of reduction of
transmission errors obtained by regulation of installment of planet gears (see below).
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Figure 23.8.1: Functions of transmission errors �φ
(i )
3 (φ1) caused by double crowning and errors of

location of planetary gears.
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23.8 ILLUSTRATION OF THE EFFECT OF REGULATION OF BACKLASH

A planetary gear drive with n = 5 planet gears is considered (Fig. 23.2.4). Considering
n = 5 sets of sub-gear drives, we may obtain functions of transmission errors for all
sub-gear drives of the set of five planet gears as shown in Fig. 23.8.1. The transmission
errors are caused as the result of double crowning of planet gears and errors of location
of planet gears on the carrier. The designation �sx indicates an error of location of the
planet gear measured in a direction that is perpendicular to the shortest distance between
the planet gear and gear 1 (Fig. 23.2.4). Functions of transmission errors are represented
in Fig. 23.8.1 taking into account the phase angles of planet gears (see Section 23.4). It
is important to recognize that errors of functions �φ

(i )
3 (φ1) might be positive or negative

(Fig. 23.8.1).
Analysis of the shape of the functions of transmission errors represented in Fig. 23.8.1

shows the following:

(a) Only one planetary gear of the set of five planets is in tangency with gear 3.
(b) It can happen, as shown in Fig. 23.8.1, that the same planet gear of the set of

five is in mesh with gear 3, whereas the remaining planet gears are not in mesh
with gear 3. The graphs of Fig. 23.8.1 show that the planet gear that is in mesh is

Figure 23.8.2: Illustration of functions of transmission errors for sub-drives and integrated function
of transmission error.
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gear 2(2). The backlash at the position φ1 = φ∗
1 between gears 2(k) (k = 1, 3, 4, 5) is

determined by �φ3 = M2Mk (k = 1, 3, 4, 5).

The backlash in sub-gear drives can be reduced by regulation of installment of planet
gears on the carrier (see Fig. 23.6.1). Figure 23.8.2 shows the integrated function
�φ�(φ1) of transmission errors obtained after the regulation mentioned above. Al-
though a backlash does not remain constant, its variation in the process of meshing is
reduced substantially. Taking into account the elastic deformation under the load, we
may expect that the load will be distributed between the planet gears almost uniformly.
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24.1 INTRODUCTION

Generation of worms, screws, and helical gears by milling cutters or grinding wheels is
considered. Two types of tools for this process are applied: (i) the finger-shaped tool,
and (ii) the disk-shaped one. Figures 24.1.1(a) and 24.1.2 show the finger-shaped and
disk-shaped milling cutters, respectively. There are two main problems of design when
generation of helicoids is considered: (i) the tool surface �c is given and surface �p of
the workpiece must be determined, and (ii) the inverse problem, when surface �p is
given and �c is to be determined.

Henceforth, we use coordinate systems Sc , Sp, and Sf , which are rigidly connected to
the tool, the workpiece, and the frame of the cutting machine, respectively. Figure 24.1.3
shows the installation of the disk-shaped tool. Here, rp is the pitch radius of the work-
piece; rc is the cutter mean radius; Ec and γc are the shortest distance and the crossing
angle between the axes of rotation of the tool and the workpiece. In the case of appli-
cation of the finger-shaped cutter, coordinate systems Sc and Sf coincide, and the tool
axis is xc [Fig. 24.1.1(b)].

The relative motion of the workpiece with respect to the tool is the screw one in both
cases and is shown in Fig. 24.1.1(c); ψ and p are the angle of rotation and the screw
parameter in the screw motion, respectively. Methods used for generation of helicoids,
discussed in this chapter, have been developed by Litvin [1968].

24.2 GENERATION BY FINGER-SHAPED TOOL: TOOL SURFACE IS GIVEN

Surface �c is a surface of revolution represented in Sc by the vector function

rc (uc , θc ) = m(uc ) ic + g(uc ) sin θc jc + g(uc ) cos θc kc . (24.2.1)

Here, uc , θc are the surface coordinates. Functions m(uc ), g(uc ) represent in plane yc = 0
a planar curve that generates �c by rotation about the xc axis (see Section 5.5).

The normal to �c is represented in Sc as

Nc = ∂rc

∂uc
× ∂rc

∂θc
= −gug ic + mug sin θc jc + mug cos θc kc (24.2.2)

where mu = ∂m(uc )/∂uc , gu = ∂g(uc )/∂uc , and g = g(uc ).

718
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Figure 24.1.1: Generation by finger-shaped milling cutter: (a) illustration of cutter; (b) illustration of
tool installment; (c) illustration of screw motion of coordinate system Sp.

Figure 24.1.2: Disk-shaped milling cutter.
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Figure 24.1.3: Coordinate system applied for generation of workpiece by disk-shaped cutter: (a) in-
stallment of cutter; (b) illustration of crossing angle γc ; (c) illustration of screw motion of the workpiece.

It is useful to verify for further derivations that for a surface of revolution, we have

yc Nzc − zc Nyc = 0. (24.2.3)

The goals of the following development are (i) to derive the equation of meshing between
�c and �p, and (ii) to determine �p as the envelope to the family of �c . It is important
to recognize that the finger-shaped tool generates two surfaces for both sides of the
tooth space of the workpiece [Fig. 24.1.1(b)].

Equation of Meshing
This equation is represented as

Nc · v(cp)
c = 0 (24.2.4)

where v(cp)
c is the relative velocity. The workpiece performs the screw motion [Fig.

24.1.1(c)] and

v(cp)
c = v(c)

c − v(p)
c = −v(p)

c = − (ω(p)
c × rc

)− p ω(p)
c . (24.2.5)

Here, p is the screw parameter, and ω
(p)
c is the angular velocity in the screw motion.
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Equations (24.2.1) to (24.2.5) yield

f (uc , θc ) = (ggu + mmu) sin θc + pmu cos θc = 0. (24.2.6)

Equations (24.2.1) and (24.2.6) determine on surface �c two lines Lc of tangency
between �c and �p (recall that �c is in tangency with both sides of the tooth surfaces of
the workpiece). Lines Lc do not depend on the parameter ψ of screw motion, because
a helicoid is generated and p is constant.

Equation

f (uc , θc ) = 0 (24.2.7)

represents two planar curves in the plane of surface parameters (uc , θc ). Each of the
curves is the image of contact lines Lc for the respective tooth side of the workpiece. In
a more general case, when p is a function of ψ , there is a family of contact lines Lc on
�c .

Derivation of Generated Surface Σp

Surface �p is defined in Sp as the family of contact lines Lc ; �p is represented by the
equations

rp(uc , θc , ψ) = Mpc (ψ)rc (uc , θc ), f (uc , θc ) = 0. (24.2.8)

Matrix Mpc describes the coordinate transformation in transition from Sc to Sp [Figs.
24.1.1(b) and 24.1.1(c)]. Equations (24.2.8) determine two surfaces, for both sides of
the tooth, because there are two contact lines Lc defined by Eq. (24.2.7).

Problem 24.2.1
Surface �c is a cone. The axial section of �c intersected by plane yc = 0 is shown in
Fig. 24.2.1. Surface �c is generated by straight line NM being rotated about the xc axis.
The location of current point M on the generating line is determined by the parameter
uc = |NM| (Fig. 24.2.1).

(1) Derive functions m(uc ) and g(uc ) using equations of NM in plane yc = 0.
(2) Derive Eq. (24.2.2) of normal Nc to �c .
(3) Derive Eq. (24.2.6) of meshing.
(4) The equation of meshing determines in the plane of surface parameters (uc , θc ) two

lines Lc of tangency of �c and �p. Represent the graphs of Lc in the area

sc

2 sin αc
+ pax

π cos αc
> uc > 0, 180◦ > θc > −180◦.

Here, pax is the axial distance between the neighboring worm threads determined as

pax = H
N1

= πm

where m is the axial module of the worm. Use the following worm data:

N1 = 3; rp = 46 mm; m = 8 mm.

The cone data are αc = 20◦; sc = 12.1594 mm.
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Figure 24.2.1: Cone axial section.

Solution
(1) m(uc ) = (rp − sc

2 cot αc ) + uc cos αc ; g(uc ) = uc sin αc .
(2) Nc = uc sin αc (− sin αc ic + cos αc sin θc jc + cos αc cos θc kc ).
(3) f (uc , θc ) = [uc + (rp − sc

2 cot αc ) cos αc ] sin θc + p cos αc cos θc = 0.
(4) Two lines Lc in the plane of parameters (uc , θc ) are shown in Fig. 24.2.2. Lines Lc

on the tool surface are shown in Fig. 24.2.3.

Figure 24.2.2: Finger-shaped tool: contact
lines in space of surface parameters (uc , θc ).
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Figure 24.2.3: Contact lines on cutter conical surface.

24.3 GENERATION BY FINGER-SHAPED TOOL: WORKPIECE
SURFACE IS GIVEN

Our goal is to determine the tool surface �c that generates the given surface �p of
the workpiece. The keystone in our approach is the following theorem (proposed by
Litvin [1968]):

The line of tangency between �p and �c is one at which the normals to �p intersect
the axis of rotation of the finger-shaped tool.

The theorem follows from the facts that the tool surface �c is a surface of revolution
and the normal to �c intersects the axis of rotation of the tool, and therefore the normal
to �p at the point of tangency with �c must intersect the axis of the finger-shaped tool
as well.

The procedure of derivation of equations of �c is as follows:
Step 1: Consider that �p and its normal are represented in Sp by the vector equations

rp(u p, θp) = f1(u p, θp) ip + f2(u p, θp) jp + f3(u p, θp) kp (24.3.1)

Np = ∂rp

∂u p
× ∂rp

∂θp
(provided Np �= 0). (24.3.2)

Step 2: The coordinates of current point M of intersection of a normal to �c with the
xc axis are represented in Sc as

r(M)
c = [Xc 0 0 1]T. (24.3.3)

Point M is represented in Sp by using the equation

r(M)
p = Mpcr(M)

c = [Xc cos ψ −Xc sin ψ −pψ 1]T. (24.3.4)

Matrix Mpc describes the coordinate transformation from Sc (Sc is identical to Sf ) to
Sp [Fig. 24.1.1(c)].
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Step 3: The equations of the common normal to �p and �c are

Xc cos ψ − xp(u p, θp)
Nxp(u p, θp)

= −Xc sin ψ − yp(u p, θp)
Nyp(u p, θp)

= −pψ − z p(u p, θp)
Nzp(u p, θp)

. (24.3.5)

Equation system (24.3.5) after elimination of Xc provides the relation

F (u p, θp, ψ) = 0. (24.3.6)

Equations (24.3.1) and (24.3.6) with fixed-in parameter ψ determine the family of lines
of tangency Lp on �p between surfaces �p and �c .

Step 4: There is a single line Lc on surface �c that is the line of tangency of �c with
surface �p where �p is the surface of the respective side of the tooth (thread) of the
workpiece. Lines Lp that cover surface �p coincide in turn with line Lc in the process
of generation. We may determine Lc taking ψ = 0 in Eqs. (24.3.5) and considering that
coordinate systems Sc and Sp coincide at such an instant.

Equations (24.3.5) with ψ = 0 yield

f (u p, θp) = yp Nzp − z p Nyp = 0. (24.3.7)

The instantaneous line of tangency Lp (determined with ψ = 0) is represented as

rp = rp(u p, θp), f (u p, θp) = 0. (24.3.8)

Step 5: The shape of the finger-shaped tool may be represented by the function ρ(xc )
(Fig. 24.3.1). Taking into account that ψ = 0, we have

xc = xp(u p, θp)

ρc = (y2
p + z2

p

)0.5 = |yp|
[

1 +
(

Nzp

Nyp

)2
]0.5

= |z p|
[

1 +
(

Nyp

Nzp

)2
]0.5

.

(24.3.9)

We obtain the following system for computation of ρ(xc ):

f (u p, θp) = 0, xc = xp(u p, θp), ρc = |z p|
[

1 +
(

Nyp

Nzp

)2
]0.5

. (24.3.10)

Problem 24.3.1.
An involute worm is generated by the finger-shaped milling cutter. The screw involute
surface side I of the tooth of a right-hand worm is represented by the equations (see
Section 19.6),

xp = rb cos(θp + µ) + u p cos λb sin(θp + µ)

yp = rb sin(θp + µ) − u p cos λb cos(θp + µ)

z p = −u p sin λb + pθp.

(24.3.11)

Here, rb is the radius of the base cylinder; λb is the lead angle on the base cylinder, and
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Figure 24.3.1: For determination of finger-shaped
tool profile.

µ can be determined as

µ = wt

2rp
− inv αt (24.3.12)

where αt is the pressure angle in cross section; wt is the space width in the cross section
measured on the pitch cylinder. For the case when the width of the space on the pitch
cylinder is equal to the tooth thickness, we have

wt

2rp
= π

2N1
.

We recall as well other relations between the worm design parameters (see Section
19.3),

tan αt = tan αn

sin λp

tan λb = rp tan λp

rb
= tan λp

cos αt

Pt = Pn sin λp

rp = N1

2Pt
= N1

2Pn sin λp

rb = rp cos αt .
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The surface unit normal is np = Np/|Np|, where Np = ∂rp/∂θp × ∂rp/∂u p (provided
Np �= 0). Thus,

np = [− sin λb sin(θp + µ) sin λb cos(θp + µ) − cos λb]T. (24.3.13)

DERIVE:

(1) Equation of meshing (24.3.7)
(2) The system of equations for determination of the profile of the tool.

Solution
(1) f (u p, θp) = u p cos(θp + µ) − rb cos λb sin(θp + µ) − pθp sin λb cos(θp + µ) = 0.
(2) The tool profile is determined with the system of equations

f (u p, θp) = u p cos(θp + µ) − rb cos λb sin(θp + µ) − pθp sin λb cos(θp + µ) = 0

xc = rb cos(θp + µ) + u p cos λb sin(θp + µ)

z p = −u p sin λb + pθp

ρ = |z p|
[
1 + tan2 λb cos2(θp + µ)

]0.5
.

The input for computation is θp, and the output data is ρ(xc ).

24.4 GENERATION BY DISK-SHAPED TOOL: TOOL SURFACE IS GIVEN

The tool surface �c is a surface of revolution. The axial section of the tool is a planar
curve α–α that is represented in an auxiliary coordinate system Sa as [Fig. 24.4.1(a)]

xa = m(uc ), ya = 0, za = g(uc ) (24.4.1)

where uc is the variable parameter that determines the location of a current point on
α–α. The tool surface �c is generated while coordinate system Sa with curve α–α is
rotated about the zc axis [Fig. 24.4.1(b)]. Surface �c is represented in Sc by the matrix
equation

rc (uc , θc ) = Mca ra , (24.4.2)

which yields

rc (uc , θc ) = m(uc ) cos θc ic − m(uc ) sin θc jc + g(uc ) kc . (24.4.3)

The surface normal is represented in Sc by the following equation:

Nc = ∂rc

∂uc
× ∂rc

∂θc
= gum cos θc ic − gum sin θc jc − mmu kc . (24.4.4)

Equation of Meshing
The equation of meshing is represented as

Nc · v(cp)
c = 0. (24.4.5)
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Figure 24.4.1: Disk-shaped tool surface generated by planar curve: (a) illustration of tool surface; (b)
illustration of coordinate systems Sa and Sc .

The workpiece performs a screw motion with the angular velocity ω(p) and the transla-
tional velocity pω(p) [Fig. 24.1.3(c)]. The velocity v(cp)

c is determined by the equation

v(cp)
c = v(c)

c − v(p)
c = −v(p)

c . (24.4.6)

Because the milling cutter is held at rest, vector v(p)
c can be represented by the following

equation:

v(p)
c = (ω(p)

c × rc
)+ (Rc × ω(p)

c

)+ p ω(p)
c . (24.4.7)

Here [Fig. 24.1.3(a)],

Rc = Oc Of = −Ec ic . (24.4.8)

Taking into account that ψ = 0, we have

ω(p)
c = Lcpω

(p)
p = Lc f L f pω

(p)
p = ω(p)[0 sin γc cos γc ]T. (24.4.9)

After transformations, we obtain

v(cp)
c = −ω(p)

 sin γc zc − cos γc yc

cos γc (xc + Ec ) + p sin γc

− sin γc (xc + Ec ) + p cos γc

 (24.4.10)

Nc · v(cp)
c = −ω(p){(sin γc zc − cos γc yc ) Nxc + [cos γc (xc + Ec )

+ p sin γc ]Nyc + [− sin γc (xc + Ec ) + p cos γc ]Nzc} = 0. (24.4.11)
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There is a relation for a surface of revolution whose axis of rotation is the zc axis:

xc Nyc − yc Nxc = 0. (24.4.12)

The final expression for the equation of meshing is

f (uc , θc ) = sin γc zc Nxc + (Ec cos γc + p sin γc )Nyc

+ [− sin γc (xc + Ec ) + p cos γc ]Nzc = 0. (24.4.13)

Equation (24.4.13) may determine more than one planar curve in the plane of pa-
rameters E ∈ (uc , θc ). Only the curve in the working area of E should be consid-
ered. This curve is the image of Lc in E , where Lc is the line of tangency of �c

and �p.

Generated Surface
Surface �p is represented in Sp by the following equations:

rp(uc , θc , ψ) = Mpf M f crc (uc , θc ), f (uc , θc ) = 0. (24.4.14)

Matrix Mfc describes the coordinate transformation from Sc to Sf , and matrix Mpf

describes the coordinate transformation from Sf to Sp (Fig. 24.1.3). Equations (24.4.14)
represent the generated surface in terms of three parameters, (uc , θc , ψ), but (uc , θc ) are
related with the equation of meshing.

Problem 24.4.1
Curve α–α is an arc of a circle of radius ρ (Fig. 24.4.2). The current point of α–α is
represented by angle uc . The location of center C of the circular arc is represented by
coordinates

x(c)
a = −d, y(c)

a = 0, z(c)
a = −b.

(i) Represent the cutter surface in coordinate system Sc by vector equation rc =
rc (uc , θc ).

(ii) Derive the equation of meshing.

Solution
(i)

xc = −(d + ρ sin uc ) cos θc , yc = (d + ρ sin uc ) sin θc , zc = −b + ρ cos uc .

(ii)

f (uc , θc ) = b sin γc sin uc cos θc + d sin γc cos θc cos uc

+ Ec (sin θc cos γc sin uc − sin γc cos uc )

+ p(sin γc sin θc sin uc + cos γc cos uc ) = 0.



P1: JXT

CB672-24 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 2:30

24.4 Generation by Disk-Shaped Tool: Tool Surface is Given 729

Figure 24.4.2: Disk-shaped tool surface generated by circular arc curve: (a) illustration of circular arc
profile; (b) illustration of coordinate systems Sa and Sc .

Problem 24.4.2
The grinding wheel is generated by straight line α–α (Fig. 24.4.3).

(i) Represent the cutter surface by vector equation rc = rc (uc , θc ).
(ii) Derive the equation of meshing.

Figure 24.4.3: Cone tool surface generated by a straight line: (a) illustration of straight-line profile;
(b) illustration of coordinate systems Sa and Sc .
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Solution
(i)

xc = (−a/ tan αc + uc cos αc ) cos θc

yc = (a/ tan αc − uc cos αc ) sin θc

zc = −uc sin αc .

(ii)

uc = −Ec

(
cot γc tan θc sin αc + cos αc

cos θc

)
+ p

(
cot γc cos αc

cos θc
− tan θc sin αc

)
+ a cot αc cos αc .

24.5 GENERATION BY DISK-SHAPED TOOL: WORKPIECE
SURFACE IS GIVEN

The surface of a workpiece is given by the vector function

rp = rp(u p, θp). (24.5.1)

The normal to the workpiece surface is determined with the following equation:

Np = ∂rp

∂u p
× ∂rp

∂θp
= Np(u p, θp). (24.5.2)

Equation of Meshing
The derivation of the equation of meshing is based on the same theorem that was applied
in Section 24.3:

The line of tangency between �p and tool surface �c is one at which the normals to
�p intersect the rotation axis of the disk-shaped tool.

The common normal to surfaces �p and �c is represented by the following equation:

Xp − xp(u p, θp)
Nxp(u p, θp)

= Yp − yp(u p, θp)
Nyp(u p, θp)

= Zp − z p(u p, θp)
Nzp(u p, θp)

. (24.5.3)

Here, (Xp, Yp, Zp) are the coordinates of the point of intersection of the normal with
the zc axis of the tool in Sp. We consider the position when Sp coincides with Sf

(ψ = 0). The point of intersection of the normal with the zc axis can be represented by
the equation

Xp

Yp

Zp

1

 = Mpc


0

0

Zc

1

 =


1 0 0 Ec

0 cos γc − sin γc 0

0 sin γc cos γc 0

0 0 0 1




0

0

Zc

1

 . (24.5.4)
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Equations (24.5.3) and (24.5.4) yield

Ec − xp

Nxp
= −Zc sin γc − yp

Nyp
= Zc cos γc − z p

Nzp
. (24.5.5)

Using Eq. (24.5.5), we can eliminate Zc . Then, we can simplify the obtained equation
of meshing using the relation obtained for a helicoid (see Section 5.5):

yp Nxp − xp Nyp − pNzp = 0. (24.5.6)

The final expression of the equation of meshing is

f (u p, θp) = (Ec − xp + p cot γc )Nzp + Ec cot γc Nyp + z p Nxp = 0. (24.5.7)

Determination of Contact Line on the Tool Surface
There is a family of contact lines on the workpiece surface. We consider a single contact
line on the workpiece surface determined with ψ = 0. This line is determined on �p by
the equations

rp = rp(u p, θp), f (u p, θp) = 0. (24.5.8)

The contact line on the cutter surface is determined with the equations

rc (u p, θp) = Mc f M f prp(u p, θp), f (u p, θp) = 0. (24.5.9)

Matrix M f p is a unitary matrix because coordinate systems Sf and Sp coincide when
ψ is equal to zero (Fig. 24.1.3).

Determination of the Tool Profile
Figure 24.5.1 shows the line of tangency of surfaces �c and �p on the cutter surface
�c ; M is the current point of this line with coordinates (xc , yc , zc ). The profile of the
tool obtained by intersection of the tool surface by plane yc = 0 (axial section) can be
represented by coordinates (xc , zc ). The computational procedure is as follows:

Step 1: Use equation of meshing (24.5.7) and consider θp as the input data, and then
determine the respective value u p. Be advised that equation f (u p, θp) = 0 determines
more than one curve in the plane of parameters (u p, θp). Eliminate the curve that does
not belong to the working part of the workpiece.

Step 2: Knowing the couple (u p, θp), determine the coordinates (xc , yc , zc ) of the
contact line from the matrix equation

rc (u p, θp) = Mc f M f prp(u p, θp).

(Use for derivations of matrices Mc f and M f p the drawings of Fig. 24.1.3)
Step 3: Determine ρ using the equation

ρ = (x2
c + y2

c

)0.5 = ρ(u p, θp). (24.5.10)
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Figure 24.5.1: For derivation of disk-
shaped tool profile.

Step 4: Considering θp as the input parameter and using Eqs. (24.5.9) and (24.5.10),
we determine the coordinates

xc (θp) = −ρ(θp), zc (θp)

of the tool axial profile.

Problem 24.5.1
Given: the surface side I of an involute helical gear that is represented by the equations
[see Eqs. (14.3.5)]

xp = rb cos(θp + µ) + u p cos λb sin(θp + µ)

yp = rb sin(θp + µ) − u p cos λb cos(θp + µ)

z p = −u p sin λb + pθp.

(24.5.11)

Here, rb is the radius of the base cylinder; λb is the lead angle on the base cylinder; µ is
determined as

µ = wt

2rp
− tan αt + αt .

DERIVE:

(i) The equation of meshing (24.5.7)
(ii) The system of equations for determination of the profile of the tool.



P1: JXT

CB672-24 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 2:30

24.5 Generation by Disk-Shaped Tool: Workpiece Surface is Given 733

Solution
(i)

f (u p, θp) = (u p − pθp sin λb) sin(θp + µ) − (Ec + p cot γc ) cos λb

+ (Ec cot γc sin λb + rb cos λb) cos(θp + µ) = 0.

(ii)

xc = rb cos(θp + µ) + u p cos λb sin(θp + µ) − Ec

yc = [rb sin(θp + µ) − u p cos λb cos(θp + µ)] cos γc + [−u p sin λb + pθp] sin γc

zc = [−rb sin(θp + µ) + u p cos λb cos(θp + µ)] sin γc + [−u p sin λb + pθp] cos γc

f (u p, θp) = 0.

Considering the previously represented system of equations and choosing θp as the
input parameter, we determine the coordinates of the tool axial profiles as

xc (θp) = −(x2
c + y2

c )0.5, zc (θp).
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25.1 INTRODUCTION

Flyblades are used for generation of worm-gears in small-scale production to avoid the
manufacture of expensive hobs. However, the production of worm-gears by flyblades
is less effective in comparison with production by hobs. The profiles of the flyblades
are determined as profiles of the worm thread in the normal tooth section obtained by
intersection of the thread by plane � (Fig. 25.1.1). The orientation of the plane � is
determined with the lead angle λp on the worm pitch cylinder.

A symmetrical location of the profiles of the flyblade in coordinate system S�
1 can be

obtained if the x�
1 axis is the axis of symmetry of the worm thread. In Chapter 19, we

have derived equations of worm surfaces for the case when the x1 axis of coordinate
system S1 is the axis of symmetry of the worm space. To obtain the desired location
of axis x1 (as the axis of tooth symmetry), it is necessary to displace the origin O1 of
coordinate system S1 in the axial direction at the magnitude ao = pax/2, where pax is
the axial distance between two neighboring threads of the worm.

The process of generation of the worm-gear by a flyblade simulates the meshing of the
worm with the worm-gear in such a specific case when the worm performs translational
motion in an axial direction in addition to the worm rotational motion. The angle of
rotation φ2 of the worm-gear in the process for generation is a sum of the two following
components:

φ2 = φ1N1

N2
+ str

p
. (25.1.1)

Here, φ1 is the angle of rotation of the worm, N1 is the number of worm threads, N2

is the number of worm-gear teeth, p = rp tan λp is the screw parameter, and str is the
worm (flyblade) axial translation that is an imput parameter chosen from technological
considerations.

In the case of a drive with a multi-thread worm, the flyblade generates only those teeth
of the worm-gear that are in mesh with the respective threads of the worm. Therefore,
indexing of the worm-gear is required to generate the entire number of worm-gear teeth.
Indexing can be avoided if N1 and N2 are prime numbers (they do not have a common
multiplier), for instance, when we have N1 = 3, N2 = 32. In such a case the flyblade

734
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Figure 25.1.1: For determination of profiles of flyblade.

after each revolution of the worm-gear will start to generate the worm-gear teeth that
are in mesh with the next thread of the multi-thread worm.

The following part of this chapter covers the determination of profiles of the flyblade
for various types of worm geometry of worm-gear drives. The computational procedure
represented below covers two cases of representation of worm geometry: (i) the two-
parameter form, and (ii) the three-parameter form (but with related parameters) of
worm surface representation.

25.2 TWO-PARAMETER FORM REPRESENTATION OF WORM SURFACES

Step 1: Consider that the worm thread surface (say, the surface side I ) is represented
by the vector equation (see Chapter 19)

r1(u, θ ) = x1(u, θ ) i1 + y1(u, θ ) j1 + z1(u, θ ) k1, (25.2.1)

and the x1 axis is the axis of symmetry of the worm space. To provide that the x1 axis
will be the axis of symmetry of the worm thread, it is necessary to displace the origin
O1 of coordinate system S1 along the z1 axis on ao = pax/2. Thus, we obtain that

z1 = z1(u, θ ) + ao. (25.2.2)

Step 2: The profiles of the worm thread are considered in plane � of the normal
section. Thus, we have

y1 + z1 tan λp = 0. (25.2.3)

Equations (25.2.2) and (25.2.3) yield

F (u, θ ) = y1(u, θ ) + tan λp[z1(u, θ ) + ao] = 0. (25.2.4)

Step 3: Consider that θ is the input parameter. Solving Eq. (25.2.4), we will obtain
function u(θ ) (provided ∂F /∂θ �= 0). The requirement ∂F /∂θ �= 0 follows from the
theorem of implicit function system existence (see Korn & Korn [1968] and Litvin
[1989]).
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Figure 25.2.1: (a) Illustration of flyblade
profile; (b) for derivation of upper fillet.

Step 4: We can determine now the profile of one side of the flying blade using the
equations

x1(u, θ ) = x1(u(θ ), θ ) = x1(θ ), z�
1(θ ) = − y1(u(θ ), θ )

sin λp
. (25.2.5)

Step 5: Functions x1(θ ), z�
1(θ ) determine the profile of the flyblade (Fig. 25.2.1). The

range of θ is determined with the following conditions:
(i) Point A of the normal section of the worm thread must belong to the worm cylinder

of radius ra . Here, {
[x1(θ )]2 + [y1(θ )]2}0.5 = ra (25.2.6)

is the radius of the worm addendum cylinder.
(ii) Point B of the normal section of the worm thread belongs to the worm cylinder of

radius (rd + c) and is determined with the equation{
[x1(θ )]2 + [y1(θ )]2}0.5 = rd + c. (25.2.7)

Here, rd is the radius of the worm dedendum cylinder; c is the clearance between
the worm and the worm-gear.
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Step 6: The upper path of the profile of the flyblade must be complemented with the
upper fillet [Fig. 25.2.1(a)]. To provide the tangency of the fillet with the segment AB, we
will have to determine the normal a1 to the planar curve AB at point A. Consider that
normal N1 to the worm thread surface is represented in coordinate system S1(x1, y1, z1).
Then, using the coordinate transformation from S1 to S�

1(x1, y�
1, z�

1), we will determine
the normal N�

1 and then obtain

a1 = N �
x1i�1 + N �

z1k�
1. (25.2.8)

Step 7: Using Fig. 25.2.1(b), we can derive the following equation for the fillet ra-
dius ρ:

ρ = c
1 − sin δ

(provided ρ cos δ ≤ |z�
1(A)|) (25.2.9)

where

tan δ =
∣∣∣∣n�

x1

n�
z1

∣∣∣∣ (
0 < δ <

π

2

)
. (25.2.10)

The upper fillet generates the bottom of the space of the worm-gear. The bottom fillet
of the flyblade is to be obtained similarly. The described procedure can be applied for
the ZA, ZN, and ZI worms (see Chapter 19).

25.3 THREE-PARAMETER FORM REPRESENTATION
OF WORM SURFACES

The worm thread surface is the envelope to the family of tool surfaces and is represented
by the equations

r1(uc , θc , ψ) = x1(uc , θc , ψ) i1 + y1(uc , θc , ψ) j1 + z1(uc , θc , ψ, ao) k1 (25.3.1)

f (uc , θc ) = 0. (25.3.2)

Here, uc , θc are the surface parameters of the tool; ψ is the parameter of motion in the
process for generation of the worm by the tool surface; Eq. (25.3.2) is the equation of
meshing.

Equations (25.3.1) and (25.3.2) represent the thread surfaces of the ZK and ZF worms
(see Chapter 19). The thread profile is located in plane � (Fig. 25.1.1), and

y1(uc , θc , ψ) + z1(uc , θc , ψ) tan λp = 0. (25.3.3)

Equations (25.3.1) and (25.3.3) yield

F (uc , θc , ψ) = 0. (25.3.4)

The system of Eqs. (25.3.2) and (25.3.4) represents two relations for the set of three
parameters (uc , θc , ψ). Choosing one of the three parameters as the input one, say θc ,
we can determine the coordinates x1(θc ), z�

1(θc ) of the flyblade profile. The following is
the application of the computational procedures described above for the determination
of flyblade profiles.
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25.4 WORKING EQUATIONS

ZA (Archimedes) Worm
The surface side I of the worm thread (dashed line in Fig. 25.1.1) for the right-hand
worm is represented by the equations (see Section 19.4)

x1 = u cos α cos θ

y1 = u cos α sin θ

z1 = −u sin α +
(
rp tan α − sp

2

)
+ pθ + pax

2

(25.4.1)

where the nominal value of sp = pax/2. The normal to the worm thread is determined
with the equations

Nx1 = −(p sin θ + u sin α cos θ )

Ny1 = (p cos θ − u sin α sin θ)

Nz1 = −u cos α.

(25.4.2)

Following the previously described procedure of derivations, we obtain

u(θ ) =
−
(
rp tan α + sp

2
+ pθ

)
(sin θ cot λp − tan α) cos α

(25.4.3)

x1(θ ) = u(θ ) cos α cos θ, z�
1 = −u(θ ) cos α sin θ

sin λp
. (25.4.4)

Equations (25.4.3) and (25.4.4) enable us to determine the profile of the flyblade. The
range of θ for computations is determined with Eqs. (25.2.6) and (25.2.7). The starting
value of θ for computations by application of Eq. (25.4.3) is θ = 0. The upper fillet is
determined as described in Section 25.2.

ZN (Convolute) Worm
The surface side I of the thread for the right-hand worms is represented as (see Section
19.5)

x1 = ρ sin(θ + µ) + u cos δ cos(θ + µ)

y1 = −ρ cos(θ + µ) + u cos δ sin(θ + µ)

z1 = ρ
cos α cot λp

cos δ
− u sin δ + pθ + pax

2

(25.4.5)

where the x1 axis is the axis of symmetry of the thread. We recall that the worm surface
is generated by a straight line that performs the screw motion about the worm axis.
The straight line is tangent to the worm cylinder of radius ρ and the orientation of the
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generating straight line is determined with parameter α. Here,

cos µ = cos α

cos δ
, cos δ = (cos2 α + sin2 α sin2 λp)

1
2

ρ =
(
rp − sp

2
cot α

) sin α sin λp

(cos2 α + sin2 α sin2 λp)
1
2

(see the designations of sp and α in Fig. 19.5.3).
The normal to the worm thread is represented by the equations

Nx1 = −[(p + ρ tan δ) sin(θ + µ) + u sin δ cos(θ + µ)]

Ny1 = (p + ρ tan δ) cos(θ + µ) − u sin δ sin(θ + µ)

Nz1 = −u cos δ.

(25.4.6)

The profile of the flyblade is determined with the following systems of equations:

u =
ρ
[
cos(θ + µ) − cos α

cos δ

]
cot λp − pθ − pax

2
[sin(θ + µ) cot λp − tan δ] cos δ

x1 = ρ sin(θ + µ) + u cos δ cos(θ + µ)

z�
1 = ρ cos(θ + µ) − u cos δ sin(θ + µ)

sin λp
.

(25.4.7)

The starting value of θ for computations is θ = 0. The range of θ is determined with
Eqs. (25.2.6) and (25.2.7). The upper fillet is determined as described in Section 25.2.

ZI (Involute) Worm
The surface side I of the thread for the right-hand worm is represented as (see Section
19.6)

x1 = rb cos(θ + µ) + u cos λb sin(θ + µ)

y1 = rb sin(θ + µ) − u cos λb cos(θ + µ)

z1 = −u sin λb + pθ + pax

2
.

(25.4.8)

The surface normal is represented with equations,

Nx1 = − sin λb sin(θ + µ)

Ny1 = sin λb cos(θ + µ)

Nz1 = − cos λb.

(25.4.9)

Here, axis x1 is the axis of symmetry of thread in the y1 = 0 plane, rb is the radius of
the base cylinder, and λb is the radius of the lead angle on the base cylinder. Angle µ is
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determined as

µ = wt

2rp
− inv αt

where wt is the space width (see Fig. 19.6.3).
The flyblade profile is determined with the following equations:

u(θ ) =
rb sin(θ + µ) cot λp + pθ + pax

2
[tan λb + cos(θ + µ) cot λp] cos λb

x1 = rb cos(θ + µ) + u cos λb sin(θ + µ)

z�
1 = −rb sin(θ + µ) − u cos λb cos(θ + µ)

sin λp
.

(25.4.10)

The initial value θ for computations is θ = 0. The range of θ is determined with Eqs.
(25.2.6) and (25.2.7). The upper fillet is determined as described in Section 25.2.

ZK (Klingelnberg) Worm
We remind the reader that the thread surface is generated by a cone surface (see Section
19.7).

The surface side I of the thread of the right-hand worm is represented by the equations

x1 = uc (cos αc cos θc cos ψ + cos αc cos γc sin θc sin ψ

− sin αc sin γc sin ψ) + a sin γc sin ψ + Ec cos ψ

y1 = uc (− cos αc cos θc sin ψ + cos αc cos γc sin θc cos ψ

− sin αc sin γc cos ψ) + a sin γc cos ψ − Ec sin ψ

z1 = uc (sin αc cos γc + cos αc sin γc sin θc ) − pψ − a cos γc + pax

2
.

(25.4.11)

Here,

uc = a sin αc − (Ec sin αc cot γc + p sin αc ) tan θc − (Ec − p cot γc ) cos αc

cos θc
(25.4.12)

where (25.4.12) is the equation of meshing of the tool and the thread surfaces. The
normal to the thread surface is represented by the equations

Nx1 = cos ψ sin αc cos θc + sin ψ(cos γc sin αc sin θc + sin γc cos αc )

Ny1 = − sin ψ sin αc cos θc + cos ψ(cos γc sin αc sin θc + sin γc cos αc )

Nz1 = sin γc sin αc sin θc − cos γc cos αc .

(25.4.13)

Usually, γc = λp. Equation

y1 + z1 tan λp = 0
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yields

F (ψ, uc , θc ) = cos ψ[uc (cos αc cos γc sin θc − sin αc sin γc ) + a sin γc ]

− sin ψ(uc cos αc cos θc + Ec ) − p tan λpψ

+ tan λp

[
uc (sin αc cos γc + cos αc sin γc sin θc )

− a cos γc + pax

2

]
= 0. (25.4.14)

The procedure of computations is as follows:
Step 1: Consider simultaneously the system of nonlinear equations (25.4.12) and

(25.4.14) in the unknowns (ψ, uc , θc ). Solve numerically the above system by func-
tions uc (θc ), ψ(θc ), where θc is the input variable. The first guess for the solution of
Eqs. (25.4.12) and (25.4.14) is based on the following assumptions: θc = π , sin ψ ≈ ψ ,
cos ψ ≈ 1. Then, using Eqs. (25.4.12) and (25.4.14), we obtain

ψ =
pax

2
tan λp

Ec + p tan λp − uc cos αc
(25.4.15)

where

uc = a sin αc + (Ec − p cot γc ) cos αc . (25.4.16)

Step 2: Determine the coordinates x�
1 ≡ x1 and z�

1 of the blade profile using Eqs.
(25.4.17). Here, x�

1 = x1(ψ, uc , θc ) is the first equation of equation system (25.4.11),
and

z�
1 = −[uc (− cos αc cos θc sin ψ + cos αc cos γc sin θc cos ψ

− sin αc sin γc cos ψ) + a sin γc cos ψ − Ec sin ψ]/ sin λp. (25.4.17)

The range of θc for computations is determined with Eqs. (25.2.6) and (25.2.7). The
upper fillet is determined as described in Section 25.2.

F-I (Flender Version I) Worm

Recall that the worm thread surface is the envelope to the family of tool surfaces (see
Section 19.8). The surface side I of the thread for right-hand worms is represented by
the equations (see Section 19.8)

x1 = (ρ sin θc + d)(− cos ν cos ψ + sin ν sin ψ cos γc )

+ (ρ cos θc − b) sin ψ sin γc + Ec cos ψ

y1 = (ρ sin θc + d)(cos ν sin ψ + sin ν cos ψ cos γc )

+ (ρ cos θc − b) cos ψ sin γc − Ec sin ψ

z1 = (ρ sin θc + d) sin ν sin γc + (b − ρ cos θc ) cos γc − pψ + ao + pax

2

(25.4.18)
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where

tan θc = Ec − p cot γc − d cos ν

b cos ν − (Ec cot γc + p) sin ν
. (25.4.19)

Equation (25.4.19) is the equation of meshing of the worm thread surface with the tool
surface. Parameter ao enables us to obtain that the axis of symmetry of the axial section
of the worm space will coincide with the x1 axis. Taking in Eqs. (25.4.18) y1 = 0,
x1 = rp, and z1 = pax/4, we obtain

ao = − (ρ sin θc + d) sin ν sin γc − (b − ρ cos θc ) cos γc + pψ − pax

4
. (25.4.20)

The normal to the worm thread surface is represented by the equations

Nx1 = sin θc (− cos ν cos ψ + sin ν sin ψ cos γc ) + cos θc sin ψ sin γc

Ny1 = sin θc (cos ν sin ψ + sin ν cos ψ cos γc ) + cos θc cos ψ sin γc

Nz1 = sin θc sin ν sin γc − cos θc cos γc .

(25.4.21)

Equation

y1 + z1 tan λp = 0

yields

F (ψ, θc , ν) = cos ψ[(ρ sin θc + d) sin ν cos γc + (ρ cos θc − b) sin γc ]

+ sin ψ[(ρ sin θc + d) cos ν − Ec ] − p tan λpψ

+
[
(ρ sin θc + d) sin ν sin γc + (b − ρ cos θc ) cos γc

+ ao + pax

2

]
tan λp = 0. (25.4.22)

Nonlinear equations (25.4.19) and (25.4.22) relate three unknowns: ν, θc , and ψ .
The procedure for computations of the blade profile is as follows:
Step 1: Using Eq. (25.4.19), we obtain numerically function θc (ν). Equation (25.4.19)

with the input value of ν provides two solutions for θc , but only the solution 0 < θc <

180◦ must be used (see Section 19.8).
Step 2: Knowing the related parameters ν and θc , we can solve Eq. (25.4.22) for ψ .

The first guess for the solution is based on the following considerations:
(i) Taking ν = 0, ρ = rp, and γc = λp, we obtain from Eq. (25.4.19)

tan θc = Ec − p cot λp − d
b

= tan αn.

Thus, θc = αn.
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(ii) Taking sin ψ ≈ ψ , cos ψ ≈ 1, θc = αn, we obtain from Eq. (25.4.22) that the initial
value of ψ is

ψ =

[
(b − ρ cos αn) cos γc + ao + pax

2

]
tan λp + (ρ cos αn − b) sin γc

p tan λp − (ρ sin αn + d − Ec )
(25.4.23)

ψ =

(
a0 + pax

2
sin 2λp

)
2rp

.

Usually, γc = λp and ρ is chosen equal to rp.
Step 3: Knowing the related parameters ν, θc , and ψ and using the first equation

of equation system (25.4.18), we obtain the coordinate x�
1 = x1(ν, θc , ψ) of the blade

profile. The coordinate z�
1(ν, θc , ψ) of the blade profile is represented by the equation

z�
1 = −[(ρ sin θc + d)(cos ν sin ψ + sin ν cos ψ cos γc )

+ (ρ cos θc − b) cos ψ sin γc − Ec sin ψ]/ sin λp. (25.4.24)

The range of ν, θc , and ψ for determination of the coordinates x�
1 and z�

1 is deter-
mined with Eqs. (25.2.6) and (25.2.7). The upper fillet is determined as described in
Section 25.2.

Problem 25.4.1
The surface side I of the thread for the right-hand worm F-I is represented by Eqs.
(25.4.18); x1 is the axis of symmetry of the thread. To avoid pointing of the teeth
of worm-gears, the tooth thickness of the worm on the pitch cylinder is designed as
tp = 0.4pax = 0.4π/Pax.

Figure 25.4.1 shows the profiles of the flyblade for generation of the F-I worm-gear.
The design data of the worm are N1 = 3, rp = 46 mm, axial module max = 8 mm,

Figure 25.4.1: Flyblade for F-I worm-gear.
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ρ = 46 mm, γc = λp = 14◦37′15′′, αn = 20◦, a = rp + ρ sin αn = 61.733 mm, and b =
ρ cos αn = 43.226 mm.

F-II (Flender Version II) Worm
Unlike the F-I worm thread surface, the F-II thread surface is represented in two-
parameter form (but not in three-parameter form). The surface equations are (see Sec-
tion 19.9)

x1 = −ρ(sin θc cos ψ − cos θc sin ψ sin γc ) + a cos ψ

y1 = ρ(sin θc sin ψ + cos θc cos ψ sin γc ) − a sin ψ

z1 = −ρ cos θc cos γc − pψ + ao + pax

2
.

(25.4.25)

To derive the expression for ao, we consider in the axial worm section by plane y1 = 0
the point with coordinates x1 = rp, y1 = 0, z1 = pax/4. Then we obtain

ao = − pax

4
+ ρ cos θc cos γc + pψ. (25.4.26)

The normal to the thread surface is represented by

Nx1 = − sin θc cos ψ + sin γc cos θc sin ψ

Ny1 = sin θc sin ψ + sin γc cos θc cos ψ

Nz1 = − cos γc cos θc .

(25.4.27)

Equation

y1 + z1 tan λp = 0

yields

F (ψ, θc ) = ρ cos θc sin γc cos ψ + (ρ sin θc − a) sin ψ − p tan λpψ

+
(
ao − ρ cos θc cos γc + pax

2

)
tan λp = 0. (25.4.28)

Usually, tan γc = p/a .
The procedure of computations of the blade profile is as follows:
Step 1: Considering θc as the input parameter and solving Eq. (25.4.28) for ψ , we

obtain numerically function ψ(θc ). The first guess for the solution of Eq. (25.4.28) is
based on the following considerations:
(i) We take in Eq. (25.4.28) sin ψ ≈ ψ , cos ψ ≈ 1, and θc ≈ αn.
(ii) Then, we obtain the following expression for the first guess of ψ :

ψ =

[(
ao − ρ cos αn cos γc + pax

2

)
tan λp + ρ cos αn sin γc

]
cos2 λp

rp
. (25.4.29)
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Step 2: The coordinates x�
1 and z�

1 of the blade profile are determined with the equa-
tions

x�
1 = x1 = −ρ(sin θc cos ψ − cos θc sin ψ sin γc ) + a cos ψ

z�
1 = −ρ(sin θc sin ψ + cos θc cos ψ sin γc ) − a sin ψ

sin λp
.

(25.4.30)

The range of ψ and θc for determination of x�
1 and z�

1 is determined with Eqs. (25.2.6)
and (25.2.7).

The upper fillet is determined as described in Section 25.2.
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26 Generation of Surfaces by CNC Machines

26.1 INTRODUCTION

The design of computer controlled machines extended the opportunity for the develop-
ment of gears with a new topology of tooth surfaces. The new topology must provide the
localization of the bearing contact, its stability even for misaligned gear drives, and the
reduction of vibrations caused by transmission errors. The new topology of gear tooth
surfaces can provide a predesigned function of transmission errors of a parabolic type
that will be able to absorb piecewise linear functions of transmission errors caused by
gear misalignment (see Section 9.2). The advantages of new surface topology can be
achieved by application of generating tools of a simple enough shape just because the
computer controlled machine is able to provide properly varied relations between the
motions of the tool and the workpiece.

An additional advantage of application of a computer controlled machine is the pos-
sibility of increasing the precision of the installation of the machine-tool settings. In the
most general case, a computer controlled machine for generation of gear tooth surfaces
must have six degrees-of-freedom. Five of these degrees-of-freedom are necessary for the
control of related motions of the tool and the workpiece. The sixth degree-of-freedom
is required to provide the desired velocity of cutting (grinding) and is not related to the
process of surface generation.

In the following sections of this chapter we consider three cases of generation of the
workpiece surface �p by the given tool surface �t :

(i) Surfaces �t and �p are in continuous tangency and they contact each other at every
instant at a point but not at a line.

(ii) Surfaces �t and �p are in continuous tangency and they contact each other at
every instant at a line. Surface �p is generated in this case as the envelope to the
family of surfaces �t . The family of surfaces is generated in relative motion of
�t to �p.

(iii) An approximate method is developed for generation of a surface �g (ground or
cut) with an optimal approximation to the ideal surface �p.

An example of case 1 is the generation, for instance, of a die designated for forging
of a gear. Generation of conventional spiral bevel gears and hypoid gears by the CNC

746
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Figure 26.2.1: Schematic of “Phoenix” machine.

machine is the example of case 2 of generation. Case 3 is the basic idea for a new method
for surface generation discussed in Section 26.4.

26.2 EXECUTION OF MOTIONS OF CNC MACHINES

Schematic of “Phoenix” CNC Machine
The “Phoenix” CNC machine (Fig. 26.2.1) was designed by the Gleason Works for
generation of spiral bevel gears and hypoid gears. The machine is provided with six
degrees-of-freedom for three rotational motions, and three translational motions. The
translational motions are performed in three mutually perpendicular directions. Two
rotational motions are provided as rotation of the workpiece and the rotation that
enables the machine to change the angle between the axes of the workpiece and the
tool. The third rotational motion is provided as rotation of the tool about its axis
and generally is not related to the process of generation. The motions of the other five
degrees-of-freedom are provided as related motions in the process of surface generation.

Coordinate Systems Applied for “Phoenix” CNC machine
Coordinate systems St (xt , yt , zt ) and Sp (xp, yp, z p) are rigidly connected to the tool
and the workpiece, respectively (Fig. 26.2.2). For further discussion, we distinguish
four reference frames designated in Fig. 26.2.1 as I , II, III, and IV. The reference
frame IV is the fixed one (it is the housing of the machine). Reference frames I, II,
and III perform translations in three mutually perpendicular directions, respectively.
We designate coordinate systems Sh and Sm that represent reference frames I and III,
respectively (Figs. 26.2.1 and 26.2.2). Coordinate axes of Sh and Sm are parallel to each
other and the location of Sh with respect to Sm is represented by (x(Oh )

m , y(Oh )
m , and z(Oh )

m ).
Coordinate system St performs rotational motion with respect to Sh about the zh axis.
To describe the coordinate transformation from Sm to Sp, we use coordinate systems Se

and Sd (Fig. 26.2.2).
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Figure 26.2.2: Coordinate systems applied to the “Phoenix” machine.

Coordinate system Se performs rotational motion with respect to Sm about the ym

axis. Coordinate axes of system Sd are parallel to the respective axes of Se ; the loca-
tion of origin Od with respect to Oe is determined with the parameter x(Od )

e = const.
Coordinate system Sp performs rotational motion with respect to Sd about the xd axis.

Schematic of “Star” CNC Machine
We consider the version of a “Star” CNC machine that is provided with six degrees-of-
freedom (Fig. 26.2.3). Coordinate systems St (xt , yt , zt ), Sp (xp, yp, z p), and Sf (x f ,
y f , z f ) are rigidly connected to the tool, workpiece, and frame, respectively. Coordinate
system Sd is parallel to system S f and the location of Sd with respect to Sf is represented
in S f by (x(Od )

f , 0, 0). Coordinate system Se performs rotational motion with respect to
Sd about the yd axis. Coordinate system Sh is parallel to Se and the location of Sh with
respect to Se is represented in Se by (0, y(Oh )

e , z(Oh )
e ). Coordinate system St performs

rotational motion with respect to the fixed coordinate system S f about the x f axis.
Altogether there are three translational motions along axes x f , ye , and ze and three
rotational motions about axes x f , yd , and xh.

Basic Principle of Execution of Motions
Consider that the location and orientation of the tool with respect to the workpiece
are given in coordinate systems that are represented for a conventional generator (see
below) or for an abstract process for generation. Our goal is to develop the algorithm for
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Figure 26.2.3: Schematic of “Star” CNC machine.

the execution of motions of the CNC machine using the initial information mentioned
above. Goldrich [1989] has used for this purpose the existence of a common trihedron
for the two pairs of coordinate systems (S (C)

t , S (C)
p ) and (S (G)

t , S (G)
p ) that are applied for

the CNC machine and for the generating process, respectively. The approach used in
this chapter is as follows:

(i) Consider that 4 × 4 matrices M(k)
pt and 3 × 3 matrices L(k)

pt (k = C, G) have been
derived. The superscripts “C” and “G” indicate the CNC machine and the abstract
generating process, respectively.

(ii) The matrix equality

L(C)
pt = L(G)

pt (26.2.1)

provides the same orientation of S (k)
t with respect to S (k)

p (k = C, G) in both refer-
ence frames.

(iii) The matrix equality

M(C)
pt [0 0 0 1]T = M(G)

pt [0 0 0 1]T (26.2.2)

provides the same position vector (OpOt ) for both reference frames.

The application of Eqs. (26.2.1) and (26.2.2) for the execution of motions of the
Phoenix machine is considered for the two following cases: (i) a hypoid pinion is gen-
erated by application of a conventional generator, and (ii) a surface �g with optimal
approximation to the ideal surface �p is generated.
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Derivation of Matrix L(C)
pt and Position Vector (OtOp)(C)

p

Using a routine procedure for coordinate transformations, we obtain

L(C)
pt (µ, φ, ψ) = Lpd(ψ)LdeLem(φ)LmhLht (µ)

=



cos µ cos φ − sin µ cos φ sin φ

− cos µ sin φ sin ψ sin µ sin φ sin ψ cos φ sin ψ

+ sin µ cos ψ + cos µ cos ψ

− cos µ sin φ cos ψ sin µ sin φ cos ψ cos φ cos ψ

− sin µ sin ψ − cos µ sin ψ


. (26.2.3)

We note that Lde and Lmh are unitary matrices.
The derivation of the position vector (OtOp)(C) in Sp is based on the following

considerations:

(i)

(OmOt )(C)
p + (OtOp)(C)

p = (OmOp)(C)
p .

Thus,

(OtOp)(C)
p = (OmOp)(C)

p − (OmOt )(C)
p = (OeOd)(C)

p − (OmOh)(C)
p

= x(Od )
e (ie )p − x(Oh )

m (im)p − y(Oh )
m (jm)p − z(Oh )

m (km)p. (26.2.4)

Here, x(Od )
e = const; x(Oh )

m , y(Oh )
m , and z(Oh )

m are considered as algebraic values.
(ii) Vector (OtOp)(C) can be represented in coordinate system S (C)

p with the matrix
equation

(OtOp)(C)
p = x(Od )

e ip − x(Oh )
m Lpm[1 0 0]T

− y(Oh )
m Lpm[0 1 0]T − z(Oh )

m Lpm[0 0 1]T (26.2.5)

where Lpm = LpdLdeLem (Lde is a unitary matrix).
Equation (26.2.5) yields

(OtOp)(C)
p =


x(Od )

e − x(Oh )
m cos φ − z(Oh )

m sin φ

x(Oh )
m sin φ sin ψ − y(Oh )

m cos ψ − z(Oh )
m cos φ sin ψ

x(Oh )
m sin φ cos ψ + y(Oh )

m sin ψ − z(Oh )
m cos φ cos ψ

 . (26.2.6)

26.3 GENERATION OF HYPOID PINION

Derivation of L(G)
pt and (OtOp)(G)

The generation of a hypoid pinion by a conventional generator was described in Chapter
22. The coordinate systems applied for the CNC machine are represented in Fig. 26.2.2.
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The performed coordinate transformation yields

(Lpt )(G) = [akl (q)] (k = 1, 2, 3; l = 1, 2, 3). (26.3.1)

Here,

a11 = cos i cos γm sin(q − j ) − sin i sin γm

a12 = − cos(q − j ) cos γm

a13 = sin i cos γm sin(q − j ) + cos i sin γm

a21 = cos i sin γm sin φp sin(q − j ) + cos i cos(q − j ) cos φp

+ sin i cos γm sin φp

a22 = − cos(q − j ) sin γm sin φp + sin(q − j ) cos φp

a23 = sin i sin γm sin φp sin(q − j ) + sin i cos(q − j ) cos φp

− cos i sin γm sin φp

a31 = − cos i sin γm cos φp sin(q − j ) + cos i cos(q − j ) sin φp

− sin i cos γm cos φp

a32 = sin γm cos φp cos(q − j ) + sin(q − j ) sin φp

a33 = − sin i sin γm sin(q − j ) cos φp + sin i cos(q − j ) sin φp

+ cos i cos γm cos φp.

(26.3.2)

The variable parameters q and φp are related and therefore the coefficients akl (k =
1, 2, 3; l = 1, 2, 3) are functions of q.

The position vector (Ot Op)(G)
p is represented as follows:

(OtOp)(G)
p = −(Mpt )(G)[0 0 0 1]T

= −



SR cos q cos γm − �B sin γm − �A

−SR (sin q cos φp − cos q sin γm sin φp)

+ Em cos φp + �B cos γm sin φp

−SR (sin q sin φp + cos q sin γm cos φp)

+ Em sin φp − �B cos γm cos φp

1


= −



a14(q)

a24(q)

a34(q)

1


. (26.3.3)

Execution of Motions of CNC Machine
Matrix equality (26.2.1) provides nine dependent equations for determination of func-
tions φ(q), ψ(q), and µ(q). We can determine these functions using the following pro-
cedure:

Step 1: Determination of φ.

sin φ = a13(q). (26.3.4)

This equation provides two solutions for φ; the smaller value of φ can be chosen.
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Step 2: Determination of ψ .

cos φ sin ψ = a23(q), cos φ cos ψ = a33(q). (26.3.5)

These equations provide a unique solution for ψ , considering φ as given.
Step 3: Determination of µ.

cos µ cos φ = a11(q), − sin µ cos φ = a12(q). (26.3.6)

These equations provide a unique solution for µ, considering φ as given.
In the case of generation of a face-milled hypoid pinion, a tool with a conical surface

is applied. The tool surface is a surface of revolution; the rotation of the tool about its
axis is not related to µ. Functions (26.3.6) must be applied and executed only in the
case of generation of a face-hobbed hypoid pinion, which is cut by a blade.

Vector equality

(OtOp)(G)
p = (OtOp)(C)

p (26.3.7)

enables us to determine functions x(Oh )
m (q), y(Oh )

m (q), and z(Oh )
m (q). Equations (26.2.6),

(26.3.3), and (26.3.7) considered simultaneously represent a system of three linear equa-
tions in the unknowns x(Oh )

m , y(Oh )
m , and z(Oh )

m . The solution to these equations enables
us to determine the translational motions on the CNC machine.

26.4 GENERATION OF A SURFACE WITH OPTIMAL APPROXIMATION

Introduction
This section is based on the research accomplished by Litvin, Chen, Zhang, Krenzer,
and Handschuh [1993a], and is directed at generation of a surface (�g ) that must be in
optimal approximation to the theoretical (ideal) surface �p.

The method for generation of �g is based on the following ideas:

(1) A mean line Lm on the ideal surface �p is chosen as shown in Fig. 26.4.1.
(2) The tool surface �t is a properly designed surface of revolution (in particular cases

�t is a circular cone as shown in Fig. 26.4.1) that moves along Lm. Surfaces �t

and �p are in continuous tangency along Lm; M is the current point of tangency
(Fig. 26.4.1). The orientation of �t with respect to �p (determined with angle β)
is continuously varying. Angle β at current point M of tangency is formed by the
tangents t f and tb to Lm and the tool generatrix, respectively (Fig. 26.4.1). Tangents
t f and tb form plane � that is tangent to �t and �p at point M.

(3) The tool surface �t in its motion with respect to �p swept out a region of space as
a family of surfaces �t . The envelope to the family of �t is surface �g (the ground,
cut surface) that is in tangency with the theoretical surface �p at any point M
of Lm and must be in optimal approximation to �p in any direction that differs
from Lm.

(4) The optimal approximation of �g to �p is obtained by variation of angle β

(Fig. 26.4.1).
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Figure 26.4.1: Installment and orientation
of tool surface �t with respect to ideal sur-
face �p.

(5) The continuous tangency of tool surface �t with �p and properly varied orien-
tation of �t can be obtained by the execution of required motions of the tool by
a computer controlled multidegree-of-freedom machine. One of these degrees of
freedom, rotation of the tool about its axis, provides the desired velocity of grinding
(cutting) and is not related to the process for generation of �g .

This section covers the following topics:

(i) Determination of the equation of meshing between the tool surface �t and the
generated surface �g . The equation of meshing provides the necessary condition
of existence of the envelope to the family of surfaces.

(ii) Determination of generated surface �g as the envelope to the family of surfaces �t

swept out by the tool. Surface �g coincides with the theoretical (ideal) surface �p

along the mean line Lm and deviates from �p out of Lm.
(iii) Determination of deviations of �g from �p (in regions that differ from Lm) and

minimizations of deviations for optimal approximation of �g to �p.
(iv) Determination of curvatures of �g that are required when the simulation of meshing

and contact of two mating surfaces are considered.
(v) Execution of required motions of �t with respect to �p by application of a

multidegree-of-freedom, computer numerically controlled machine.

An effective approach for the derivation of the necessary condition of the envelope �g

existence is discussed. This method is based on the idea of motion of the Darboux–Frenet
trihedron along Lm, the chosen mean line of �p. An additional effective approach for
determination of curvatures of generated surface �g is discussed as well. This approach
is based on the fact that the normal curvatures and surface torsions (geodesic torsions)
of �g are (i) equal to the normal curvatures and surface torsions of �p along Lm, and
(ii) equal to the normal curvatures and surface torsions of tool surface �t along the
characteristic Lg (the instantaneous line of tangency of �t and �g ).
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Mean Line on Ideal Surface Σp

The ideal surface �p is considered as a regular one and is represented as

rp(up, θp) ∈ C2,
∂rp

∂up
× ∂rp

∂θp
�= 0, (up, θp) ∈ E (26.4.1)

where (u p, θp) are the Gaussian coordinates of �p. The unit normal to �p is represented
as

np = Np∣∣Np
∣∣ , Np = ∂rp

∂up
× ∂rp

∂θp
. (26.4.2)

The determination of the mean line on Lm is based on the following procedure:

(i) Initially, we determine numerically n points on surface �p that will belong approx-
imately to the desired mean line Lm.

(ii) Then, we can derive a polynomial function

upi (θpi ) =
n∑

j=1

aj θ
(n− j )
pi (i = 1, . . . , n) (26.4.3)

that will relate surface parameters (up, θp) for the n points of the mean line on �p.

The mean line Lm, tangent Tp, and unit tangent tp to the mean line are represented
as follows:

rp(u p(θp), θp), Tp = ∂rp

∂θp
+ ∂rp

∂up

dup

dθp
, tp = Tp∣∣Tp

∣∣ . (26.4.4)

The constraint for tp is that it must be of the same sign and differ from zero at the same
intervals of interpolation.

Tool Surface
The tool surface �t is represented in coordinate system St rigidly connected to the tool
by the following equations:

xt = xt (ut ) cos θt , yt = xt (ut ) sin θt , zt = zt (ut ). (26.4.5)

The axial section of �t obtained by taking θt = 0 represents a circular arc, or a straight
line in the case when �t is a circular cone. The surface of the tool is formed by rotation
of the axial section of �t about the zt axis. The surface unit normal is determined as

nt = Nt

|Nt| , Nt = ∂rt

∂θt
× ∂rt

∂ut
. (26.4.6)

Equation of Meshing Between Σt and Σg

The equation of meshing represents the necessary condition of existence of envelope
�g to the family of surfaces �t that is swept out by the tool surface �t . Recall that the
equation of meshing can be derived by using the equation (see Chapter 6)

N(t)
i · v(tg)

i = 0. (26.4.7)
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Figure 26.4.2: Tool surface �t .

Here, i indicates the coordinate system Si where the vectors of the scalar product are
represented; N(t) is the normal to surface �t ; v(tg) is the relative velocity in the motion
of �t with respect to �g .

Henceforth, we consider two basic coordinate systems, St and Sp, that are rigidly
connected to the tool surface �t and the ideal surface �p. In addition, we consider two
trihedrons: Sb(tb, db, nb) and S f (t f , d f , n f ). Trihedron Sb is rigidly connected to �t and
coordinate system St (Fig. 26.4.2). Here, Ob is the point of the chosen generatrix of �t

where the trihedron is located; tb is the unit tangent to the generatrix at Ob; nb is the
surface unit normal of �t at Ob; db = nb × tb; vectors tb and db form the tangent plane
to �t at Ob. Trihedron Sf moves along the mean line Lm (Fig. 26.4.3); t f is the tangent

Figure 26.4.3: Orientation of trihedron Sb with respect to S f .
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Figure 26.4.4: Surface of grinding tool cone.

to the mean line Lm at current point M (Fig. 26.4.3); n f is the surface unit normal
to �p at point M; d f = n f × t f ; vectors t f and d f form the tangent plane to �p at
point M.

The tool with surface �t and trihedron St moves along mean line Lm of �p, and Ob

coincides with current point M of mean line Lm. Surfaces �t and �p are in tangency
at any current point M of mean line Lm. The orientation of Sb with respect to Sf is
determined with angle β that is varied in the process for generation (Fig. 26.4.3).

We start the derivations with the case when �t is a circular cone (Fig. 26.4.4). The
angular velocity ω f of rotation of Sf with respect to Sp is represented as (see Chapter 7)

ω f = (tt f − knd f + kgn f
)ds

dt
. (26.4.8)

Here, t is the surface torsion (geodesic torsion), kn and kg are the normal and geodesic
curvatures of surface �p at current point M of mean line Lm, and ds is the infinitesimal
displacement along Lm.

The angular velocity Ω f of trihedron Sb is represented in S f as

Ω f = ω f + dβ

dt
n f =

[
t −kn kg + dβ

ds

]T ds
dt

. (26.4.9)

The orientation of cone �t is determined by function β(θp) and

dβ

ds
= dβ

dθp

dθp

ds
=
(

dβ

dθp

)
1∣∣Tp
∣∣ (26.4.10)

where Tp is the tangent to the mean line Lm at current point M.
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The transformations of vector components in transition from St to Sb and Sb to Sf

are represented by 3 × 3 matrix operators Lbt and Lf b. Here,

L f b =


cos β − sin β 0

sin β cos β 0

0 0 1

 (26.4.11)

Lbt =


sin γt cos θt sin γt sin θt cos γt

sin θt −cos θt 0

cos γt cos θt cos γt sin θt −sin γt

 . (26.4.12)

The conical surface �t is represented in St as (Fig. 26.4.4)

rt = ut [sin γt cos θt sin γt sin θt cos γt ]
T (26.4.13)

where (ut , θt ) are the surface parameters and γt is the cone apex angle. The unit normal
to the conical surface is

nt = ut [cos γt cos θt cos γt sin θt −sin γt ]
T. (26.4.14)

The sought-for equation of meshing (necessary condition of existence of envelope �g )
is represented in the form

n(t)
f · v(tg)

f = 0 (26.4.15)

where

n(t)
f = L f tnt . (26.4.16)

The derivation of expression v(tg)
f is simplified while taking into account the following

considerations:

(a) The relative velocity vector v(tg)
f can be represented as

v(tg)
f = Ω(s )

f r(t)
f + ds

dt
t f . (26.4.17)

Here, Ω(s )
f is the skew-symmetric matrix represented as

Ω(s )
f =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (26.4.18)

Vector Ω f is represented by

Ω f = ω1t f + ω2d f + ω3n f =
[

t −kn kg + dβ

ds

]T ds
dt

. (26.4.19)
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(b) Consider that point N on surface �t is the point of the characteristic (the line of
tangency of �t and the generated surface �g ). Certainly, the equation of meshing
must be satisfied for point N . The position vector Of N can be represented as

Of N = Ot N − Ot Of . (26.4.20)

Here, OtN is the position vector of point N that is drawn from the origin Ot of
St to N ; vector OtN is represented in St as

OtN = utet = ut (sin γt cos θt it + sin γt sin θt jt + cos γt kt ) (26.4.21)

where

et =
∂

∂ut
(rt )∣∣∣∣ ∂

∂ut
(rt )
∣∣∣∣ (26.4.22)

is the unit vector of cone generatrix O f N . Vector Ot Of (Fig. 26.4.3) is represented
in Sb as

OtOf = lt ib (26.4.23)

where lt = ∣∣OtOf
∣∣. Vector O f N is represented in Sf using the matrix equation

r(t)
f = utL f tet − ltL f bib. (26.4.24)

(c) We represent now the equation of meshing as

n(t)
f · v(tg)

f = n(t)
f · [Ω(s )

f (utL f tet − ltL f bib)
]+ (n(t)

f · t f
)ds

dt
. (26.4.25)

(d) The further simplification of the equation of meshing is based on the following rule
for operations with skew-symmetric matrices [Goldstein, 1950]:

ATB(s )A = C(s ). (26.4.26)

Here, B(s ) and C(s ) designate skew-symmetric matrices, and AT is the transpose
matrix for A.

Considering that elements of B(s ) are represented in terms of components of vector

b = [b1 b2 b3]T, (26.4.27)

we obtain that the elements of skew-symmetric matrix C(s ) are represented in terms of
components of vector c, where

[ c1 c2 c3 ]T = AT[ b1 b2 b3 ]T. (26.4.28)

Using the above considerations and eliminating ds/dt , the final expression of the
equation of meshing can be represented as

n(t)
f · v(tg)

f = f (ut , θt , θp) = utnT
t A(s )et − ltnT

b B(s )ib + nT
t LT

f t t f = 0. (26.4.29)
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Here,

A(s ) ds
dt

= LT
f tΩ

(s )
f L f t , B(s ) ds

dt
= LT

f bΩ
(s )
f L f b (26.4.30)

A(s ) =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (26.4.31)


a1

a2

a3

 = −


t cos β sin γt − kn sin β sin γt +

(
kg + dβ

ds

)
cos γt

t sin β + kn cos β

t cos β cos γt − kn sin β cos γt −
(

kg + dβ

ds

)
sin γt

 (26.4.32)

B(s ) =


0 −b3 b2

b3 0 −b1

−b2 b1 0

 ,


b1

b2

b3

 =


t cos β − kn sin β

−t sin β − kn cos β(
kg + dβ

ds

)
 . (26.4.33)

The family of characteristics Lg , the instantaneous lines of tangency of �t and �g , is
represented in St by the equations

rt = rt (ut , θt ), f (ut , θt , θp) = 0 (26.4.34)

where θp is the parameter of the family of Lg . Taking θp = θ
(i )
p (i = 1, 2, . . . , n), we

obtain the current characteristics on surface �t .
It is easy to verify that the equation of meshing between �t and �g is satisfied for

the current point M of mean line Lm on the ideal surface �p. This means that the
characteristic Lg intersects Lm at point M, for which we can take θt = 0 because �t is
a surface of revolution. In the case when �t is a circular cone (Fig. 26.4.4), we can take
for point M that ut = |Ot Ob| = lt . This approach for the derivation of the equation of
meshing can be easily extended for application in the more general case when the tool
surface is a general surface of revolution.

Determination of Generated Surface Σg

The ground surface �g is generated as the envelope to the family of tool surface �t ;
surface �g is represented in Sp by the following equations:

r(p)
g (u p(θp), θp, ut , θt ) = Lpf r(t)

f + r(M)
p (u p(θp), θp), f (ut , θt , θp) = 0. (26.4.35)

Here, f (ut , θt , θp) = 0 is the equation of meshing; r(t)
f (ut , θt ) is the equation of tool

surface �t represented in S f ; r(M)
p (u p(θp), θp) is the vector function that represents in S p

the mean line Lm; the 3 × 3 matrix operator Lpf which transforms vectors in transition
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from Sf to Sp is represented as

Lpf =


tpx dpx npx

tpy dpy npy

tpz dpz npz

 (26.4.36)

where

tp =
∂

∂θp

(
r(M)

p

)
∣∣∣∣ ∂

∂θp

(
r(M)

p

)∣∣∣∣ (26.4.37)

is the unit tangent to the mean line Lm,

np = ±
∂rp

∂up
× ∂rp

∂θp∣∣∣∣ ∂rp

∂up
× ∂rp

∂θp

∣∣∣∣ (26.4.38)

dp = np × tp. (26.4.39)

The sign chosen in Eq. (26.4.38) must provide the direction of np toward the surface
“body.”

Equations (26.4.35) represent in Sp the generated surface �g in three-parameter form
but with related parameters. Parameter ut is linear in the equation of meshing when �t

is a cone, therefore this parameter can be eliminated and the generated surface �g can
be represented in Sp as

r(g)
p = rg = rg (θp, θt ). (26.4.40)

Recall that surfaces �g and �p have a common line Lm where they are in tangency.
Surface �g is in tangency with �t along the instantaneous contact line Lg that passes
through current point M of line Lm. The tangents to Lg and Lm lie in the plane that
passes through M and is tangent to three surfaces (�p, �g , and �t ) simultaneously.

Optimal Approximation of Generated Surface Σg to Ideal Surface Σp

The procedure of optimal approximation of �g to �p is divided into the following
stages: (i) design of the grid on �p, the net of points, where the deviation of �g from �p

will be determined; (ii) determination of initial function β (1)(θp) for the first iteration;
angle β determines the orientation of the tool surface �t with respect to �p (Figs. 26.4.1
and 26.4.3); (iii) determination of deviations of �g from �p with the initial function
β(1)(θp); and (iv) optimal minimization of deviations.

GRID ON SURFACE Σp. Figure 26.4.5(a) shows the grid on surface �p, the net of
(n, m) points, where the deviations of �g from �p are considered. The position vector
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Figure 26.4.5: Grid on surface �p.

is Op Qi j = r(i, j )
p [Fig. 26.4.5(b)]. The computation is based on the following proce-

dure:

(i) The desired components Li, j and Ri, j of the position vector r(i, j )
p are considered as

known.
(ii) Taking into account that

Li, j = z(i, j )
p , R2

i, j = [x(i, j )
p (u p, θp)

]2 + [y(i, j )
p (u p, θp)

]2
, (26.4.41)

we will obtain the surface �p parameters (u(i, j )
p , θ

(i, j )
p ) for each grid point.

DETERMINATION OF INITIAL FUNCTION β(1) (θp). The determination of β (1)(θp) is based
on the following idea: the instantaneous direction of tb (the tool generatrix) with respect
to tangent t f to the mean line Lm (Fig. 26.4.1) must provide the minimal value |k(r )

n |.
Here, k(r )

n is the relative normal curvature determined as

k(r )
n = k(t)

n − k(p)
n (26.4.42)
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where k(t)
n and k(p)

n are the normal curvatures of surfaces �t and �p along tb. In the
case of nondevelopable ruled surface �p, vector tb can be directed along the asymptote
of �p.

The requirement that |k(r )
n | be minimal enables us to determine function β (1)(θp) nu-

merically. Because we need for further computations the derivative dβ/dθp, function
β(1)(θp) is represented as a polynomial function that must satisfy the numerical data
obtained for the chosen points of mean line Lm.

DETERMINATION OF DEVIATIONS OF Σg FROM Σp. We are able at this stage of our inves-
tigation to determine the equation of meshing between surfaces �t and �g , and surface
�g as previously discussed. The computation of deviations of �g from �p at the grid
points is based on the following considerations:

(i) Surfaces �p and �g are represented in the same coordinate system (Sp) by the
vector functions

rp(up, θp), rg (θg , θt ). (26.4.43)

Parameter θg of surface �g determines the location of the current point on the mean
line of surface �g .

(ii) The position vector r(i, j )
p and surface coordinates (u(i, j )

p , θ
(i, j )
p ) are known for each

point Q(i, j )
p of the grid on surface �p.

(iii) Point Q(i, j )
g on surface �g corresponds to point Q(i, j )

p on surface �p. The surface �g

parameters (θ (i, j )
g , θ

(i, j )
t ) can be determined by using the following two equations:

y(i, j )
g
(
θ

(i, j )
g , θ

(i, j )
t
) = y(i, j )

p
(
u(i, j )

p , θ
(i, j )
p
)

z(i, j )
g
(
θ

(i, j )
g , θ

(i, j )
t
) = z(i, j )

p
(
u(i, j )

p , θ
(i, j )
p
)
.

(26.4.44)

(iv) Due to deviations of �g from �p, we have that x(i, j )
g �= x(i, j )

p . The deviation of �g

from �p at the grid point Q(i, j )
p is determined by the equation

δi, j = n(i, j )
p · (r(i, j )

g − r(i, j )
p

)
(26.4.45)

where n(i, j )
p is the unit normal to surface �p at the grid point Q(i, j )

p .

The deviation δi, j can be positive or negative. We designate as positive such a deviation
when δi, j > 0 considering that n(i, j )

p is directed into the “body” of surface �p. Positive
deviations of �g with respect to �p provide that �g is inside of �p and surface �g is
“crowned.”

It is not excluded that initially the inequality δi, j > 0 is not yet observed for all points
of the grid. Positive deviations δi, j can be provided choosing the following options:

(1) Choosing a surface of revolution with a circular arc in the axial section instead of
a circular cone; a proper radius of the circular arc must be determined.

(2) Changing parameter lt = |Ot Ob| (Fig. 26.4.3); this means that the grinding cone
will be displaced along tb with respect to the mean line Lm.

(3) Varying the initially chosen function β (1)(θp).
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Figure 26.4.6: Determination of maximal
deviations along line Lgk.

MINIMIZATION OF DEVIATIONS δi, j . Consider that deviations δi, j (i = 1, . . . , n; j =
1, . . . , m) of �g with respect to �p have been determined at the (n, m) grid points. The
minimization of deviations can be obtained by corrections of previously obtained func-
tion β(1)(θp). The correction of angle β is equivalent to the correction of the angle that
is formed by the principal directions on surfaces �t and �g . The correction of angle β

can be achieved by turning of the tool about the common normal to surfaces �t and
�p at their instantaneous point of tangency Mk.

The minimization of deviations δi, j is based on the following procedure:
Step 1: Consider the characteristic Lgk, the line of contact between surfaces �t and

�g , that passes through current point Mk of mean line Lm on surface �p (Fig. 26.4.6).
Determine the deviations δk between �t and �p along line Lgk and find out the maximal
deviations designated as δ

(1)
kmax and δ

(2)
kmax. Points of Lgk where the deviations are maximal

are designated as N (1)
k and N (2)

k . These points are determined in regions I and II of surface
�g with line Lm as the border. The simultaneous consideration of maximal deviations
in both regions enables us to minimize the deviations for the whole surface �g .

Note. The deviations of �t from �p along Lgk are simultaneously the deviations of
�g from �p along Lgk because Lgk is the line of tangency of �t and �g .

Step 2: The minimization of deviations is accomplished by correction of angle βk that
is determined at point Mk (Fig. 26.4.6). The minimization of deviations is performed lo-
cally, for a piece k of surface �g with the characteristic Lgk. The process of minimization
is a computerized iterative process based on the following considerations:
(i) The objective function is represented as

Fk = min
(
δ

(1)
kmax + δ

(2)
kmax

)
(26.4.46)

with the constraint δi, j ≥ 0.
(ii) The variable of the objective function is �βk. Then, considering the angle

β
(2)
k = β

(1)
k + �βk (26.4.47)

and using the equation of meshing with βk, we can determine the new characteristic,
the piece of envelope �

(k)
g , and the new deviations. The applied iterations provide
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the sought-for objective function. The final correction of angle βk we designate
as β

(opt)
k .

Note 1. The new contact line L(2)
gk (determined with β

(2)
k ) slightly differs from the real

contact line because the derivative dβ
(1)
k /ds but not dβ

(2)
k /ds is used for determination

L(2)
gk . However, L(2)

gk is very close to the real contact line.

Step 3: The discussed procedure must be performed for the set of pieces of surfaces
�g with the characteristic Lgk for each surface piece.

Recall that the deviations for the whole surface must satisfy the inequality δi, j ≥ 0.
The procedure of optimization is illustrated with the flowchart in Fig. 26.4.7.

Curvatures of Ground Surface Σg

The direct determination of curvatures of �g by using surface �g equations is a com-
plicated problem. The solution to this problem can be substantially simplified using the
following conditions proposed by the authors: (i) the normal curvatures and surface
torsions (geodesic torsions) of surfaces �p and �g are equal along line Lm, respectively;
and (ii) the normal curvatures and surface torsions of surfaces �t and �g are equal
along line Lg . This enables us to derive four equations that represent the principal cur-
vatures of surface �g in terms of normal curvatures and surface torsions of �p and �t .
However, only three of these equations are independent (see below).

Further derivations are based on the following equations:

kn = kI cos2 q + kII sin2 q = 1
2

(kI + kII ) + 1
2

(kI − kII ) cos 2q (26.4.48)

t = 0.5(kII − kI ) sin 2q. (26.4.49)

Here, kI and kII are the surface principal curvatures and angle q is formed by unit
vectors eI and e and is measured counterclockwise from eI and e; eI is the principal
direction with principal curvature kI ; e is the unit vector for the direction where the
normal curvature is considered; t is the surface torsion for the direction represented by e.
Equation (26.4.48) is known as the Euler equation. Equation (26.4.49) is known in
differential geometry as the Bonnet–Germain equation (see Chapter 7).

The determination of the principal curvatures and principal directions for �g is based
on the following computational procedure (see Section 7.9):

Step 1: Determination of k(1)
n and t (1) for surface �g at the direction determined by

the tangent to Lm. The determination is based on Eqs. (26.4.48) and (26.4.49) applied
to surface �p. Recall that �p and �g have the same values of k(1)

n and t (1) along the
previously mentioned direction.

Step 2: Determination of k(2)
n and t (2). The designations k(2)

n and t (2) indicate the
normal curvatures of �g and the surface torsion along the tangent to Lg . Recall that
k(2)

n and t (2) are the same for �t and �g along Lg . We determine k(2)
n and t (2) for surface

�t using Eqs. (26.4.48) and (26.4.49), respectively.
Step 3: We consider at this stage of computation that for surface �g the following

are known: k(1)
n and t (1), and k(2)

n and t (2) for two directions with tangents τ 1 and τ 2

that form the known angle µ (Fig. 26.4.8). Our goal is to determine angle q1 (or q2)
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Figure 26.4.7: Flowchart for optimization.

for the principal direction e(g)
I and the principal curvatures k(g)

I and k(g)
II (Fig. 26.4.8).

Using Eqs. (26.4.48) and (26.4.49), we can prove that k(i )
n and t (i ) (i = 1, 2) given for

two directions represented by τ 1 and τ 2 are related with the following equation:

t (1) + t (2)

k(2)
n − k(1)

n

= cot µ (26.4.50)
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Figure 26.4.8: For determination of prin-
cipal directions of generated surface �g .

Step 4: Using Eqs. (26.4.48) and (26.4.49), we can derive the following three equa-
tions for determination of q1, k(g)

I , and k(g)
II :

tan 2q1 = t (1) sin 2µ

t (2) − t (1) cos 2µ
(26.4.51)

k(g)
I = k(1)

n − t (1) tan q1 (26.4.52)

k(g)
I I = k(1)

n + t (1) cot q1. (26.4.53)

Equation (26.4.51) provides two solutions for q1 (q(2)
1 = q(1)

1 + 90◦) and both are cor-
rect. We choose the solution with the smaller value of q1.

Numerical Example: Grinding of an Archimedes Worm Surface
The worm surface shown in Fig. 26.4.9 is a ruled undeveloped surface formed by the
screw motion of straight line K N (|K N | = up). The screw motion is performed in
coordinate system Sp [Fig. 26.4.9(b)]. The to-be-ground surface �p is represented in Sp

as

r p = u p cos α cos θp ip + u p cos α sin θp jp + (pθp − u p sin α) kp (26.4.54)

where u p and θp are the surface parameters.
The surface unit normal is

np = Np

|Np| , Np = ∂rp

∂u p
× ∂rp

∂θp
. (26.4.55)

Thus

np = 1(
u2

p + p2
)0.5


p sin θp + u p sin α cos θp

−p cos θp + u p sin α sin θp

u p cos α

 (provided cos α �= 0). (26.4.56)
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Figure 26.4.9: Surface of an Archimedes worm.

The design data are: number of threads N1 = 2; axial diametral pitch Pax = 8/in;
α = 20◦; the radius of the pitch cylinder is 1.25 in. The remaining design parameters
are determined from the following equations:

(i) The screw parameter is

p = N1

2Pax
= 0.125 in.
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Figure 26.4.10: Deviations of the ground surface �g from ideal surface �p of an Archimedes worm.
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(ii) The lead angle is

tan λp = p
rp

= 0.125
1.25

, λp = 5.7106◦.

The mean line is determined as

rp(um, θp), um =

(
r p + 1

Pax

)
+
(

r p − 1.25
Pax

)
2 cos α

=
rp − 0.125

Pax

cos α
= 1.3136 in.

where 1/Pax and 1.25/Pax determine the addendum and dedendum of the worm.

The worm is ground by a cone with the apex angle γt = 30◦, and outside diameter 8 in.
The inside angle β(1) = −88.0121◦ provides the coincidence of both generatrices of the
cone and the Archimedes worm. The maximal deviation of the ground surface �g from
the ideal surface �p with the above value of β (1) is 3 µm.

The optimal angle β (opt) = −94.6788◦ has been determined by the developed opti-
mization method. The deviations of the ground surface �g from �p with the optimal
β(opt) are positive and the maximal deviation has been reduced to 0.35 µm (Fig. 26.4.10).



P1: GDZ/SPH P2: GDZ

CB672-27 CB672/Litvin CB672/Litvin-v2.cls February 27, 2004 2:49

27 Overwire (Ball) Measurement

27.1 INTRODUCTION

Indirect determination of gear tooth thickness by overwire (ball) measurement has found
broad application. This topic has been the subject of research by many scientists. The
earliest publications dealing with such measurement of worms and spatial gears are
Litvin’s papers and books. Detailed references regarding the history of the performed
research are given in Litvin [1968].

The application of computers and subroutines for the solution of systems of non-
linear equations is a significant step forward in this area that was accomplished by
Litvin et al. [1998b]. This chapter covers the following topics:

(i) Algorithms for determination of location of a wire or a ball placed into the space
of a workpiece with symmetric and nonsymmetric location of tooth surfaces

(ii) Relation between the tooth thickness and overwire measurement – this relation
enables us to use the developed algorithms for a workpiece with various tolerances.

The developed theory was applied for measurement of tooth thickness of worms,
screws, and involute helical gears. Computer programs for this purpose have been de-
veloped.

27.2 PROBLEM DESCRIPTION

Consider that a ball (a wire) is placed into the space of a workpiece (a worm, screw,
or gear). The surfaces of the ball and the workpiece are in tangency at two points
whose location depends on the geometry of the surfaces of the workpiece, the width
of the space, and the diameter of the ball. The surface geometry of the workpiece is
represented analytically and the width of the space and the ball (wire) diameter are
given. Then, we can determine analytically (i) the distance of the center of the ball from
the axis of the workpiece, or (ii) the shortest distance between the axes of the wire and
the workpiece. The measurement over the ball (the wire) and the comparison of the
obtained data with the analytically determined data enable us to find out if the space
width satisfies the requirements.

769
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The following is a description of the analytical approach that has been developed
for the determination of points of tangency of a ball (wire) with the surfaces of the
space of a workpiece. In the most general case there is no symmetry in the location and
orientation of the two surfaces that form the space of the workpiece. This is typical, for
instance, wherein the workpiece is a spiral bevel pinion or a hypoid pinion. Thus, we
have to consider in such a case the simultaneous tangency of the ball or the wire with
both surfaces of the space.

Consider that the two surfaces of the space and the unit normals to the surfaces are
represented by vector equations,

r(i ) = r(i ) (u(i ), θ (i )) (i = 1, 2) (27.2.1)

n(i ) = N(i )

|N(i )| , N(i ) = r(i )
u × r(i )

θ (i = 1, 2) (27.2.2)

where r(i )
u = ∂r(i )/∂u(i ), r(i )

θ = ∂r(i )/∂θ (i ), and (u(i ), θ (i )) are the Gaussian coordinates of
the surface.

The designation (i = 1, 2) indicates the surfaces for both sides of the space. It is
assumed that the surface normal is directed outward from the space, toward the tooth,
and such a direction can be provided by the proper order of cofactors in the cross-
products for N(i ).

Consider that

U = [X Y Z ]T (27.2.3)

is the position vector of center C of the ball, or the point of intersection of both normals
with the wire axis. It is evident from the conditions of force transmissions by the mea-
surement, that both normals to the wire intersect the wire axis at the same point. We
consider that z is the axis of the workpiece, and Z is chosen to determine the location
of point C in a plane that is perpendicular to the axis of the workpiece.

The tangency of the wire (ball) with the surfaces of the space is represented by the
equation (Fig. 27.2.1)

U + ρn(i ) = r(i ) (u(i ), θ (i )) (27.2.4)

where U = [X Y Z]T. This equation yields

X − x(i )
(
u(i ), θ (i )

)
n(i )

x
(
u(i ), θ (i )

) = Y − y(i )
(
u(i ), θ (i )

)
n(i )

y
(
u(i ), θ (i )

)
= Z − z(i )

(
u(i ), θ (i )

)
n(i )

z
(
u(i ), θ (i )

) = −ρ (i = 1, 2) (27.2.5)

where ρ is the radius of the wire (ball).
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Figure 27.2.1: Measurement by a single ball.

Our goal is to determine the distance

R = (X2 + Y2)1/2 (27.2.6)

of point C from the axis of the workpiece. Then, knowing R , we may determine the
overwire (ball) measurement M. Three wires are used for the measurement of worms
and screws, and in this case

M = 2(R + ρ). (27.2.7)

Equation (27.2.7) works for the measurement of a gear with an even number of teeth.
The equation for M, when a gear with an odd number of teeth is measured by two balls,
is represented as (Fig. 27.2.2)

M = 2R
(

cos
90◦

N

)
+ 2ρ (27.2.8)

where N is the number of gear teeth. There is a special approach for determination
of M when a gear with an odd number of teeth is measured by two wires (see Section
27.3).

Procedure of Computation
The procedure of computation for overwire (ball) measurement may be represented as
follows:

Step 1: Equations (27.2.5) represent a system of six equations in six unknowns: X,
Y, u(i ), θ (i ) (i = 1, 2). We may represent this system of equations by a subsystem of
four non-linear equations, and a system of two linear equations. The subsystem of four
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Figure 27.2.2: Measurement by two balls.

nonlinear equations is

Z − z(1)
(
u(1), θ (1)

)
n(1)

z
(
u(1), θ (1)

) = −ρ (27.2.9)

Z − z(2)
(
u(2), θ (2)

)
n(2)

z
(
u(2), θ (2)

) = −ρ (27.2.10)

x(1) (u(1), θ (1))− ρn(1)
x

(
u(1), θ (1)) = x(2) (u(2), θ (2))− ρn(2)

x

(
u(2), θ (2)) (27.2.11)

y(1) (u(1), θ (1))− ρn(1)
y

(
u(1), θ (1)) = y(2) (u(2), θ (2))− ρn(2)

y

(
u(2), θ (2)) . (27.2.12)

Equations (27.2.9) to (27.2.12) considered simultaneously provide the solution for
four unknowns: u(1), θ (1), u(2), and θ (2). A subroutine for the solution of the above system
of four nonlinear equations is required [for instance, we can use the one contained in
the IMSL library [Visual Numerics, Inc., 1998]].

The unknowns X and Y may be determined from the following two linear equations:

X = x(i ) (u(i ), θ (i ))− ρn(i )
x

(
u(i ), θ (i )) (i = 1 or 2) (27.2.13)

Y = y(i ) (u(i ), θ (i ))− ρn(i )
y

(
u(i ), θ (i )) (i = 1 or 2). (27.2.14)

Step 2: We have considered the radius ρ of the ball (the wire) as known. In reality,
we have to determine a value of ρ that satisfies the equation

(R + ρ) − ra = δ. (27.2.15)

Here, ra is the radius of the addendum circle in the plane Z = d, and δ is the desired
difference between (R + ρ) and ra . The proper value of ρ can be determined by variation
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of ρ in Eqs. (27.2.9) to (27.2.15) until the desired value of δ is obtained. Then, an even
value of ρ may finally be chosen, and we can start the computations using Eqs. (27.2.9)
to (27.2.14).

Step 3: The width wt of the space on the reference (pitch circle) rp may vary in
accordance to the prescribed tolerance dwt . The nominal value of M is obtained for the
nominal value of wt . The determination of the ratio dM/dwt in addition to the nominal
value of M enables us to determine the real value of the space width.

Particular Case 1
The surfaces of the space have a plane of symmetry, say Y = 0. Then, we may consider
conditions of tangency of the wire (ball) with one side surface only. Equations (27.2.5)
applied for this case yield

R − x(u, θ )
nx(u, θ )

= −y(u, θ )
ny(u, θ )

= Z − z(u, θ )
nz(u, θ )

= −ρ (27.2.16)

where Z is considered as chosen.
Equations (27.2.16) represent a system of three equations in three unknowns. The so-

lution of a subsystem of two nonlinear equations enables us to determine the unknowns
(u, θ ). Then, we may determine R from the remaining equation that is the linear one
with respect to the unknown R .

Particular Case 2
A screw with asymmetric space surfaces is considered. Both surfaces of the space are
helicoids. A cross section of the screw will coincide with another one after rotating
through a certain angle about the axis of the screw. For this reason, any value of Z can
be chosen in Eqs. (27.2.9) and (27.2.10), for instance, Z = 0.

Particular Case 3
The surfaces of the space are symmetric and they are helicoids. In this case, we can use
Eqs. (27.2.16) and take Z = 0.

27.3 MEASUREMENT OF INVOLUTE WORMS, INVOLUTE HELICAL GEARS,
AND SPUR GEARS

Basic Equations
Equations of involute worms are represented in Section 19.6. Equation (27.2.16) with
Z = 0 yields the following computational procedure:

inv (θ + µ) = inv αt + ρ

rb sin λb
− wt

2rp
(27.3.1)

R = rb

cos(θ + µ)
(27.3.2)

dR = − dwt cos αt

2 sin(θ + µ)
. (27.3.3)
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These equations work for the right-hand and left-hand involute worms and helical gears.
In case of spur gears, we have to take λb = 90o.

Determination of M
In the case of three-wire measurement, M is determined from Eq. (27.2.7). The same
equation is applied for measurement by two balls (wires) of gears with an even number
of teeth. Equation (27.2.8) is applied for the measurement by two balls of helical and
spur gears with an odd number of teeth and for the measurement of spur gears with an
odd number of teeth by two wires. Measurement of helical gears with an odd number
of teeth by two wires is based on the approach developed by Litvin [1968].

Representation of the Unit Vectors of Wire Axes and the Shortest
Distance Between the Axes of Two Wires
Consider that wire 1 is installed into gear space �

(1)
2 . Vectors a(1) and r(1) (Fig. 27.3.1)

represent the unit vector of the wire axis in S2, and the shortest distance between a(1)

and the gear axis, respectively. Here,

r(1)
2 = R i2 (27.3.4)

a(1)
2 = sin βR j2 + cos βR k2 (27.3.5)

cot βR = p
R

(27.3.6)

where p is the screw parameter of the helicoid.
Consider now that wire 2 is installed into the space �

(2)
2 that forms angle γ with the

first space. Angle γ is measured in the plane that is perpendicular to the gear axis.
Here,

γ = π

(
1 ± 1

N

)
where N is the teeth number.

Figure 27.3.1: Location and orientation of
wire 1 in S2.
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We set up two coordinate systems Sa and Sb that are rigidly connected to wire 2.
Coordinate system Sa initially coincides with S2. The installment of wire 2 in Sb is
represented in Sb by equations similar to (27.3.4) and (27.3.5):

r(2)
b = R ib (27.3.7)

a(2)
b = sin βR jb + cos βR kb. (27.3.8)

We may imagine that wire 2 with coordinate systems Sa and Sb performs a screw
motion about the axis of the helical gear that is in tangency with the surfaces of space
�

(2)
2 . Vector of shortest distance r(2)

2 between a(2)
2 and the gear axis, and unit vector a(2)

2
are represented in S2 by the equations

r(2)
2 = M2a Mabr(2)

b , a(2)
2 = L2a Laba(2)

b . (27.3.9)

Matrices M2a and Mab may be derived using Fig. 27.3.2. Figure 27.3.2(a) shows the
orientation of coordinate systems Sa and Sb, one with respect to the other. Coordinate
systems Sa and Sb are rigidly connected, and initially Sa coincides with S2. Figure
27.3.2(b) shows the orientation and location of Sa with respect to S2 after the rotation
through angle φ and the displacement of pφ in the screw motion.

Figure 27.3.2: For derivation of location and ori-
entation of wire 2 in S2.
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Figure 27.3.3: For derivation of shortest distance
between two wires.

Equations (27.3.9) yield

r(2)
2 = R[cos(γ − φ) i2 − sin(γ − φ) j2 + φ cot βRk2] (27.3.10)

a(2)
2 = sin βR sin(γ − φ) i2 + sin βR cos(γ − φ) j2 + cos βR k2. (27.3.11)

The variable parameter φ represents the rotation of wire 2 in its screw motion about
the gear axis.

Determination of the Overwire Measurement M
We may now derive the equation of the unit vector c2 of the shortest distance between
vectors a(1)

2 and a(2)
2 as follows (Fig. 27.3.3):

c2 = a(1)
2 × a(2)

2∣∣a(1)
2 × a(2)

2

∣∣

= 1[
1 + tan2 βR cos2

(
γ − φ

2

)]1/2



sin
(

γ − φ

2

)
cos
(

γ − φ

2

)
− tan βR cos

(
γ − φ

2

)


(

provided sin
(

γ − φ

2

)
�= 0

)
. (27.3.12)

The shortest distance C between the wires is represented as

C(φ) = (r(1)
2 − r(2)

2

) · c2 =
2 sin

(
γ − φ

2

)
+ φ cos

(
γ − φ

2

)
[
1 + tan2 βR cos2

(
γ − φ

2

)]1/2 R . (27.3.13)
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(See derivations below.) The overwire measurement is performed when function C(φ)
reaches its extreme value, that is,

dC(φ)
dφ

= 0. (27.3.14)

Equation (27.3.14) yields

φ = tan2 βR sin(γ − φ). (27.3.15)

Equations (27.3.13) and (27.3.15) yield that the extreme value of C is

C = 2R sin
(

γ − φ

2

)[
1 + tan2 βR cos2

(
γ − φ

2

)]1/2

(27.3.16)

and

M = C + 2ρ. (27.3.17)

The derivation of equation (
r(1)
2 − r(2)

2

) · c2 = C (27.3.18)

is based on the following considerations:

(i) Unit vectors a(1)
2 and a(2)

2 of the axes of two wires are crossed and lie in parallel
planes �1 and �2 (Fig. 27.3.3). The shortest distance between a(1)

2 and a(2)
2 is

C = B A = C
a(1)

2 × a(2)
2∣∣a(1)

2 × a(2)
2

∣∣ .
(ii) Position vectors r(1)

2 = O2M, and r(2)
2 = O2N are drawn from origin O2 of coor-

dinate system S2 to current points M and N of the axes of the wires.
(iii) Figure 27.3.3 yields

r(1)
2 + λ1a(1)

2 = r(2)
2 + λ2a(2)

2 + C (27.3.19)

where

λ1a(1)
2 = MA, λ2a(2)

2 = N B.

Then, we obtain

r(1)
2 − r(2)

2 = C + λ2a(2)
2 − λ1a(1)

2 . (27.3.20)

We multiply both sides of Eq. (27.3.20) by the unit vector

c2 = a(1)
2 × a(2)

2∣∣a(1)
2 × a(2)

2

∣∣
and take into account that

C · c2 = C, a(1)
2 · (a(1)

2 × a(2)
2

) = a(2)
2 · (a(1)

2 × a(2)
2

) = 0. (27.3.21)

Then, we obtain Eq. (27.3.18).
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Relation Between dM and dR
The relation between dM and dR may be obtained by differentiation of Eqs. (27.3.16)
and (27.3.17) that yields

dM =
[

C
R

− 2R
C

tan2 βR sin2(γ − φ)
]

dR (27.3.22)

where dR is represented by (27.3.3). The derivation of (27.3.22) is based on the follow-
ing auxiliary relations:

dφ = 2 tan βR sin(γ − φ)
cos2 βR [1 + tan2 βR cos(γ − φ)]

dβR (27.3.23)

dβR = sin βR cos βR
dR
R

. (27.3.24)

Numerical Example: Measurement of Involute Helical Gear
Input Data:

Profile angle of rack-cutter in normal section αn = 20◦

Diametral pitch in normal section Pn = 10.0 (1/in.)
Helix angle on pitch cylinder βp = 30◦

Number of teeth N1 = 21

Auxiliary Data:
Diametral pitch in cross section Pt = 8.660254 (1/in.)
Radius of pitch cylinder rp = 1.212436 in.
Screw parameter p = 2.100000 in.
Circular pitch in cross section pt = 0.362760 in.
Distance between the tip points of the ball

and involute helical gear [see Eq. (27.2.15)] δ = 0.0100 in.

Output Data:
Radius of ball ρ = 0.083000 in.
Distance between the axes of the wire and

involute helical gear R = 1.237895 in.
Shortest distance between two wire axes C = 2.465225 in.
Measurement over wires M = 2.631225 in.

Relation between dM and dwt
dM
dwt

= − 2.116686

The nominal values of R and M in the preceding table are obtained for the nominal
value of wt , that is, the space width measured on the pitch circle. The ratio dM/dwt

enables us to determine the real space width.
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Figure 27.4.1: Blade profiles.

27.4 MEASUREMENT OF ASYMMETRIC ARCHIMEDES SCREW

Figure 27.4.1 shows the blade that is used for generation of a screw with asymmetric
tooth surfaces. Each side of the space surface of the screw may be considered as the
surface of an Archimedes worm. The profile angles of the tooth side screw surfaces are
different because the profile angles of the blade are different (Fig. 27.4.1).

The generating lines of the blade are represented in the auxiliary coordinate system
Sb (Fig. 27.4.1). Point N is the point of intersection of the generating lines and axis
xb passes through point N . Axis zb coincides with the axis of the screw to be genera-
ted.

Figure 27.4.1 yields

sp = (rp − m) (tan α1 + tan α2). (27.4.1)

The nominal value of sp is determined as

sp = pax

2
= H

2N1
= π

2Pax
. (27.4.2)

Here, pax is the axial distance between the neighboring worm threads (Fig. 27.4.2);
H = 2πrp tan λp is the lead; rp is the radius of the worm pitch cylinder; Pax is the
diametral pitch that corresponds to pax.
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Figure 27.4.2: Axial section of screw threads.

Using Eq. (27.4.1), we obtain

m = rp − sp

tan α1 + tan α2
. (27.4.3)

Current point A (or B) of the generating line is represented in Sb by the equations

r(A)
b = [m + u1 cos α1 0 − u1 sin α1]T (27.4.4)

r(B)
b = [m + u2 cos α2 0 u2 sin α2]T (27.4.5)

where u1 = |N A|, u2 = |N B|.
The screw surfaces are generated while the blade performs the screw motion about

the screw axis with the screw parameter p = H/(2π) (Fig. 19.4.3). Using the procedure
of coordinate transformation, we obtain the following equations for the screw space
surfaces and the surface unit normals.

(i) Side I surface, right-hand worm:

x1 = (m + u1 cos α1) cos θ1

y1 = (m + u1 cos α1) sin θ1

z1 = −u1 sin α1 + pθ1.

(27.4.6)

Surface unit normal:

nx1 = −k1(d1 cos α1 sin θ1 + sin α1 cos θ1)

ny1 = −k1(−d1 cos α1 cos θ1 + sin α1 sin θ1)

nz1 = −k1 cos α1

(27.4.7)
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where

m = rp − sp

tan α1 + tan α2
, d1 = p

m + u1 cos α1
, k1 = 1(

1 + d2
1 cos2 α1

)1/2 .

(ii) Side II surface, right-hand worm:

x2 = (m + u2 cos α2) cos θ2

y2 = (m + u2 cos α2) sin θ2

z2 = u2 sin α2 + pθ2.

(27.4.8)

Surface unit normal:

nx2 = k2(d2 cos α2 sin θ2 − sin α2 cos θ2)

ny2 = k2(−d2 cos α2 cos θ2 − sin α2 sin θ2)

nz2 = k2 cos α2

(27.4.9)

where

d2 = p
m + u2 cos α2

, k2 = 1(
1 + d2

2 cos2 α2
)1/2 .

Numerical Example: Measurement of Asymmetric Screw
The procedure of computation is based on the algorithm discussed in Section 27.2 [see
Eqs. (27.2.9) to (27.2.14)]. Because the space surfaces are helicoids, any value of Z can
be chosen, for instance Z = 0.

Input Data:
Pitch diameter dp = 1.125 in.
Diametral pitch Pax = 10.0 (1/in.)
Side I axial pressure angle α1 = 7◦

Side II axial pressure angle α2 = 45◦

Number of threads N1 = 8

Auxiliary Data:
Lead angle λp = 35.417055◦

Space width on pitch cylinder in axial section sp = 0.157080 in.
Screw parameter p = 0.400000 in.
Lead H = 2.51327 in.

Output Data:
Radius of the ball (wire) ρ = 0.071000 in.
Distance between the axes of the wire R = 0.598838 in.
and the worm

Relation betweend R and dsp
dR
dsp

= −0.829939
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28 Minimization of Deviations of Gear
Real Tooth Surfaces

28.1 INTRODUCTION

Coordinate measurements of gear real tooth surfaces enable us to determine surface
deviations from the ideal surface. The goal is to minimize the surface deviations by
proper correction of the initial machine-tool settings.

The technological aspects of the problem are as follows:

(i) The deviations of real tooth surfaces are inevitable due to surface distortion by heat-
treatment, errors in initial machine-tool settings, deflection by manufacturing, and
so on.

(ii) Application of an additional finishing operation for elimination of the devia-
tions would be too expensive in comparison with the approach based on correc-
tions of initially applied machine-tool settings. The advantage of this approach
is the possibility of using the same equipment to correct the deviations. The
disadvantage is that the approach will be successful only if the deviations are
repeatable.

(iii) The coordinate measurements must be performed with high precision, which
currently prohibits them from being performed simultaneously with the man-
ufacturing. Therefore, the coordinate measurements are performed after manu-
facturing, but only the first gear of the whole gear set to be manufactured is
tested.

(iv) In some cases master-gears are used and the coordinate measurements pro-
vide the information about the deviations from the master-surface for the sur-
face being tested. The authors consider this approach less effective than com-
puterized determination of surface deviations and corrections of machine-tool
settings.

The described technique has been developed in response to the increasing require-
ments of high quality gear transmissions. Minimizing the deviations of real tooth sur-
faces results in a reduction in the level of transmission errors that cause gear noise
and vibration. This chapter is based on research performed by Litvin, Kuan, Wang,
Handschuh, Masseth, and Maruyama [1993b].

782
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Figure 28.2.1: Surface measurement.

28.2 OVERVIEW OF MEASUREMENT AND MODELLING METHOD

The surface deviations obtained initially in Cartesian coordinates are transformed into
deviations along the normal to the theoretical surface. The coordinate measurements are
performed by a machine with four or five degrees-of-freedom. In the case of four degrees-
of-freedom, the probe performs three translational motions (Fig. 28.2.1); the fourth
motion, rotation, is performed by a rotary table. The axis of rotational motion coincides
with the axis of the workpiece. In the case of a five-degree-of-freedom machine, the fifth
degree of freedom is used to provide the deflections of the probe in the direction of the
normal to the theoretical surface. The probe is provided with a changeable spherical
surface whose diameter can be chosen from a wide range.

The motions of the probe and the workpiece by coordinate measurements are com-
puter controlled, and therefore a grid comprised of the set of surface points to be
measured must be chosen (Fig. 28.2.2). There is a reference point on the grid that
is necessary for the initial installments of the probe. There are two orientations of
the probe installment that are used to measure a gear [Fig. 28.2.1(a)] and a pinion
[Fig. 28.2.1(b)], depending on the angle of the pitch cone.
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Figure 28.2.2: Grid.

The mathematical aspects of coordinate measurements will now be described: First,
it is necessary to derive the equations of the theoretical surface; in many cases this
surface can be derived as the envelope to the family of generating surfaces, namely the
tool surfaces. Next, the results of coordinate measurements must be transformed into
deviations of the real surface represented in the direction of the surface normal. Then, the
relations between the surface variations and the corrections to the machine-tool settings
must be determined. The surface deviations obtained from coordinate measurements
and the surface variations determined by the corrections of machine-tool settings can
be represented by an overdetermined system of linear equations. The number of these
equations, k, is equal to the number of points of the grid, and the number of unknowns,
m, is equal to the number of corrections of machine-tool settings (m � k). The optimal
solution to such a system of linear equations results in the determination of the machine-
tool setting corrections.

28.3 EQUATIONS OF THEORETICAL TOOTH SURFACE �t

Considering that the theoretical surface can be determined directly, we represent it in
coordinate system St in two-parameter form as

rt (u, θ ), nt (u, θ ). (28.3.1)

Here, rt and nt are the position vector and the surface unit normal, respectively; (u, θ )
are the Gaussian coordinates (surface coordinates).
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Figure 28.4.1: Coordinate transformation.

For the case when surface �t is the envelope to the family of generating surface �c ,
we represent surface �t and the unit normal nt to �t in St as

rt = Mtcrc (uc , θc ), f (uc , θc , φ) = 0 (28.3.2)

nt = Ltcnc (uc , θc ), f (uc , θc , φ) = 0. (28.3.3)

Here, (uc , θc ) are the Gaussian coordinates of the generating surface �c ; φ is the gen-
eralized parameter of motion in the process for generation. The equation of meshing is
given by

f (uc , θc , φ) = N(c) · v(ct) = 0 (28.3.4)

where N(c) is the normal to �c , and v(ct) is the relative velocity for a point of contact
of �c and �t . The 4 × 4 matrix Mtc and the 3 × 3 matrix Ltc describe the coordinate
transformation from Sc to St of a position vector and a surface unit normal, respectively.

28.4 COORDINATE SYSTEMS USED FOR COORDINATE MEASUREMENTS

Coordinate systems Sm and St are rigidly connected to the coordinate measuring
machine (CMM) and the workpiece being measured, respectively (Fig. 28.4.1). The
back face of the gear is installed flush with the base plane of the CMM. The distance l
between the origins Om and Ot is known, but the parameter of orientation δ must
be determined (see Section 28.5). The coordinate transformation from St to Sm is
represented by the matrix equation

rm = Mmtrt . (28.4.1)
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28.5 GRID AND REFERENCE POINT

The grid is a set of points on �t chosen as points of contact between the probe and �t

(Fig. 28.4.1). Fixing the value of zt for the point of the grid, and the value of, say yt

(or xt ), we can obtain the equations

yt
(
u(i ), θ(i )

) = hi , zt
(
u(i ), θ(i )

) = li (i = 1, . . . , k) (28.5.1)

where k is the number of grid points.
We consider hi and li as given and solve Eqs. (28.5.1) for (u(i ), θ(i )). Then we can

determine the position vectors and the unit normals for k points of the grid using the
equations

r(i )
t = [

xt
(
u(i ), θ(i )

)
yt
(
u(i ), θ(i )

)
zt
(
u(i ), θ(i )

)]T (i = 1, . . . , k) (28.5.2)

n(i )
t = [

nxt
(
u(i ), θ(i )

)
nyt
(
u(i ), θ(i )

)
nzt
(
u(i ), θ(i )

)]T (i = 1, . . . , k). (28.5.3)

The position vector for the center of the probe, if the deviations are zero, is represented
by the equation

R(i )
t = r(i )

t + ρn(i )
t (28.5.4)

where ρ is the radius of the probe tip and i is the grip point.
The reference point

r(0)
t = [xt

(
u(0), θ (0)) yt

(
u(0), θ (0)) zt

(
u(0), θ (0))]T (28.5.5)

is usually chosen as the mean point of the grid. The center of the probe that corresponds
to the reference point on �t is determined from Eq. (28.5.4) as

R(0)
t = [Xt

(
u(0), θ (0)) Yt

(
u(0), θ (0)) Zt

(
u(0), θ (0))]T . (28.5.6)

Here, (u(0), θ (0)) are known values. The coordinates of the reference center of the probe
are represented in coordinate system Sm of the measuring machine by the matrix equa-
tion

R(0)
m = Mmt (δ) R(0)

t . (28.5.7)

Equation (28.5.7) yields

X(0)
m = X(0)

m
(
δ, u(0), θ (0)

)
Y (0)

m = Y (0)
m
(
δ, u(0), θ (0)

)
Z(0)

m = Z(0)
m
(
δ, u(0), θ (0)

)
.

(28.5.8)

The three equations of system (28.5.8) contain four unknowns: δ, X(0)
m , Y (0)

m , Z(0)
m . To

solve these equations we may consider that one of the coordinates of the reference point
of the probe center, say Y (0)

m , may be chosen equal to zero. Then the system of equations
(28.5.8) allows the determination of δ, X(0)

m , and Z(0)
m . Coordinates X(0)

m , Y (0)
m = 0, Z(0)

m

are necessary for the initial installment of the center of the probe.
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28.6 DEVIATIONS OF THE REAL SURFACE

The deviations of the real surface are caused by errors of manufacturing, heat treatment,
and so on. Vector positions of the center of the probe for the theoretical surface and the
real surface can be represented as follows:

Rm = rm(u, θ ) + ρnm(u, θ ) (28.6.1)

R∗
m = rm(u, θ ) + λnm(u, θ ). (28.6.2)

Here, rm and nm are the position vector and the unit normal to the theoretical surface,
respectively, that are represented in coordinate system Sm of the measuring machine; λ

determines the real location of the probe center and it is considered along the normal
to the theoretical surface; Rm and R∗

m represent in Sm the position vector of the probe
center for the theoretical and real surfaces, respectively. Equations (28.6.1) and (28.6.2)
yield

R∗
m − Rm = (λ − ρ)nm = �n nm (28.6.3)

and

�n = (R∗
m − Rm) · nm. (28.6.4)

The position vector R∗
m is determined by coordinate measurements for points of the

grid. Equation (28.6.4) determines numerically the function

�ni = �ni
(
u(i ), θ(i )

)
(i = 1, . . . , k) (28.6.5)

that represents the deviations of the real surface for each point of the grid.

28.7 MINIMIZATION OF DEVIATIONS

The procedure of minimization of deviations can be represented in two stages: (i) deter-
mination of variations of the theoretical surface caused by changes in applied machine-
tool settings, and (ii) minimization of deviations of the real surface by appropriate
correction of machine-tool settings.

We consider that the theoretical surface is represented in St as

rt = rt (u, θ, dj ) ( j = 1, . . . , m) (28.7.1)

where parameters dj are the machine-tool settings. The surface variations are repre-
sented by

δrt = ∂rt

∂u
δu + ∂rt

∂θ
δθ +

m∑
j=1

∂rt

∂dj
δdj . (28.7.2)

We multiply both sides of Eq. (28.7.2) by the surface unit normal nt and take into
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account that ∂rt/∂θ · nt = ∂rt/∂u · nt = 0 because ∂rt/∂θ and ∂rt/∂u lie in the plane
that is tangent to the surface. Then we obtain

δrt · nt =
(

m∑
j=1

∂rt

∂dj
· nt

)
δdj =

m∑
j=1

a j δdj . (28.7.3)

We can now consider a system of k linear equations in m unknowns (m � k) of the
following structure:

a11δd1 + a12δd2 + · · · + a1mδdm = b1
...

ak1δd1 + ak2δd2 + · · · + akmδdm = bk.

(28.7.4)

Here,

bi = �ni = (R∗
mi − Rmi

) · nmi . (28.7.5)

where i designates the number of grid points; ai j (i = 1, . . . , k; j = 1, . . . , m) represent
the dot product of partial derivatives ∂rt/∂dj and unit normal nt .

The system of linear equations (28.7.4) is overdetermined because m � k. The essence
of the procedure of minimization of deviations is the determination of such unknowns
δdj ( j = 1, . . . , m) that will minimize the difference between the left and right sides of
Eqs. (28.7.4). The solution can be accomplished by the method of least squares.

The success of minimization of deviations depends on the number of parameters
that may be varied (the number of machine-tool settings that may be corrected). The
number of pinion machine-tool settings is larger than that for the gear. The minimization
of deviations can be performed for each pinion tooth side separately. However, it must
be performed simultaneously for both sides of the gear tooth because the gear is usually
cut by the duplex method. For these reasons the minimization of deviations is more
effective for the pinion than it is for the gear.
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202, 226, 242, 249, 262, 404, 405, 408,
427, 440, 441, 444, 445, 450, 456, 508,
538, 656

point (contact), instantaneous, 202, 225, 230,
242, 252, 260, 261, 264, 405, 408, 414,
427, 440, 441, 444, 508, 525, 533, 538,
656

Contact ellipse, 234–240, 247–249
Contact lines, 387–389, 395, 553, 586, 590, 593,

599, 604, 605, 621, 622, 624–626,
721–723, 731

Contact path, 252, 263–265
Contact ratio, 292–294, 398
Coordinate measurement, 782–785
Coordinate transformation, 1, 5
Coordinate transformation, inverse, 4
Coordinates

Cartesian, 78
curvilinear (Gaussian, for surfaces), 78
homogeneous, 1, 2, 14

Cradle, 631, 634
Cradle angle, 635, 653, 692
Crossing angle, 446, 448, 449, 452, 453,

458–464
Crowning

double, 408, 417, 419, 429, 431, 485, 487, 496,
500, 611, 711, 716

longitudinal, 405, 406, 419, 429, 430, 477, 487,
496, 498, 611, 711

profile, 405, 406, 414, 419, 427, 477, 482, 487,
494, 498, 611, 711

795
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Curvature
Gaussian, 189, 190, 193, 194, 529
geodesic, 166, 167, 172–174, 195
normal, 166–173, 177, 179, 180, 188, 190, 193,

198
planar curves, of, 68, 72–75, 77
principal (curvatures), 175, 180, 182, 184, 185,

188, 190, 191, 193, 198–200
principal directions, 175, 180–189, 192, 199,

200
radius of, 68, 72, 74
spatial curves, of, 156, 158, 159, 161, 163, 164,

170–173
Curvature matrix, 218, 231, 232

diagonalization, 231–234
Curvature relations

normal curvatures of surfaces, of, 226–230
planar gearing, for, 204–218
principal curvatures, of, 218–225

Cutter mean radius, 637
Cutter point radius, 637, 639, 645, 693
Cutter point width, 637
Cutting ratio, 617, 618, 621
Cycloid

extended, 27
generation, of, 27
ordinary, 27
shortened, 27

Cycloidal gearing, 350
Cycloidal gearing pump, 115, 116

Decomposition of motion, 202, 226
Dedendum, 49, 276, 279, 283, 296, 297, 302,

392
circle, 279, 283, 285, 300, 301
cyclinder, 461, 463
cycloidal gear tooth profile, of, 356, 357, 359,

370
Deviations (of real tooth surface), 787

determination, 762, 763
minimization, 763, 764, 782, 787

Diametral pitch, 49, 50
Direction cosines, 4
Directions (on surface)

principal, 175, 180–189, 192, 199, 200
Disk-shaped milling cutter, 719, 720, 726, 727,

729, 730, 732
Displacement functions (for generation of

non-circular gears)
rack-cutter, by, 345–347
shaper, by, 348, 349

Double-enveloping worm gear drive, 614
modified gearing, 617, 620, 621, 625
unmodified gearing, 617–625

Eccentric gears, 289, 330
Edge contact, 260–266, 404, 408, 439–441, 443,

446, 448, 452, 459, 460

Edge of regression, 80
Efficiency (of a planetary gear train), 709–711
Elastic deformation, 234, 235, 238
Elliptical gears, 318, 319, 326–328
Envelope to family of contact lines, 112, 113, 118,

119
formation of branches of envelope, 114, 115, 117
necessary and sufficient conditions of existence,

112, 113
Envelope to family of surfaces, 97–100, 103,

105–110, 202, 203
necessary conditions of existence, 97, 98
sufficient conditions of existence, 97, 107–110

Envelope to two-parametric family of surfaces, 125,
126, 427, 428

necessary conditions of existence, 126
Epicycloid

extended, 24, 25, 59, 63, 64, 66, 67, 77, 350,
352, 354

generation, of, 24, 351, 352
ordinary, 25, 67, 77, 350, 353
shortened, 25, 350

Equation of meshing, 98–101, 104, 106, 361–363,
366, 372, 383, 392, 583, 584, 586, 588,
593, 595, 596, 599, 603, 604, 620, 621,
641, 648, 650, 652, 653, 657, 695, 737,
740, 742, 754, 757–759, 785

Evolute, 268, 274, 341–343

Fillet, 119–124, 144
face gears, of, 508, 510, 524
internal gears, of, 305–307

Finger-shaped milling cutter, 718–720, 722–725
Finite element analysis, 257–259
Flyblade, 734
Force transmission, 399, 401
Forms (fundamental)

first and second, 175–177, 180
Frenet equations, 71
Frenet trihedron, 69, 70, 73

Gaussian coordinates (surface parameters), 376
Gear ratio, 44, 45, 50–52, 58, 256, 287–289, 318,

322, 323, 327, 330, 407, 418, 549, 550, 552,
555, 604, 617, 697, 698, 701–703, 706, 709

Generating lines (for worm generation), 557,
563–567, 569, 570, 572, 614, 779

Geneva mechanism, 318
Geodesic line, 167, 169, 194–198
Grinding, 404
Grinding wheel, 579–581, 591–594, 597–600, 603,

641, 718, 729

Helical gears, 375
nonstandard, 375
parallel axes, with, 375, 376
profile angles, 385, 386, 402
standard, 375
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Helicoid, 90–95, 376, 395, 547, 597, 603, 611,
731, 773, 774, 781

generalized, 601, 602, 604, 606
generation, of, 28, 90, 718, 721

Helix (on a surface), 163, 175, 376, 377, 380, 388,
396, 547–550, 553, 555, 569, 573, 574,
578, 680

Helix angle, 375, 390, 554
Herringbone teeth (helical gears), 401
Hobbing, 404
Honing, 441
Hyperboloids of revolution, 55–57, 679
Hypocycloid

extended, 304, 307, 308, 311, 312, 314, 316,
352, 353, 355

ordinary, 353, 354
pseudo, 304, 307, 308

Hypoid gears, 679
face-hobbed, 685, 687, 689
face-milled, 685, 686, 690–692
formate-cut, 687, 690, 691

Instantaneous axis of rotation, 51, 99, 375, 383,
392, 395

Instantaneous center of rotation, 37, 44, 45, 48,
101, 120, 121, 137, 138, 144, 271, 272,
274, 275, 287, 290, 302, 350

Interference, 290
internal gears, of, 314–316
spur gears, of, 291

Internal gears, generation of
axial, 305, 309
axial and step-by-step radial, 305
axial–radial (two-parametric), 305, 309

Involute
conventional, 268–270, 272, 309, 310
extended, 270–272
function, 270
shortened, 270, 271

Involute curve
extended, 25, 59, 76, 95, 572
generation, of, 25, 26
ordinary, 25, 63, 65, 76
shortened, 25

Jacobian, 252, 418, 452

Knots of meshing, 134–137

Lead angle, 552, 553, 734, 768
Limit contact normal (Wildhaber’s concept), 118,

119
Limiting position of rays (for a planar curve), 60, 61

at a regular point, 60
at a singular point, 60

Limiting position of rays (for a surface)
at a regular point, 80
set of rays, 80

Line of action, 33, 126, 129, 252, 255–257, 287,
441, 445–448, 450, 459, 460

cycloidal gears, of, 357, 363, 366, 372
Local synthesis, 245–249, 628, 629, 631, 633, 641,

649, 650, 652, 656
Localized bearing contact, 416

Machine center to back, 642, 644, 692
Machine offset, 692
Machine root angle, 634, 642, 644, 692
Machine-tool settings (of spiral bevel gears), 635,

642–645, 650, 655
Matrix

column, 1, 4
determinant, of, 4
direct, 5
identity, 5, 9
inverse, 4, 5, 15, 17, 19
rotational, 14, 15
row, 1
skew-symmetric, 9, 156, 166
symmetric, 222, 229, 231
translational, 14, 16, 18
transpose, 1

Misalignment, 242, 243, 249, 250, 262, 402,
403

Modified roll, 406, 429, 430, 478, 496, 498,
631–633, 644, 648, 649

Module, 279, 408, 430, 435, 454, 457, 461,
479

Motion
generalized parameter, 39, 98, 100, 106, 109,

110, 115, 122
planar, 44
relative, 47, 102, 103, 129, 161, 202
rotational, 44
transfer, 102, 119, 161, 202
translational, 44

Noise, 404, 406, 416, 417, 419, 475, 477, 478,
485, 487, 627–631, 649

Noncircular gear applications
combined, as, 320
crank-slider linkage, with, 319
Geneva mechanism, 318, 319
instruments, for, 321
liquid meter, for, 320
twisted, as, 321

Noncircular gear generation
enveloping method by rack-cutter, 337–339
enveloping method by shaper, 341
master-gears, by application of, 335, 336
worm-gear master mechanism, by application

of, 336
Nonstandard gears, 280, 284, 294, 295, 300,

302
general system, 295, 298
long–short addendum system, 295



P1: JsY

cb672index CB672/Litvin CB672/Litvin-v2.cls April 15, 2004 16:5

798 Index

Normal, unit normal
planar curve, to, 62, 63, 69–71, 74
principal, 154, 155
spatial curve, to, 154
surface, to, 81, 82, 165

Osculating
circle, 68–70
plane, 153–157, 161–164, 168–173,

197
Oval gears, 318, 328
Overcentrode cycloidal gearing, 367–370
Overwire (ball) measurement, 769

Parabola vertex location parameter, 638
Path of contact, 252, 263–265, 514
Phase angle (of planet gears), 707–709
Pin gearing

external, 359–364
internal, 365–367

Pitch
angular, 292
axial, 553
base, 280, 293
circular, 278, 526
diametral, 274, 278, 279, 526
normal, 553
transverse, 553

Pitch circle, 49, 274–276, 278, 379
operating, 50

Pitch cones, 51, 511, 514, 679–681
design, 685–690
operating, 679, 680

Pitch cylinder, 390, 404, 420, 424, 425, 428, 449,
459–461, 488, 491, 495, 496

operating, 375, 418, 449, 459
Pitch diameter

hob, of, 611
worm, of, 552, 553

Pitch line, 511, 512, 514
Pitch plane, 681–684, 686–689
Pitch point, 510, 511, 513, 514, 517, 518, 522,

681–684, 686
Pitch surfaces, 510, 511, 548

operating, 548
ordinary, 548

Planar curve
parametric representation, 59, 63, 72
regular, 59, 60
representation by implicit function, 60
simple, 59, 60

Plane
normal to surface, 154, 164, 169–172, 178, 180,

197, 198
osculating, 153–157, 161–164, 168–173, 197
rectifying, 154
surface parameters, of, 78

Plane of action, 389, 396, 443–445

Plunging (of a tool), 406, 419, 429–432, 438
Plunging motion, 422, 423, 487, 489, 490
Pointing

face gears, of, 522–524
modified helical gears, of, 434, 435
Novikov-Wildhaber helical gears, of, 501
spur gears, of, 283

Points of planar curve
regression, 60, 61, 66, 67
singular, 60, 61, 67

Points of surface
elliptic, 190, 193, 194, 529
hyperbolic, 190–195, 529
parabolic, 191, 192, 194, 529
rectification, 153, 155

Poisson’s ratio, 440, 506, 542, 665
Predesigned parabolic function of transmission

errors, 242–245, 477, 478, 482, 498,
500

Pressure angle, 288, 291, 298, 344, 409, 415, 418,
430, 434, 523

Profile angles, of worm
axial, 555, 556, 586
normal, 555, 556, 581
transverse, 555, 556, 576, 581

Rack, rack-cutter
circular arc profile, with, 145, 146
external pin gearing, for, 361, 364
internal pin gearing, for, 367
parabolic profile, with, 408, 410, 477, 479, 481,

482, 487, 502, 515, 525, 526
straight line profile, with, 105, 119, 273–276,

280–283, 408, 411, 525, 526
watch gearing, for, 359

Radial distance, 635
Radial setting, 692
Ratio of roll, 644, 648
Root’s blower, 369, 371
Rotation

between crossed axes, 33, 52, 441
between intersected axes, 51, 52
between parallel axes, 35, 44, 441

Screw involute surface, 405, 443–445, 456
Screw motion, 28, 54, 414, 415, 421, 423, 428,

443, 444, 456, 488–490, 495, 496
instantaneous axis, of, 55
parameter, 28, 32, 55, 90, 94

Screw rotors
compressors, of, 351
pump, of, 351

Screw surface
generation, of, 32

Settings (or rack-cutter)
conventional, 280–282
limiting, 280, 282
non-conventional, 280, 282, 283, 295
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Shaper, 508, 512, 513, 527
edged top, with, 541–545
rounded top, with, 524, 541

Shaping, 404
Shaving, 441
Singularities (see undercutting), 103
Sliding base, 642, 644, 692
Spiral bevel gears, 627

face-milled generated, 627, 650, 666
formate-cut, 627, 633–635, 641–644, 650,

656
Spur involute gears, 267, 268, 273

generation by a hob, 276, 277
generation by a rack-cutter, 273–276
generation by a shaper, 278

Standard center distance, 50
Stress analysis

crossed helical gears, of, 465–467
face gears, of, 541–546
modified helical gears, of, 435–440
Novikov-Wildhaber helical gears, of,

502–507
spiral bevel gears, of, 670–676

Surface
normal, 6
point, 6
revolution, of, 29
spherical, 30

Surface of action, 112, 134, 389, 392, 395,
606

Surface points
pseudosingular, 86, 88
regular, 80
singular, 80, 81

Surface representation
by implicit function, 82
in parametric form, 78

Surface types
cone, of, 82, 83, 88, 183, 185, 186
helicoid, 90–95
involute screw, 82, 83, 93, 95, 185, 547, 570,

573, 575, 576, 579, 588, 712, 724
regular, 82, 97, 107, 108, 110
revolution, of, 83–85, 185, 195, 196
ruled, 82, 83, 91–93, 191, 192, 195, 196
screw, 82, 149, 150
simple, 78, 82
spherical, 85–88, 171, 172, 182, 195,

196
Swivel angle, 692

Tangent plane
“half” tangent plane, 80
surface regular point, at, 79–82, 153, 176,

179
Tangent, unit tangent

“half” tangent (to planar curve), 60, 61, 66,
67

planar curve regular point, at, 60, 61, 63, 69, 70,
77

spatial curve, to, 153–155, 161, 164, 165, 167,
168, 170–172, 176, 180

Theorem
Bonnet, 167, 196
Camus, 355, 356
Clariaut, 195
Dupin’s (for indicatrix), 193–195
Euler, 188, 189
Euler–Rodrigues, 8, 9, 14
Frenet, 69, 70, 73
Frenet-Serret, 156, 159
Gauss, 175, 189
Implicit function system existence, 106, 108, 251,

413, 418, 452, 484, 518
Lewis, 101
Meusnier, 171, 172
Rodrigues, 8, 182
Wildhaber, 118, 119
Zalgaller, 60, 80, 107, 110

Thickness of tooth, 279, 283, 285–287, 294, 295,
298, 299, 380, 392

Tilt angle, 692
Tooth contact analysis (TCA), 249–256, 531
Tooth thickness, 455, 457, 461–463, 473
Torsion

spatial curve, of, 156–159, 162–164
surface, of, 166, 167, 194, 196–198, 227

Transfer of meshing, 289, 293
Transition point, 242
Transmission errors, function of, 404, 408, 415,

417–419, 430, 431, 498, 500, 533, 548,
606, 611, 612, 661, 665, 714, 716

integrated one, 716, 717
linear one, 242–244, 264, 404, 406, 416, 419,

431, 475, 487, 500, 548, 611, 629,
712

parabolic one, 496, 498, 500, 535, 611, 613,
628–631, 633, 667, 711, 712

predesigned parabolic one, 242–245, 406, 416,
429–431, 526, 535

Transmission function, 242–244
Trihedron

planar curve, of, 69, 70
spatial curve, of, 153–155, 158, 162, 163
surface spatial curve, 164–166, 172

Undercutting, 103–107, 109, 110, 118, 126, 127
face gears, of, 519–522, 531, 539
helical gears, of, 396, 397
internal involute gears, of, 304, 307, 309, 311,

312
modified helical gears, of, 432–434
Novikov-Wildhaber helical gears, of, 500, 501
spur involute gears, of, 280, 281, 285

Unitless coefficient of face gears, 529
Unitless stress parameter, 545, 546
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Vector
free, 6
free, components of, 6
moment, 33, 54
sliding, 6, 33, 38, 54
unit, 1, 3, 4, 6, 8–11

Velocity
relative, 33, 34, 39, 102, 128, 584, 603, 652,

657, 658, 660, 679, 683, 709, 755, 757, 785
relative angular, 304
sliding, 34–36, 38, 41, 42, 99, 102, 106, 203,

213, 701
sliding, matrix representation, 39
transfer, 102

Velocity ratio, 644, 648
Vibration, 404, 406, 416, 417, 419, 475, 485, 487,

606, 611, 629, 649

Watch gearing, 358
Width (of space), 279, 283, 295, 297–299, 377,

379, 392, 455, 473
Willis’ equation, 698
Worm surface types

ZA (Archimedes) worm, 547, 557, 561, 573,
604, 605, 609, 610, 738

ZF (Flender) F-I worm, 590, 591, 594–597,
599, 743

ZF (Flender) F-II worm, 597–600, 744
ZI (Involute) worm, 547, 574–579
ZK (Klingelnberg) worm, 547, 581,

740
ZN (Convolute) worm, 547, 561–573

Young’s Modulus, 440, 506, 542,
665
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